
333333333 3333

AVS 5
UPDATE

333333333333
Release 5

February, 1993

Advanced Visual Systems Inc.33333333
Part Number: 320-0019-03 Rev A

NOTICE

This document, and the software and other products described or referenced in it, are confidential and proprietary
products of Advanced Visual Systems Inc. (AVS Inc.) or its licensors. They are provided under, and are subject
to, the terms and conditions of a written license agreement between AVS Inc. and its customer, and may not be
transferred, disclosed or otherwise provided to third parties, unless otherwise permitted by that agreement.

NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT,
INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR
SUITABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A
WARRANTY BY AVS INC. FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF AVS INC.
WHATSOEVER. AVS INC. MAKES NO WARRANTY OF ANY KIND IN OR WITH REGARD TO THIS
DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

AVS INC. SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS
DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED
TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF AVS INC. HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The specifications and other information contained in this document for some purposes may not be complete,
current or correct, and are subject to change without notice. The reader should consult AVS Inc. for more
detailed and current information.

Copyright 1989, 1990, 1991, 1992, 1993
Advanced Visual Systems Inc.

All Rights Reserved

AVS is a trademark of Advanced Visual Systems Inc.

STARDENT is a registered trademark of Advanced Visual Systems Inc.
IBM is a registered trademark of International Business Machines Corporation.

AIX, AIXwindows, and RISC System/6000 are trademarks of International Business Machines Corporation.
DEC, ULTRIX, OpenVMS, VMS, DECwindows, DMS, VAX, ULTRIX Worksystem Software, and the DIGITAL logo

are trademarks or registered trademarks of Digital Equipment Corporation.
NFS was created and developed by, and is a trademark of Sun Microsystems, Inc.

HP is a trademark of Hewlett-Packard.
CRAY, CRAY X-MP EA, and CRAY Y-MP are registered trademarks of Cray Research, Inc.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.
SPARC is a registered trademark of SPARC International.

SPARCstation is a registered trademark of SPARC International,
licensed exclusively to Sun Microsystems, Inc.

OpenWindows, SunOS, Solaris, XDR, XGL, and SunVision
are trademarks or registered trademarks of Sun Microsystems, Inc.

UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.
Motif is a trademark of the Open Software Foundation.

IRIS and Silicon Graphics are registered trademarks of Silicon Graphics, Inc.
IRIX, IRIS Indigo, IRIS GL, Elan Graphics, IRIS Crimson, and Personal IRIS are trademarks of Silicon Graphics, Inc.

DG/UX and AViiON are trademarks and registered trademarks of Data General Corporation.
Mathematica is a trademark of Wolfram Research, Inc.

X WINDOW SYSTEM is a trademark of MIT.
PostScript is a registered trademark of Adobe Systems, Inc.

FLEXlm is a trademark of Highland Software, Inc.

RESTRICTED RIGHTS LEGEND (U.S. Department of Defense Users)

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
the Rights In Technical Data and Computer Software clause at DFARS 252.227–7013.

RESTRICTED RIGHTS NOTICE (U.S. Government Users excluding DoD)

Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in
the Commercial Computer Software — Restricted Rights clause at FAR 52.227–19(c)(2).

Advanced Visual Systems Inc.
300 Fifth Ave.

Waltham, MA 02154

AVS 5 UPDATE CONTENTS-1

TABLE
OF
CONTENTS

1 Introduction

AVS 5 Documentation 1-1
AVS 5 New Features 1-1
Demos of New Features 1-2

2 Starting AVS

$Path—Installing and Finding AVS Anywhere in a Directory Tree 2-1
Prior Releases 2-1
AVS 5 Behavior 2-2
Running AVS with $Path 2-2
Compiling Modules with AVS_PATH 2-3
Debugging Modules with avs_dbx 2-4

Continuation Character in .avsrc File 2-4
New Startup Options 2-4

3 Data Types

Short Field Data Type 3-1
FORTRAN Short Accessor Routines 3-1

AVSload_short 3-2
AVSstore_short 3-3

4 Image Viewer

Image Viewer: 8-Bit Scalar and Any-Data Images 4-1
 Limitations 4-1

Image Viewer: Scalar Images and Colormaps on
 Pseudo Color Displays 4-2

TABLE OF CONTENTS

CONTENTS-2 AVS 5 UPDATE

Image Viewer: Drawing in Image Viewer Windows 4-3
Drawing on Images 4-4

Left Mouse Button Controls 4-4
An Interactive "Sketching" Network 4-5
A More Complicated Network 4-8

ROIs and Subimages 4-8
Programmer Interface to Image Viewer Upstream Data 4-9

Establishing Connections 4-9
Data Structures 4-9
Include Files 4-10
Defining I/O Ports in the Module’s Description Routine 4-10
Image Draw Port 4-10

Allocating Data for the Image Draw Port 4-11
Image Viewer ID Port 4-11
Mouse Info Port 4-11

Initialization: image_wakeup_when_defined
 CLI Command 4-11
Distinguishing Mouse Info Initialization
 from Mouse Events 4-12

Selecting Events: image_select_events CLI Command 4-12
Acquiring Left Mouse Button Events:
 image_set_pick_mode CLI Command 4-13

Stopping Events: image_stop_events CLI Command 4-13
mouse_info Event Structure 4-14

image_x and Image_y Coordinate System 4-14
buttonMask Mouse Events 4-14
nEvents and Event Buffering 4-15

The CLI Interface for Drawing on Images 4-15
Draw a Line: image_add_line CLI Command 4-15
Deleting Lines: image_clear_all_lines CLI Command 4-15
Setting Line Width: image_set_line_width
 CLI Command 4-16
Setting Line Color: image_set_line_color
 CLI Command 4-16
Drawing XOR lines for Rubber-Banding:
 image_add_xor_line CLI Command 4-16
CLI Command Buffering for Performance 4-16

image_refresh CLI Command 4-17
Image Output and Image Viewer Performance 4-17

5 Geometry Viewer and Libgeom Library

Outline Gouraud and Hardware Renderers 5-1
Sending Scene Windows to a Different Display 5-1

Colormap Messages 5-2
geom_set_display CLI Command 5-3

 TABLE OF CONTENTS

AVS 5 UPDATE CONTENTS-3

 Image Output, Image Viewer and Geometry Viewer Performance 5-4
Non-Transformable Objects 5-6
Texture Maps 5-7

GEOMedit_field_texture 5-7
GEOMedit_texture_colormap 5-7

Network Example 5-8
Pixmap Output with Window ID 5-10
Integer Synchronize Output 5-10
New CLI Commands 5-10

geom_center 5-10
geom_get_position 5-10

6 Graph Viewer

Graph Viewer Geometry Output 6-1

7 Network Editor

Macro Modules: Improved Interface 7-1
Dial Widget Behavior 7-3

Dial Resolution 7-3
Bounded Dials 7-3
Unbounded Dials 7-5

8 Developing Modules

Introduction 8-1
Module Generator 8-1

Reinitialize 8-1
Support for Widgetless and Unbounded Parameters 8-1

Modifying Fields in Place 8-3
Side Effects of Modifying Fields in Place 8-4
Note on Supplied AVS Modules 8-4

C++ and ANSI-C in AVS 5 8-5
Introduction 8-5
Function Prototypes 8-5
To Ensure Module Compatibility 8-5
General Practices for ANSI-C and C++ Compatibility 8-6
C++ Example 8-8

Compiler Warnings 8-9
Unmapped Control Panels 8-10

TABLE OF CONTENTS

CONTENTS-4 AVS 5 UPDATE

9 Modules and Module Libraries

Introduction 9-1
Module Libraries 9-1

Default Libraries 9-1
New Module Library Classifications 9-2

New and Enhanced Modules 9-4
Imaging Modules 9-4
New UCD Modules 9-6
Updated UCD Modules 9-6
New Volume Rendering Modules 9-7
Updated Volume Rendering Modules 9-7
New and Enhanced Data Presentation Modules 9-8
Miscellaneous New Modules 9-9
Miscellaneous Enhanced Modules 9-9

10 AVS Animation Application

Known Problems Fixed 10-1
Animator Interface Changes 10-1

Green/Red Keyframe Change/Do Not Change Indicator 10-1
Setting Keyframe Times in the Full Animator 10-2

New Modules 10-2
minmax and ucd minmax 10-2
time sampler and blend colormaps 10-3

11 Documentation Clarifications/Corrections

Existing Documentation: Clarifications and Corrections 11-1
Multiple Connections to an Input Port: AVSinput_changed 11-1
Loading Modules with the CLI module Command: the -ex Option 11-1
Unstructured Cell Data 11-3

ASCII UCD File Format: Specifying Cell Types 11-3
Cell Topology 11-3

FORTRAN Array Indexing and AVS Library Routines 11-6
Error Message 11-6

FORTRAN and AVSptr_alloc: Use AVStypesize for Portability 11-6
Geometry Library 11-7

GEOMcreate_label_flags: font_number 11-7
GEOMcreate_mesh 11-7
Screen Space: +1.0 and -1.0 Not Always Visible 11-8

graph_set_line_style CLI Command 11-8

INTRODUCTION 1-1

CHAPTER 1 INTRODUCTION

AVS 5 Documentation

This AVS 5 Update manual documents AVS 5’s new features. It describes im-
provements to the AVS interface, data types, Image Viewer, Geometry Viewer,
and new facilities for module and application developers. It also provides
summary tables that list new and upgraded modules.

 The AVS Module Reference manual has been updated for AVS 5 to include the
module man pages for the new and significantly-upgraded modules.

Almost all of the new features in AVS 5 represent new functionality that aug-
ments the information in the AVS User’s Guide, Developer’s Guide, Tutorial
Guide, and Applications Guide, without contradicting or overriding the existing
text. Thus, the remainder of the AVS documentation set is the same as that
provided for AVS 4.

AVS 5 New Features

The new AVS 5 features documented in this AVS 5 Update manual and the up-
dated AVS 5 Module Reference manual encompass:

• Over 65 new modules, including:
• A set of 45 image processing modules that include support for Fouri-

er transformations, morphological operations, warping, contouring,
and arithmetic functions.

• Five new volume rendering modules, including the cube and edit
substances modules that will render based on user-defined substance
classifications.

• Eleven new unstructured cell data (UCD) modules, including sup-
port for vector curl, division, and gradient operations, and a scatter to
ucd module that converts a scatter field to a UCD structure so that it
can be visualized using UCD modules and techniques.

• Five new modules for data presentation, including the generate axes
module that gives the user full annotation control over geometry
axes, the color legend module that places an annotated colormap in a
Geometry Viewer window, and the 3D bar chart module that creates
three dimensional bar graphs.

Demos of New Features

1-2 INTRODUCTION

• Interface and API support for interactive mouse-driven image drawing,
picking, and mensuration operations in the Image Viewer.

• 8-bit and scalar images in the Image Viewer.
• Full support for a short (usually 16-bit) field datatype.
• Geometry Viewer support for:

• Sending scene windows to a different display (for multi-headed sys-
tems).

• Turning off image output to improve performance on hardware ren-
derers.

• Non-transformable objects.
• New texture-mapping libgeom.a library calls.

• A simplified interface to creating macro modules in the Network Editor.
• Support for ANSI-C and C++ modules.
• Unmapped module control panels to suppress unwanted displays.
• The ability to overwrite the input data to modules in shared memory in-

stead of allocating a new output data shared memory segment.
• A new, reorganized list of default module libraries.
• AVS can be installed anywhere in a directory hierarchy, without needing

links from /usr.

Demos of New Features

The AVS Demo application (located on the secondary AVS main menu ac-
cessed by pressing AVS Applications) has a new AVS5 Features button.
AVS5 Features provides access to sample networks that illustrate AVS 5’s
new features in four visualization areas: Imaging, Volume Rendering, New
UCD Features, and Miscellany. We encourage you to explore these networks
to see this release’s new and improved functionality in action.

STARTING AVS 2-1

CHAPTER 2 STARTING
AVS

$Path—Installing and Finding AVS Anywhere in a Directory Tree

You can install AVS 5 anywhere in a directory tree. Symbolic links in the /usr
partition are no longer required to find it.

Prior Releases

Prior AVS releases assumed that either:

• AVS was installed directly in /usr/avs. Three symbolic links (/usr/bin/avs,
/usr/include/avs, and /usr/bin/avs_dbx) were necessary to find AVS binaries
and include files.

• If AVS was installed elsewhere in a directory tree, then /usr had to contain
one additional symbolic link (/usr/avs) that pointed to AVS’s actual loca-
tion.

The -path command line option, Path .avsrc keyword, and AVS_PATH envi-
ronment variable could be used to redirect AVS’s attention to other directo-
ries in limited situations. However, significant AVS features did not take
these into account.

This approach required root privilege to install AVS links in /usr, if not to in-
stall the AVS directories themselves. This had several disadvantages:

• Many secure installations will not allow users to install software as root.

• In networked installations, a local root password does not necessarily
confer root privileges on remote hosts.

• Moreover, in networks where many client workstations with local /usr
partitions are accessing AVS on a remote file server host, every client that
wished to access AVS had to modify its local /usr partition.

• If two versions of AVS were available, switching between them required
changing the links.

$Path—Installing and Finding AVS Anywhere in a Directory Tree

2-2 STARTING AVS

AVS 5 Behavior

AVS 5 introduces some flexibility to this situation by completing the notion of
an AVS Path. When AVS 5 starts, it checks for a definition of Path by various
means. A user’s .avsrc file can use this $Path symbol with any keyword that
takes a file or directory specification argument. A parallel mechanism exists
to find AVS’s include files when compiling AVS modules.

Existing AVS 4 users should realize that if you install AVS 5 in /usr/avs, then
nothing is different from AVS 4.

Running AVS with $Path

Suppose you have installed a new release of AVS in your home directory
named /users/me/avs. No links exist in /usr. To find AVS and all of its associat-
ed files, you would:

1. Add /users/me/avs/bin to your directory search path:
csh users would add a line like this to one of their startup files, usu-
ally either .cshrc or .login:
set path=($path /users/me/avs/bin)

sh or ksh users would add a line like this to one of their startup files,
usually .profile:
PATH=$PATH:/users/me/avs/bin

This definition lets your shell find the AVS executable. The startup
files must be re-executed for the new definitions to take effect.

2. Define Path for AVS. This may be done in three ways. They are
listed in their order of precedence.
1. Start AVS with the -path option:

avs -path /users/me/avs

2. Have the following line in your personal .avsrc file:

Path /users/me/avs

This line may occur anywhere in the .avsrc file.
3. Define the environment variable AVS_PATH.

csh users:

setenv AVS_PATH /users/me/avs

sh or ksh users:

AVS_PATH=/users/me/avs
export AVS_PATH

4. If none of these is explicitly defined, Path will default to
/usr/avs.

You should at least define the AVS_PATH environment variable. Then,
whenever you encounter one of the many file references in AVS documenta-

$Path—Installing and Finding AVS Anywhere in a Directory Tree

STARTING AVS 2-3

tion that specify the old /usr/avs path, you can just replace it with $AVS_-
PATH. For example: /usr/avs/data/image/mandrill.x would become
$AVS_PATH/data/image/mandrill.x

The system’s .avsrc file ($AVS_PATH/runtime/avsrc) has been modified to use
the $Path symbol defined by one of the three methods listed above. For ex-
ample:

ModuleLibraries $Path/unsupp_mods/Unsupported \
 $Path/chem_lib/Chemistry \
 $Path/avs_library/Animation \
 $Path/avs_library/UCD \
 $Path/avs_library/Volume \
 $Path/avs_library/Imaging \
 $Path/avs_library/Supported

Therefore, when AVS begins to execute, the module libraries will be loaded
from /users/me/avs/unsupp_mods/Unsupported, /users/me/avs/chem_lib/Chemis-
try, etc.

In prior releases, these module libraries could only be loaded using full abso-
lute directory and file specfications.

You can use the $Path symbol in your personal .avsrc file.

Any .avsrc keyword that takes a file or directory specification can use the
$Path symbol.

To run a completely different version of AVS, all you need do is change the
value of Path using any of the methods described above.

Compiling Modules with AVS_PATH

To link with the AVS libraries, a module must be able to find the AVS include
files and libraries. Formerly, this was accomplished by having the /usr/in-
clude/avs link point to the real location of the include files. Library files were
referenced relative to the symbol AVS_LIBS defined in /usr/avs/examples/
Makefile. AVS_LIBS was in turn defined relative to a ROOT symbol that de-
faulted to /usr/avs/libs.

In AVS 5, the example Makefile in $AVS_PATH/examples/Makefile has been
changed. The symbol AVS_PATH now prefixes all include file and library di-
rectory references. AVS_PATH defaults to /usr/avs.

To redefine the symbol:

1. Define the environment variable AVS_PATH, and
2. Use the -e flag on the make command to override the definition of

AVS_PATH (AVS_PATH=/usr/avs) at the beginning of the example
Makefile. E.g., "make -e target".

Continuation Character in .avsrc File

2-4 STARTING AVS

The Module Generator has been modified to use AVS_PATH. If Path is any-
thing other than /usr/avs, the Module Generator will automatically use the -e
flag when it compiles a file.

Debugging Modules with avs_dbx

Running the avs_dbx debugger is only a matter of adding the AVS binary di-
rectory (for example, /users/me/avs/bin) to your default search path. avs_dbx is
in the same directory as the main AVS binary.

Continuation Character in .avsrc File

The \ (backslash) character continues keyword argument lists across line
boundaries for all .avsrc options. For example:

ModuleLibraries $Path/unsupp_mods/Unsupported \
 $Path/avs_library/Supported \
 $Path/chem_lib/Chemistry \
 $Path/avs_library/Animation

In previous AVS releases, argument lists had to be on one—perhaps very
long—line.

New Startup Options

There are several new command line options and .avsrc startup file keywords.

-name command line option
Name .avsrc keyword

The -name command line option, and the Name .avsrc keyword cause the
specified name to appear in window manager window title bars instead
of "AVS". Names containing blanks or special characters should be en-
closed in double quotes (""). For example:

avs -name MyAvs (command line)
Or

Name "My AVS" (.avsrc file)

Widget windows under the control of the Layout Editor will be named
with the specified string followed by their corresponding module’s desig-
nation (for example, -name MyAVS causes boolean parameter widget
windows to appear as "MyAVS boolean.user.0"). If these names are too
long, you can force truncation back to the simple string by appending the
! character to the string (for example, -name "MyAVS!"). Note that a ! re-
quires surrounding double quotes.

New Startup Options

STARTING AVS 2-5

-nodisplay command line option
This unsupported option is used to run AVS without displaying display
widgets or output windows. It is useful for running compute intensive
networks that do not require user interaction or graphic output. It is also
useful in applications where an alternate user interface is provided by the
developer.

Despite the option’s name, AVS still requires that a valid X display device
be given in order to initialize internal program resources such as pixmaps
and fonts. Some supported AVS modules and dialog boxes do not recog-
nize this option and still display their windows on the screen. Most of
AVS will behave appropriately.

-nomenu command line option
NoMenu .avsrc keyword

The -nomenu command line option, and the NoMenu 1 .avsrc keyword
prevent the main AVS control panel from appearing when AVS is started.
It is intended for application developers who use other means to control
their application. You would use this as part of the string your applica-
tion uses to invoke AVS.

-nomenu/NoMenu prevents the control panel from ever appearing. The
previous CLI mechanism for doing this would still show the control pan-
el briefly before taking it down.

OldMacros .avsrc keyword
The OldMacros 1 .avsrc file keyword reenables AVS 4 macro module cre-
ation behavior. See the "Macro Modules: Improved Interface" section of
the "Network Editor" chapter in this AVS 5 Update manual.

New Startup Options

2-6 STARTING AVS

DATA TYPES 3-1

CHAPTER 3 DATA
TYPES

Short Field Data Type

AVS 5 fully supports fields containing short data.

The short data type was added to the AVS 4 field data structure. However, no
other parts of AVS, including AVS modules, made use of this feature.

In AVS 5:

• The AVS Data Interchange Application (ADIA) will read short data and
store it in a short data type field.

• The Module Generator will create field input/output ports with the short
data type.

• The main AVS library for manipulating fields, libflow.a, has routines and
symbols that support the short data type. For example, to allocate a three
dimensional field of single-valued shorts one can say:

field = (AVSfield_short *)
 AVSdata_alloc("field 3D scalar short", dims)

• The existing AVS modules in Table 3-1 have been upgraded to handle
short fields. New modules (not listed below) with field inputs/outputs
also handle short fields.

FORTRAN Short Accessor Routines

Two AVS FORTRAN accessor routines (AVSload_byte and AVSstore_byte,
AVS Developer’s Guide, p. A-74) already exist for FORTRAN compilers that do
not support the byte (INTEGER*1) data type. The following two FORTRAN
accessor routines, with similar functions, have been added to avs.inc for FOR-
TRAN compilers that do not support the short (INTEGER*2) data type.

Portability Note: A short is not necessarily two bytes. It is eight bytes, for ex-
ample, on a Cray Y-MP.

Short Field Data Type

3-2 DATA TYPES

AVSload_short

include ’avs/avs.inc’
INTEGER AVSLOAD_SHORT (BASE, OFFSET)

INTEGER BASE, OFFSET

This function loads a short integer from memory. This is useful for FOR-
TRAN compilers that do not have an INTEGER*2 data type.

Inputs
BASE base address in an integer variable.

OFFSET index into array. In the FORTRAN tradition, the first array
element’s index is 1.

Returns
Value of a signed short integer.

Table 3-1 Modules Upgraded to Support Short Field Data Type

Data Input Filters Mappers Data Output

color range clamp arbitrary slicer Module Generator
data dictionary colorize geom brick compare field
file descriptor colorizer bubbleviz graph viewer
read field combine scalars contour to geom print field
samplers compute shade excavate brick statistics
generate field contrast field legend write field

convolve field to mesh image viewer
crop isosurface
downsize orthogonal slicer
extract graph probe
extract scalar thresholded slicer
extract vector volume bounds
field math volume render
field to byte, double,
float, and int
generate histogram
interpolate
local area ops
mirror
sobel
transpose

Short Field Data Type

DATA TYPES 3-3

For example, this reads values from a scalar short field:

data_ptr = AVSfield_data_ptr (input_field)
do n = 1, field_size
 ... = AVSload_short (data_ptr, n)
enddo

AVSstore_short

include ’avs/avs.inc’
AVSSTORE_SHORT (BASE, OFFSET, VALUE)

INTEGER BASE, OFFSET, VALUE

This subroutine stores a short integer into memory. This is useful for FOR-
TAN compilers that do not have an INTEGER*2 data type.

Inputs
BASE starting location in an integer.

OFFSET index into array. In the FORTRAN tradition, the first array
element’s index is 1.

VALUE new value for the short integer. The high order bits that do
not fit are discarded.

Returns
Subroutine; does not return a value.

For example, this writes values into a scalar short field:

data_ptr = AVSfield_data_ptr (input_field)
do n = 1, field_size
 call AVSstore_short(data_ptr, n, ...)
enddo

Short Field Data Type

3-4 DATA TYPES

IMAGE VIEWER 4-1

CHAPTER 4 IMAGE
VIEWER

Image Viewer: 8-Bit Scalar and Any-Data Images

The Image Viewer will now display 8-bit scalar (byte) images in addition to
the 4-vector byte true color images it has always supported. Since scalar byte
images no longer have to be converted to 4-vector byte prior to entering the
Image Viewer, only one fourth the amount of memory is required to display
them.

You can also input any data type (float, short, double, integer) into the Image
Viewer. It will convert non-byte data to byte and normalize it to the range 0-
255 before display. The field that contains the image must be 2D and uniform.

The scalar byte images can be displayed in two ways:

colormap
The image viewer module now has an optional colormap input port.
Connect a colormap to this port (for example, from the generate color-
map module) and the image viewer module will use the image’s byte
values as indices into the colormap.

grayscale
Without a colormap, the image will be displayed as grayscale. The byte
values are used as indices into a 256-element gray ramp colormap.

Limitations

Scalar byte and any-data images can only enter the image viewer module
through a network. You cannot read them in using the Image Viewer’s Read
Image button.

You cannot use the set of buttons/techniques found under the Image View-
er’s Image Processing submenu on scalar byte images. If you select a pro-
cessing technique, nothing happens. However, you can send the scalar byte
field through any image processing network and have it displayed in the Im-
age Viewer.

Image Viewer: 8-Bit Scalar and Any-Data Images

4-2 IMAGE VIEWER

Image Viewer: Scalar Images and Colormaps on Pseudo Color Displays

8-bit pseudo color display heads often have only one 256-entry hardware col-
ormap available at a time. All running applications, including AVS, must
share this colormap.

Often, this restricts AVS’s ability to represent colors as expected. When start-
ed on an 8-bit pseudo color X server, AVS tries to allocate 242 colormap cells
to itself: 6 red x 6 blue x 6 green, plus 26 gray tone cells. If 242 cells are not
available, it automatically falls back to more limited values (5 red x 5 blue x 5
green, plus 17 gray cells, etc.) until it succeeds. (You can control this manually
with the Colors .avsrc keyword.)

The Image Viewer now contains a button, colormap, that will let AVS tempo-
rarily appropriate all 256 cells of the hardware colormap. You can use this
button to improve the pseudo color and grayscale rendition of scalar byte im-
ages. (Its use is meaningless with 4-vector byte true color images).

The colormap button is found at the bottom of the Image Viewer’s Views
submenu. It (and the various dithering option buttons on the Image sub-
menu) only appears when AVS is started on an 8-bit pseudo color display.

If you turn on colormap, then—whenever the mouse cursor is inside the Im-
age Viewer scene window—AVS will use the entire 256 element hardware
colormap.

• If no colormap is attached to the image viewer module’s colormap input
port, the system colormap is loaded with a 256 element grayscale color-
map. This will make a substantial improvement in grayscale rendition
(maximum of 26 shades increased to 256 shades).

• If a colormap is attached to the image viewer’s colormap input, then the
system colormap is loaded with that colormap. Scalar images will use
this 256 entry colormap instead of the more limited 6 6 6 case (216) or pos-
sibly 5 5 5 case (125).

• If you are using the Image Viewer from the main menu, rather than as the
image viewer module, pressing colormap will load the 256 element gray-
scale colormap, but the colormap will have no effect. Scalar images can
only enter the image viewer module through a network.

Note again that the colormap swapping only actually occurs when the mouse
cursor enters the Image Viewer’s view window. It is normal for the rest of the
display to turn odd colors as the other applications lose their colormap.
When the mouse cursor leaves the Image Viewer window, the original default
hardware colormap is restored.

Image Viewer: Drawing in Image Viewer Windows

IMAGE VIEWER 4-3

Image Viewer: Drawing in Image Viewer Windows

The image viewer module now supports interactive "sketching" operations.
These sketching operations allow you to use the left mouse button to perform
functions such as:

• Interactively draw an arbitrarily-shaped region of interest (ROI) on top
of an image (Figure 4-1).

• Pick two points in an image and report the distance between them (men-
suration).

• Draw a line on an image and display the values in the Graph Viewer.

The image viewer module does not do this work alone. It requires an up-
stream module(s) to interpret the mouse events captured in the image viewer
window.

The sketching mechanism has three parts:

• There are two new upstream data structures (struct image viewer and
struct mouse info). These structures supplement the AVS 4 struct image
pick. The image viewer module outputs these structures. Upstream
modules can define input ports to receive them.

 Figure 4-1 Image with Two Interactively Draw Regions of Interest

Image Viewer: Drawing in Image Viewer Windows

4-4 IMAGE VIEWER

• The image viewer now understands a new set of CLI commands. An up-
stream module can send these CLI commands to the image viewer mod-
ule directing it to perform functions such as: inform the module of
selected left mouse button events, draw a line on top of an image from
point A to point B in image space, clear all lines drawn on an image, etc.

• Drawing modules usually have a set pick mode oneshot button on their
contol panels. Pressing this button tells the Image Viewer that the user
will be using the left mouse button to draw on the image. (The Image
Viewer will not interpret the left mouse button as its usual "set current
image" function.)
Alternately, the Image Viewer has a set of Left Mouse Button controls at
the top of the Image Viewer’s control panel that let the user define what
the left mouse button will be used for: picking current images, picking
current labels, defining subimages, or drawing on an image.

The image viewer module’s job is to capture the user’s mouse events on an
identified image and pass them to an upstream module via the new struc-
tures. The upstream module does most of the "sketching" work by sending
CLI commands to the image viewer module.

The combined effect of these features provides the interactive sketching and
picking capability. Five supplied modules, sketch roi, image measure, image
probe, calc warp coeffs, and ip read line use the new upstream structures
and CLI commands. Users can write their own modules that use these mech-
anisms to produce similar effects. The example module $AVS_PATH/exam-
ples/doodle.c illustrates how to do this.

The next section describes how to use the new interactive features of the im-
age viewer module. The section following that describes the programmer’s
interface.

Drawing on Images

Left Mouse Button Controls

Figure 4-2 shows the new Left Mouse Button controls on the Image Viewer’s
control panel.

These buttons define what will happen when you push the left mouse button
in the Image Viewer window.

Pick Image
Pushing the left mouse button will select the current image.

This is the default.

Image Viewer: Drawing in Image Viewer Windows

IMAGE VIEWER 4-5

Pick Label
Pushing the left mouse button will select a current label. If you continue
to hold down the left mouse button, you can move the label around the
view. Note: In this release, Pick Image and Pick Label are identical.

Define Subimage
Pushing the left mouse button will define a rectangular subimage for im-
age processing operations selected in the Image Processing submenu.
Push the left mouse button, and, while still holding it down, move the
cursor to define the rectangular subimage. Release the left mouse button
to complete the subimage definition.

If Define Subimage is selected, you can still select a current image without
switching back to Pick Image. Use shift-left mouse button to select a current
image.

An Interactive "Sketching" Network

Figure 4-3 shows a network that includes the sketch roi module. sketch roi
lets you draw arbitrarily-shaped and sized regions of interest (ROI) on top of
an image. The region of interest so-defined is passed as a 2D uniform byte
field to modules in the Imaging module library (ip convolve, ip arithmetic, ip
dilate, etc.) that accept an optional ROI input. These modules use the ROI as
a mask, restricting their operation to just the ROI rather than the whole im-
age.

Notice these connections:

• The output of ip arithmetic is sent to both image viewer and to sketch
roi. sketch roi must have ip arithmetic’s output image (as opposed to,
say, read image’s output image) so that it can tell the image viewer
which image it needs mouse events on, and which image it will draw on.

 Figure 4-2 Left Mouse Button Controls

New Controls

Image Viewer: Drawing in Image Viewer Windows

4-6 IMAGE VIEWER

sketch roi also uses this image to make its ROI mask the same size as the
image.

• sketch roi’s image draw structure output is connected to the image view-
er module’s corresponding input. This connection automatically estab-
lishes an upstream connection between image viewer and sketch roi.

• sketch roi’s ROI field output is connected to ip arithmetic.

There are two invisible connections going from image viewer’s structure out-
puts upstream to sketch roi’s structure inputs. These connections occur auto-
matically—you don’t need to connect them. If you were to make them visible
with the Module Editor’s Parameter Editor, they would look like Figure 4-4.

 Figure 4-3 Network with Drawing Module

 Figure 4-4 Network with Upstream Connections Visible

Image Viewer: Drawing in Image Viewer Windows

IMAGE VIEWER 4-7

When you create a network that contains a "sketching" module (sketch roi,
image measure, image probe, etc.), when data first passes through it, that
sketching module is added to the Left Mouse Button control’s list and is auto-
matically selected. See Figure 4-5. As the figure shows, you may need to use
the scrollbar to make the module’s new button appear.

Having sketch roi selected on the Left Mouse Button control list means that,
when you press and hold down the mouse’s left button, you are drawing a
ROI, not picking a current image or a label, or defining a rectangular subim-
age. See Figure 4-6.

With sketch roi selected, you can still select a current image. Use Shift-left
mouse button.

See the module man pages for sketch roi, image measure, and image probe
for specifics on using each one.

 Figure 4-5 Left Mouse Button Controls with Drawing Module Attached

Use
Scrollbar

 Figure 4-6 Result of Sketching a ROI

Image Viewer: Drawing in Image Viewer Windows

4-8 IMAGE VIEWER

A More Complicated Network
The network in Figure 4-7 contains several "sketching" modules (sketch roi
and image measure) and several image processing modules (ip arithmetic
and ip linremap). Notice that they are working on different images.

Observe that:

• image measure will be added to the Left Mouse Button control list.
• the last drawing module connected will be the initial default selected in

the Left Mouse Button control list.
• sketch roi is associated with the far left read image image. If this is not

the current image, sketch roi is grayed out in the Left Mouse Button con-
trol list, since it has no meaning for the other images.

• The far right read image image has no "sketching" modules associated
with it. If you make it the current image, Pick Image becomes the default
in the Left Mouse Button control list.

ROIs and Subimages

The Image Viewer has always supported rectangular subimages. These sub-
images were defined using the shift-left mouse button. The subimages could
be acted upon using the various techniques available under the Image Pro-
cessing submenu.

There is no relationship between the existing rectangular subimage/Image
Processing menu mechanism and the new region of interest mechanism cre-
ated by sketch roi.

 Figure 4-7 A More Complicated Network

Programmer Interface to Image Viewer Upstream Data

IMAGE VIEWER 4-9

Programmer Interface to Image Viewer Upstream Data

The Image Viewer's upstream data ports can be used to interactively track
mouse button press/release and motion events. These events can then be
used by the upstream module to interactively draw on images via the CLI.

This section describes the programmer’s interface to this mechanism. It is
best understood while referring to the $AVS_PATH/examples/doodle.c example
module source code. doodle.c uses the facilities described in this section. It
also demonstrates accessory skills, such as loading and flushing a CLI com-
mand buffer, that are necessary to make the mechanism work.

Establishing Connections

Data Structures

An upstream module that requires upstream data needs to define three addi-
tional I/O data ports.

struct image_viewer_id
This "Image Viewer ID" upstream input port identifies the Image Viewer
scene_id. It has the following structure:

typedef struct _image_viewer_id {
 int scene_id;
 } image_viewer_id;

struct mouse_info
This "Mouse Info" upstream input port contains most of the data that the
module will use to identify the image in the Image Viewer, and interpret
mouse button events. It has the following structure:

typedef struct _mouse_info {
 char image_name[64];
 char func_id[64];
 int mesh_id;
 int nEvents;
 float image_x[32];
 float image_y[32];
 int buttonMask[32];
} mouse_info;

struct image_draw
This "Image Draw" output port is used to establish the automatic connec-
tions to the Image Viewer module, and to synchronize with the Image
Viewer. It has the following structure:

typedef struct {
 int integer;
} image_draw;

Programmer Interface to Image Viewer Upstream Data

4-10 IMAGE VIEWER

Include Files

The two upstream input data structures, image_viewer_id, and mouse_info,
are described in the include file $AVS_PATH/include/udata.h. The module's
source code will need to include this file.

The third data structure, which is the image_draw output port, is described in
the include file $AVS_PATH/include/image_draw.h. The module writer will
also need to include this file in the module source code.

In addition, there are various mouse button event mask values defined in the
include file $AVS_PATH/include/image_upstrm.h.

Defining I/O Ports in the Module’s Description Routine

The following code, placed in the module's description routine, defines the
additional ports.

int port;

port = AVScreate_input_port("Image Viewer Id","struct image_viewer_id",
 INVISIBLE | OPTIONAL);
AVSset_input_class(port, "Image Draw:image_viewer_id");

port = AVScreate_input_port("Mouse Info","struct mouse_info",
 INVISIBLE | OPTIONAL);
AVSset_input_class(port, "Image Draw:mouse_info");

AVScreate_output_port("Image Draw", "struct image_draw");

The two input ports are generally made invisible, while the "Image Draw"
output port is a visible port.

Image Draw Port

The image_draw structure is defined as follows:

typedef struct {
 int integer;
} image_draw;

The integer data sent by this "Image Draw" output port is never actually used.
However, it is required for two reasons. First, it is needed to make the auto-
matic connections of the corresponding image viewer ports to the upstream
input ports. And second, it is used for synchronization purposes in order for
the Image Viewer to execute after an upstream module. This second reason
not only requires that the upstream module's "Image Draw" port be connect-
ed to the Image Viewer's "Image Draw" port, but also that the module allocate
data for the image_draw structure.

Programmer Interface to Image Viewer Upstream Data

IMAGE VIEWER 4-11

Allocating Data for the Image Draw Port

The image_draw structure is really user-defined data and so the module must
load this type in its description routine. The module description routine
should include the following line:

AVSload_user_data_types("<$AVS_PATH>/include/image_draw.h");

where <$AVS_PATH> is an automatically computed string that reflects the
actual location of the AVS directory.

Image Viewer ID Port

The image_viewer_id structure is defined as follows:

typedef struct _image_viewer_id {
 int scene_id;
 } image_viewer_id;

The first upstream input port is the "Image Viewer ID" port. The scene_id is
an id that is used with CLI commands to identify to which Image Viewer in-
stance the CLI command is being sent. All of the CLI commands that draw on
images require a scene_id. The upstream module will not be able to draw on
an image or request mouse events until this input port has valid data.

Typically, a module that requests mouse events on an image will have access
to the AVS field that describes the image. Therefore, the image field that is an
input to the Image Viewer must also be an input to the upstream module. If
the upstream module creates its own output image field that is connected to
the Image Viewer, then it will automatically have access to the field.

Mouse Info Port

The mouse_info structure is defined as follows:

typedef struct _mouse_info {
 char image_name[64];
 char func_id[64];
 int mesh_id;
 int nEvents;
 float image_x[32];
 float image_y[32];
 int buttonMask[32];
} mouse_info;

Initialization: image_wakeup_when_defined CLI Command

Once the module has valid data on its "Image Viewer ID" port and has an im-
age field for which it wishes to request mouse events, it then asks the Image
Viewer to place data on its "Mouse Info" port indicating that the Image View-
er knows about the image. The CLI command to do this is

image_wakeup_when_defined -scene_id <val> -mesh_id <val> -module $Module.

Programmer Interface to Image Viewer Upstream Data

4-12 IMAGE VIEWER

The scene_id comes from the "Image Viewer Id" port. The mesh_id is an inte-
ger that is part of the field struct. And the module name is the name of the
upstream module.

Once the Image Viewer knows about the field that contains the same
mesh_id, it then sends a "Mouse Info" output to the upstream module stating
that the image is defined. The mesh_id element of the mouse_info structure
will contain the same mesh_id as the image_wakeup_when_defined CLI call.
The image_name element of the mouse_info structure will contain the name
of the image. All of the CLI commands that request events for an image re-
quire the image name.

Distinguishing Mouse Info Initialization from Mouse Events

As will be explained below, the mouse_info structure is also used to send
mouse button press/release and motion events. The way the upstream mod-
ule distinguishes whether the mouse_info structure is a response to an im-
age_wakeup_when_defined CLI command or a list of mouse events is that in
the former case the nEvents element of the mouse_info structure will always
be zero, while in the latter case it will be greater than zero, indicating the
number of mouse events.

Selecting Events: image_select_events CLI Command

After the upstream module receives input on its "Mouse Info" port as a re-
ponse to the image_wakeup_when_defined CLI command, it can then use the
name of the image to request mouse events on the image. The following com-
mand requests mouse events for a particular image.

image_select_events -scene_id <val> -image_name <name>
 -module $Module -func_id <func_name> -mask <val>

The scene_id is taken from the "Image Viewer ID" input port. The image_-
name comes from the mouse_info structure that was a response to the im-
age_wakeup_when_defined CLI command. The module name is the name of
the upstream module. The func_id is a string that will be attached to a radio
button on the Image Viewer panel. When the user selects this radio button all
selected events will be sent to the upstream module through the "Mouse Info"
port.

The mask is a bit mask that specifies what events the module requests. The
following mask:

int mask = IMAGE_Button1Mask | IMAGE_PressMask |
 IMAGE_ReleaseMask | IMAGE_MotionMask;

requests press/release and motion events for button1. Button1 is the left but-
ton. Currently, events can only be selected for the left button. The above con-
stants are defined in $AVS_PATH/include/image_upstrm.h.

Programmer Interface to Image Viewer Upstream Data

IMAGE VIEWER 4-13

The image_select_events CLI command only selects events for a particular
image. Therefore, the appropriate mouse events are sent to the upstream
module only when the currently picked image corresponds to the image for
which events were selected, and the radio button corresponding to the fun-
c_id is selected. The user will not be able to select the radio button when an-
other image is the currently picked image.

The upstream module may call image_select_events multiple times on the
same image but with a different func_id and possibly a different mask. Each
time image_select_events is called with a func_id, a new radio button is add-
ed to the Image Viewer panel that corresponds to the func_id. When mouse
events are sent to the upstream module, the func_id element of the
mouse_info structure will contain the corresponding func_id name.

Acquiring Left Mouse Button Events: image_set_pick_mode CLI
Command

It can be inconvenient for the user to have to manually select the radio button
on the Image Viewer panel that corresponds to the func_id of the module.
The following CLI command will automatically select the left mouse button
to the upstream module:

image_set_pick_mode <mode>

where the <mode> is one of Pick Image, Pick Label, Define Subimage, or
the func_id defined by the module that wants to gain control of the left
mouse button.

Note: image_set_pick_mode should be placed after image_select_events in
the initialization portion of the module code as it is in doodle.c. This establish-
es an initial condition for the left mouse button when the module is initialized
and data first passes through it. The user may subsequently take action that
moves the left mouse button focus, particularly if there is more than one im-
age in the Image Viewer window or there are multiple drawing modules,
each using image_set_pick_mode.

Stopping Events: image_stop_events CLI Command

The following CLI command is used to stop events that were previously se-
lected with image_select_events.

image_stop_events -scene_id <val> -image_name <name>
 -module $Module -func_id <func_name>

This command will remove the radio button corresponding to the func_id.

Programmer Interface to Image Viewer Upstream Data

4-14 IMAGE VIEWER

mouse_info Event Structure

When a mouse_info structure is sent to an uptream module as a result of
mouse events, the elements of the mouse_info structure will have the follow-
ing meaning:

image_name
The name of the image for which events are being sent to the upstream
module.

func_id
The corresponding func_id name.

mesh_id
Undefined.

nEvents
Number of mouse events listed in following array.

image_x[32]
x location of mouse relative to image.

image_y[32]
y location of mouse relative to image.

buttonMask[32]
Button mask specifying state of buttons and modifier keys.

image_x and Image_y Coordinate System

The coordinate system in which the location of the mouse is returned through
image_x and image_y is relative to the image and is pixel based. The upper
left corner of the image is (0.0, 0.0). The bottom right corner of the image is
(image_width,image_height). The center of the top-left pixel, for example, is
located at (0.5, 0.5). The upstream module can receive mouse events outside
the image and at fractional pixel coordinates (e.g., 7.35, 25.91).

If the coordinate data ("points data") array for the image is defined to be dif-
ferent than its dimensions (real world spacings), then upstream modules can
use this information. image_probe and image_measure, for example, make
use of this.

buttonMask Mouse Events

The buttonMask specifies the type of mouse event: IMAGE_PressMask, IM-
AGE_ReleaseMask or IMAGE_MotionMask. An AND of the buttonMask
with the above masks will indicate the type of the event. The mask also spec-
ifies the state of two of the modifier keys: the shift key and the control key.
The masks IMAGE_ShiftMask and IMAGE_ControlMask are used to deter-

Programmer Interface to Image Viewer Upstream Data

IMAGE VIEWER 4-15

mine if the corresponding keys are pressed or not. The above constants are
defined in $AVS_PATH/include/image_upstrm.h.

nEvents and Event Buffering

The nEvents element of the mouse_info structure indicates the number of
mouse events that are included in the image_x, image_y, and buttonMask ar-
rays. There can be between 1 and 32 events. If the upstream module can exe-
cute at interactive rates, there will generally be a few mouse events for each
execution of the module. However, if the module takes a relatively long time
to perform its computation, then there will most likely be a lot of events (<=
32) for each execution of the module. The Image Viewer buffers events, so all
events will eventually be delivered to the module.

The CLI Interface for Drawing on Images

Once a module has a valid scene_id and an image_name, it can then send
CLI commands to draw lines on the image.

Draw a Line: image_add_line CLI Command

The following CLI command is used to add a line to an image:

image_add_line -scene_id <val> -image_name <name>
 -module <module_name> <x1> <y1> <x2> <y2>

The line is drawn from (x1,y1) to (x2,y2). x1, y1, x2, and y2 are floating point
numbers that are defined in the same coordinate system as the image_x and
image_y elements of the mouse_info structure.

The Image Viewer keeps track of all the lines a particular module draws on an
image. When that module’s "Image Draw" port is disconnected from the
module, the Image Viewer will delete all its lines.

Deleting Lines: image_clear_all_lines CLI Command

It is only possible to add lines to an image, but not to edit the list of lines that
have been added to the image. However, it is possible to clear all the lines
with the CLI command:

image_clear_all_lines -scene_id <val> -image_name <name>
 -module <module_name>

This command will delete all the lines that the corresponding module added
to the image.

The image_clear_all_lines CLI command also resets the line width and color
to the defaults.

Programmer Interface to Image Viewer Upstream Data

4-16 IMAGE VIEWER

Setting Line Width: image_set_line_width CLI Command

It is possible to draw thick lines by using the following command:

image_set_line_width -scene_id <val> -image_name <name>
 -module <module_name> <width>

All lines that are drawn following a CLI command to set the line width will be
drawn with the new width. The width of a line is specified as an integer
number of pixels. The default width is zero. A zero width line is the thinest
single-pixel line that can be drawn in an efficient manner.

Setting Line Color: image_set_line_color CLI Command

In the same way, the line color can be set by the following command:

image_set_line_color -scene_id <val> -image_name <name>
 -module <module_name> <red> <green> <blue>

The red, green and blue values specify the intensity of the corresponding
component as a floating point number between 0.0 and 1.0. The default color
is white (r,g,b) = (1.0, 1.0, 1.0).

Drawing XOR lines for Rubber-Banding: image_add_xor_line CLI
Command

In addition to the image_add_line CLI command, it is possible to draw lines
in xor mode.

image_add_xor_line -scene_id <val> -image_name <name>
 -module <module_name> <x1> <y1> <x2> <y2>

This command can be used to draw rubber-banded lines. Drawing an xor
line on an image will produce a line on the image. Drawing the same xor line
again will erase the line. The Image Viewer does not save information about
xor lines as it does with image_add_line. It is the responsibility of the up-
stream module to draw xor lines in pairs in order to erase them.

CLI Command Buffering for Performance

When an upstream module executes, it is possible that it will make multiple
CLI calls. For performance and efficiency, it is important that the module
buffer multiple CLI calls and send them as a single CLI command buffer.

The doodle.c example module contains a set of functions that create and initial-
ize such a CLI command buffer, add CLI image drawing commands to that
buffer, and periodically flush the buffer down to the Image Viewer.

image_refresh CLI Command

IMAGE VIEWER 4-17

image_refresh CLI Command

The Image Viewer now supports an image_refresh CLI command:

image_refresh

Like the Geometry Viewer’s geom_refresh command, image_refresh redraws
the current Image Viewer scene window. In the process, it updates the output
image, if any, on the Image Viewer’s image output port. This resolves the
problem some users encountered when using the image to postscript module
wherein old, out-of-date images were output instead of the current visible
scene.

Image Output and Image Viewer Performance

The image viewer module’s image output port can now be turned off to im-
prove Image Viewer performance. The same change was made to the Geom-
etry Viewer. Thus, this new feature is discussed in detail in the section titled
"Image Output, Image Viewer and Geometry Viewer Performance" in Chap-
ter 5.

Image Output and Image Viewer Performance

4-18 IMAGE VIEWER

GEOMETRY VIEWER AND LIBGEOM LIBRARY 5-1

CHAPTER 5 GEOMETRY
VIEWER AND
LIBGEOM LIBRARY

Outline Gouraud and Hardware Renderers

All platforms on which AVS uses hardware rendering now support the Out-
line Gouraud rendering technique. The AVS software renderer has always
supported Outline Gouraud.

Sending Scene Windows to a Different Display

It is possible to send the output of each Geometry Viewer camera to a differ-
ent X Window System display. This is useful, for example, if your worksta-
tion has multiple display heads, and you want the AVS interface on one
screen and the Geometry Viewer’s scene window on another screen.

To send the Geometry Viewer camera output to a different display:

1. Make one output window the current camera, either by clicking in
its background with a mouse button, or with a CLI command. The
current camera window is surrounded with a red border.

2. In most cases, you must to switch to the software renderer for the
current camera. Under the Cameras submenu, select Software
Renderer.
Caution on Hardware Renderers: If you have Hardware Renderer
toggled instead of Software Renderer, then when you press the En-
ter key in step 4 (below) you will get a message box that says:

The selected camera is not running the Software Renderer.
Please ensure that the remote device can handle the current
renderer before proceeding.
Shall we change the display to hydra:0.1?

Two choices are given: OK and Cancel

If you get this message, you should press Cancel until you verify
that you will be able to do remote hardware rendering.
If you press OK, then AVS will attempt to initialize a hardware ren-
derer on the remote device of the same type as that running on the
local device. Only a few systems (PEX to PEX, or DGL to DGL) are
able to support remote hardware rendering. If you press OK and
AVS is not able to initialize a hardware renderer of the same type
on the remote device, AVS will abnormally exit.

Sending Scene Windows to a Different Display

5-2 GEOMETRY VIEWER AND LIBGEOM LIBRARY

A similar message, situation, and result will occur if you already
have a remote display window created with the software renderer,
and you attempt to toggle Hardware Renderer.

3. Under the Cameras submenu, near the bottom, there is a Display
typein. It shows the X Window System display of the current cam-
era. Edit this to be the X display you want the window to appear
on.
• The format is standard X (host:Xserver.screen#). For example:

hydra:0.1.
• The other display must allow you to create windows on it.

Permission mechanisms may vary. Standard X would use an
xhost command entered on the remote host that gives your host
permission to create windows.

4. Press the Enter key to make the window appear on the other
screen. It is removed from the original screen. It remains the cur-
rent camera.

The remote display window is identical to a local window in all behaviors
(mouse button input, lighting, etc.) except:

• Though you can click in the remote window to make it the current cam-
era, it will not display the red border that usually signifies it is the current
camera.

• The first camera/window created by a geometry viewer module is sur-
rounded with an AVS interface "container." Subsequent cameras/win-
dows are not containerized.
A containerized window moved to a different display will lose its con-
tainer. (The second display’s window manager will likely parent the
window, while the original container disappears on the original display.)
The container is not restored if the window is moved back to the original
display.

Colormap Messages

You may get messages related to colormap cell allocation when you try to cre-
ate the remote window. The remote display is under all of the same colormap
constraints as your primary display. The specifics of this issue on each plat-
form is usually discussed in detail in the release notes that accompany AVS.

Two messages are possible:

Warning: using fewer colors on hydra:0.1 (R=3,G=3,B=3,Grey=5)
This message appears in the terminal emulator window from which AVS
was started. It means that AVS was able to allocate enough colors on the
remote display to create a picture, but fewer than the optimal R=6, G=6,
B=6, Grey=26.

Sending Scene Windows to a Different Display

GEOMETRY VIEWER AND LIBGEOM LIBRARY 5-3

Display (hydra:0.1) does not have enough free colormap entries
This message appears in an error message box. It means that AVS was
not able to allocate enough colors on the remote display to create a pic-
ture.

These messages tend to appear when:

• The remote display is 8-plane (pseudocolor) and there are other applica-
tions running on the remote display that are using too many colormap
cells. For example, the file-finder applications on some systems use many
colormap cells. The only "fix" is to remove the other processes that are
competing for the colormap.

• The remote display is 24-plane (truecolor or directcolor) but its default X
visual type is PseudoColor. (See the "AVS on Color X Servers" appendix
in the AVS User’s Guide for information on using the xdpyinfo command to
determine the default X visual.) In this case, you can either:
• Reconfigure the remote system’s X server startup mechanism to start

the truecolor display with the correct TrueColor or DirectColor X vi-
sual. Or,

• Start AVS on the local device with the VisualType .avsrc keyword.
VisualType would be set to TrueColor or DirectColor, depending on
the platforms. For example:

VisualType TrueColor

This will work if both devices are really truecolor, and it will also
work in the case where the local device is pseudocolor and the remote
device is truecolor. In this second case, AVS prints a warning for the
local device and falls back on the correct pseudocolor, but still pro-
duces truecolor on the remote device.

geom_set_display CLI Command

This functionality is also available through the CLI. The command is:

geom_set_display display -camera n

where display is in X Window System display specification format, and n is
the number of the camera to display remotely.

Image Output, Image Viewer and Geometry Viewer Performance

5-4 GEOMETRY VIEWER AND LIBGEOM LIBRARY

 Image Output, Image Viewer and Geometry Viewer Performance

The geometry viewer and image viewer modules have an image output port.
This port is used for a variety of purposes: to send the contents of the win-
dow to the image to postscript module for hardcopy; or to output a sequence
of images that are part of an animation.

This image output port does affect the performance of the viewer. If a module
such as image to postscript is connected to this image output port, then each
time the scene in a window changes the image or geometry viewer converts
the contents of the frame buffer to an AVS image and sends the output to the
downstream module. This conversion and output transmission slows down
the viewer. The performance difference is barely noticeable with the geome-
try viewer operating with the software renderer. It can be very noticeable
when using the image viewer or the geometry viewer’s hardware renderer.

The AVS 5 image and geometry viewer modules have two new input param-
eters that let you control whether a new image is output each time a scene
changes. Both parameter ports are invisible by default.

Update Always
This is a boolean switch. If it is on, then the viewer generates an output
image each time a scene changes. If it is off, the viewer will only generate
an image when its Update Image oneshot is fired.

For backward compatibility with previous releases, Update Always is on
by default. That is, by default the viewers will generate an image when-
ever a scene changes.

Update Image
This is a oneshot. Any input received on this port causes the viewer to
convert the frame buffer to an image and send it to the downstream mod-
ule. It is active regardless of how Update Always is set.

Note that these switches only affect performance if a downstream module is
connected to the image or geometry viewer’s image output port.

These two buttons do not appear on any Image or Geometry Viewer menu.
Rather, the interaction is the same as any module with normally-invisible pa-
rameter ports:

1. Make the parameter port visible:
1. With image or geometry viewer in the Workspace, click on its

dimple with the center or right mouse button. This brings up
the Module Editor.

2. Under the Parameters list, click on Update Always. This
brings up the Parameter Editor.

3. On the Parameter Editor, click on both Port Visible and toggle.
2. Repeat for Update Image, but choose oneshot instead of toggle.
3. Press Close on the Module Editor to take down its panel.

Image Output, Image Viewer and Geometry Viewer Performance

GEOMETRY VIEWER AND LIBGEOM LIBRARY 5-5

This has two effects:

• The parameter ports become visible on the image or geometry viewer
module icon.

• The image or geometry viewer acquires a traditional module control
panel on the stack at the left of the screen. The viewer’s page contains the
two Update Always and Update Image buttons. Set these buttons how-
ever you wish. This setting will be saved if you perform a Write Network
operation.

There are two ways to use these parameters:

• Just click on them in the module control panel.
• Or, connect the oneshot module to the image or geometry viewer’s Up-

date Image parameter port, and the boolean module to the Update Al-
ways parameter port. (Both oneshot and boolean are in the Data Input
column of the Module Palette.) If you choose this second method, it is not
necessary to choose toggle/oneshot when making the parameter ports
visible.

 oneshot boolean
 | |
 |---| |------|
 | |
 geometry viewer

There is one subtle side-effect of this operation. Clicking on the image or ge-
ometry viewer module’s dimple with the left mouse button will now raise the
viewer’s page in the module control panel stack—it will no longer raise the
full Image or Geometry Viewer. To raise the full viewer, use the Data View-
ers pull down menu at the top of the control panel.

The CLI parm_set command will work on these parameters regardless of
their visibility.

Non-Transformable Objects

5-6 GEOMETRY VIEWER AND LIBGEOM LIBRARY

Non-Transformable Objects

It is possible to use the libgeom.a library to mark an individual object as "non-
transformable." Though the user can select the object as the current object, it
will be unresponsive to any transformation instructions coming from an in-
put device or a CLI transformation command.

The color legend module produces such a non-transformable object.

The non-transformable attribute is implemented as an additional mode argu-
ment called locked (all lowercase) on the GEOMedit_transform_mode sub-
routine call. It is in addition to the existing mode arguments normal, parent,
notify, and redirect. Any flag option should be 0. The locked attribute will
extend to the object (name) and all its child objects. For example:

GEOMedit_transform_mode(*output_geom,parent_name,"locked",0);

locked accomplishes its purpose by making the object part of screen space, ex-
tending from -1 to 1 in X, Y, and Z. Therefore, all positioning of the object
within the view window should take this into account. Note that if a user re-
sizes the geometry output window, the object will be rescaled accordingly.

Note: locked objects should not be placed at -1.0 or 1.0 in Z. Rather, a pro-
grammer who wants the locked object, for example, in front of all other ob-
jects should place it at .99 in screen space. Some hardware renderers do not
render objects located at -1.0 or 1.0 in screen space.

The locked object may still be affected by lighting and color property editing
on some renderers. It is therefore recommended that you set the object’s ren-
der mode to no light with GEOMedit_render_mode.

If you also wish the object to be unpickable, use the GEOMedit_selection_-
mode call with the "ignore" option:

GEOMedit_selection_mode(*output_geom,object_name,"ignore",0);

Texture Maps

GEOMETRY VIEWER AND LIBGEOM LIBRARY 5-7

Texture Maps

AVS 5 has two new libgeom.a library calls that provide greater 2D and 3D tex-
ture mapping functionality. In AVS 5, a programmer can:

• Attach a separate texture map to each individual object in a Geometry
Viewer scene window.

• Associate a colormap with each texture map.

These are independent, though related features. One can associate a texture
map with an individual object with GEOMedit_field_texture without having
to colorize that texture with GEOMedit_texture_colormap.

GEOMedit_field_texture

GEOMedit_field_texture(list, name, fieldptr)
GEOMedit_list list;
char *name;
AVSfield *fieldptr;

This routine can be used instead of the existing GEOMedit_texture call. It at-
taches a texture-mapping "field" to the named object’s edit list.

This routine takes a 2D or 3D field specified by the pointer fieldptr, creates
uv[w] texture-mapping information for vertices of the object specified by
name, and adds it to the edit list list. The field must be a uniform byte field.
The field can be either scalar or 4-vector. If the field is scalar, then the texture
map consists of 8-bit index values that will need to be associated with a color-
map by a call to GEOMedit_texture_colormap. If the field is a 4-vector byte,
then it is interpreted as alpha, red, green, blue color values.

The fieldptr attached to the edit list object is a reference to the field. Only the
reference is passed to downstream modules.

GEOMedit_texture_colormap

GEOMedit_texture_colormap(list, name, colormap);
GEOMedit_list list;
char *name;
AVScolormap *colormap;

This routine appends the AVS colormap pointed to by colormap to the edit list
information of the object name, in the edit list list. It is used to assign color
values to the vertices when performing colorized texture mapping.

It is assumed that name has previously had texture-mapping information as-
signed to its vertices with the GEOMedit_field_texture routine.

If colormap is 0, then this call removes any color information that may have al-
ready been assigned to name.

Texture Maps

5-8 GEOMETRY VIEWER AND LIBGEOM LIBRARY

This call increases the size of the edit list by the size of colormap. This is 1024
bytes (256*4 bytes).

Platform dependence. This feature requires that the underlying renderer
support 2D or 3D single component colorized texture maps. The software
renderer supports this. No hardware graphics subsystems currently do. See
the table of platform geometry rendering features in the "Release Notes"
chapter of your platform’s Installation and Release Notes.

Network Example
A network containing a module that is coded to use both GEOMedit_field_-
texture and GEOMedit_texture_colormap is not constructed in the same way
that networks containing one of AVS’s existing texture-mapping modules are
constructed.

This is the typical texture mapping network used by modules such as brick
that use the older GEOMedit_texture call (assumes a uniform scalar field):

 read field
 |
 generate colormap |
 | |
 | |--------|-------------|
 | | | |
 colorizer brick volume bounds
 | | |
 |----| |-------------|
 | |
 geometry viewer

The key modules are brick, colorizer, and geometry viewer. brick produces
a geometry of eight surfaces of the field. Which eight surfaces are determined
by brick’s parameters. colorizer takes each of the original data values in the
field and converts it into a 4-vector byte color value. brick’s geometry and
colorizer’s 3D texture ("field of colors") are sent to the geometry viewer. The
geometry viewer takes the 3D texture from its field input port, and the geom-
etry from its geometry input port, and uses the 3D texture’s color values that
intersect the geometry planes to produce a colorized geometry that is dis-
played as the texture mapped object.

There are two problems with this approach:

geometry viewer
The geometry viewer module has only one "texture mapping" input port.
Thus, only one texture map can be sent. This texture map will be applied
either:

• automatically to the object that brick specifies on its GEOMedit_tex-
ture call ("GEOMedit_texture(*output, brick_object, dynamic)"),

• or, if a module does not make this call, then manually to whichever
object is the current object when the user presses Set Dynamic Tex-
ture on the Edit Texture panel.

Texture Maps

GEOMETRY VIEWER AND LIBGEOM LIBRARY 5-9

memory utilization
colorizer produces an output field that is either half the size of the input
field (double input), equal to its size (int and float input), double its size
(short input), or quadruple (byte input) its size. Since most uniform vol-
umes are bytes or shorts, the typical effect is to create a field four times
the size of the original field.

A module (for example, a hypothetical new brick) that uses GEOMedit_-
field_texture and, optionally, GEOMedit_texture_colormap would be in-
cluded in a network constructed as follows:

 read field
 |
 generate colormap |
 | |
 |----------| |-------------|
 | | |
 new brick volume bounds
 | |
 |-------------|
 |
 geometry viewer

The differences are:

• There could be multiple new brick modules, multiple input fields, and
multiple output geometries, each with its own texture map.

• colorizer and its space-consuming 3D texture has been eliminated. This
new brick takes a colormap input and the input field and uses GEOMed-
it_field_texture and GEOMedit_texture_colormap to create the colored
geometry. This texture mapped geometry is sent to the geometry viewer,
using the software renderer for display.

Note: brick (and the similar excavate brick and volume render) were not
modified in this release because their prototypical old and new network
structures would be incompatible. On some hardware renderers that sup-
ported 3D texture mapping, but not single component colorized textures,
brick, excavate brick, and volume render would no longer work.

Pixmap Output with Window ID

5-10 GEOMETRY VIEWER AND LIBGEOM LIBRARY

Pixmap Output with Window ID

The geometry viewer module now has an invisible AVS pixmap output, like
the obsolete render geometry module. This is provided for those users who
require the X window system id of geometry viewer’s output window. The
pixmap data type is described in the "AVS Data Types" chapter of the AVS De-
veloper’s Guide.

Integer Synchronize Output

The geometry viewer module now has an invisible integer output port. This
"signal" output is generated whenever the Geometry Viewer re-renders. It is
provided so that the Geometry Viewer can synchronize with a module that
might control a video camera or other device. Usually, this integer output is
more efficient than attempting to synchronize off the image output.

New CLI Commands

The Geometry Viewer supports two new CLI commands:

geom_center

The geom_center CLI command lets you automatically set the center of rota-
tion and scale operations for a Geometry Viewer object. The center is set to
the XYZ location that is in the center of the object’s extents. It is equivalent to
pressing the Center button on the Geometry Viewer interface.

geom_center { -object <name> }

-object defaults to the current CLI object. This will be the current Geometry
Viewer object unless it has been explicitly set with set_cur_cli_obj.

geom_get_position

The geom_get_position CLI command lets you find the current position of an
object. In order to support the rotation/scale center function, the Geometry
Viewer stores the object’s position separate from the 4x4 transformation ma-
trix. The XYZ position vector is essentially the location of the center of scale/
rotation of the object in the object’s coordinate system.

geom_get_position { -object <name> }

-object defaults to the current CLI object. This will be the current Geometry
Viewer object unless it has been explicitly set with set_cur_cli_obj.

GRAPH VIEWER 6-1

CHAPTER 6 GRAPH
VIEWER

Graph Viewer Geometry Output

In previous releases, the Graph Viewer would only output a geometry repre-
sentation of its plot window when the plot was first drawn, or when a new
dataset entered one of its input ports. There is now a button and a CLI com-
mand that forces the Graph Viewer to generate an output geometry.

Output Geometry
The Output Geometry button on the Graph Viewer’s Write Data sub-
menu forces the Graph Viewer to output a geometry version of its plot
window on its geometry output port. You would use this button, for ex-
ample, to write a new geometry when you make a change using the
Graph Viewer’s interface, such as changing the plot style from line to
scatter.

The Graph Viewer will now only generate a geometry output when this
button is pressed or the graph_output_geom CLI command is issued.

graph_output_geom CLI command
The graph_output_geom CLI command produces the same effect in a CLI
script as pressing the Output Geometry button in the Graph Viewer’s in-
terface.

Graph Viewer Geometry Output

6-2 GRAPH VIEWER

NETWORK EDITOR 7-1

CHAPTER 7 NETWORK
EDITOR

Macro Modules: Improved Interface

The AVS 4 Network Editor introduced macro modules: the ability to group
sets of modules together so that they appear and behave as though they were
one module. This functionality is accessed through the Editing Tools menu
on the Network Editor’s main panel. It is documented in the "Editing Tools:
Macro Modules" section of the AVS User’s Guide’s "Advanced Network Edi-
tor" chapter.

In AVS 5, creating and editing macro modules has been greatly improved.
You can now create macro modules quickly "in place." The overall process is
the same as in AVS 4, with these exceptions:

Existing modules and connections are not destroyed.
In AVS 4, when you started the macro creation/editing process by press-
ing Create or Edit Macro Module, the existing module instances and the
connections between them and the rest of the network were saved and
then destroyed. A Clear Network operation was performed, blanking the
Workspace. You were placed in a mode where only the IN-> and OUT->
macro module I/O stub modules, and any selected modules, were
present. When you finished creating or editing the macro module, you
had to reconnect it to the restored network.

In AVS 5, you create and edit macro modules "in place" in a running net-
work. There is no network buffer, and no Clear Network operation. Exist-
ing module instances, their parameter settings, and connections are
untouched. The entire existing user interface context of the application is
still available while you edit the macro module.

Macro modules are not saved or added to the Palette automatically.
In AVS 4, to complete creating or editing a macro module, you pressed
the Done Editing Level: n button. At this point, you were always
prompted for a filename in which to save the description of the macro
module. Once the file was written, the macro module’s new icon was
added to the module Palette.

In AVS 5, macro modules are not saved to files nor added to the module
Palette until you explicitly specify these operations. To save a macro
module description to a file and add it to the module Palette, you must
press Write Network under the Network Editor’s Network Tools menu

Macro Modules: Improved Interface

7-2 NETWORK EDITOR

while you are editing the macro module. You will receive a prompt ask-
ing if you want to save the entire network or just the macro module.

Automatic IN-> and OUT-> Connections
If you have selected a group of modules (left mouse button/drag/re-
lease) to be part of a macro module, when you enter the editing mode any
connections that existed between this block of modules and the rest of the
network will be automatically added to the IN-> and OUT-> modules.

When you exit editing mode, these connections will automatically be
made between the new macro module and the existing network. This
makes it extremely fast and simple to make macro modules out of blocks
of an existing network.

Keyboard shortcuts
There are two keyboard shortcuts:

Option to CLI module command to change macro module name.
The -newname option to the CLI module command will change the name
of macro module. For example:

module old.user.0 -newname new

will rename macro module old to new.

Scripts incompatible with AVS 4
There is one incompatibility between the AVS 5 and AVS 4 macro module
mechanisms: CLI scripts that create and edit macro modules will not
work under the new scheme. If you have such scripts, you can either:

• recreate them under AVS 5, or
• edit them to include the following CLI command:

debug EDITORmacro_mode 0

This will turn on AVS 4 macro module behavior.
• run AVS 5 with AVS 4 macro module behavior using the Old-

Macros option described below.

OldMacros option to renable AVS 4 behavior
If you want to create and edit macro modules in the AVS 4 fashion, add
this line to your personal .avsrc file:

OldMacros 1

Function Keyboard Shortcut
(Left Mouse Button)

On

Edit Macro Module shift-click
double-click

macro module icon

Done Editing shift-click
double-click

IN-> or OUT-> module icon

Dial Widget Behavior

NETWORK EDITOR 7-3

Dial Widget Behavior

Some subtle changes have been made to the behavior of dial widgets. The
changes all relate to setting the resolution of a dial (how many units are tra-
versed in one revolution of the dial’s pointer), and the behavior of dials with
respect to minimum and maximum boundary values. Some of the changes
are "bug fixes"—corrections to either behavior or documentation. Some are
new features that provide functionality not previously available.

This section updates/corrects the text on "Using Dial Controls" on pp. 6-24
through 6-27 of the AVS User’s Guide.

Dial Resolution

Bounded Dials

These changes appear on the Dial Editor of bounded dials.

Min/Max
As in AVS 4, the Min and Max typeins set the resolution of the dial,
where the resolution is defined as:

(Max - Min) / 270 = units per degree of needle rotation

Min and Max do not establish absolute minimum and maximum dial
bounds. These are set by the module.

You use the Min and Max typeins to increase the resolution of the dial
over a subrange of the module-defined absolute minimum and maximum
dial bounds. For example, if the dial bounds were from 0 to 1000, the di-
al’s needle would be too sensitive to use to set precise values ((Max -
Min)/270 degrees = 3.7 units per degree of rotation). You can set Min to
100 and Max to 200 to make the resolution (200-100)/270 = .3 units per
degree of rotation).

In AVS 4, a user could enter Min and Max resolution values that exceed-
ed the module’s defined dial bounds. For example, though the module
had defined bounds of 0 to 64, the user could set Min and Max resolution
values of 0 to 100. The dial would change appearance in a way that sug-
gested that this had worked. However, AVS would just ignore the pa-
rameter value when it exceeded the module’s defined bounds, and the
needle would "stick" at the real minimum (0) or maximum (64) value.

In AVS 5, if a user types in Min or Max values that exceed the module’s
defined dial bound(s), the value is just reset to the module’s defined
bound(s).

Reset Min/Max
This new button will reset the Min/Max resolution values to the original
module bound settings. Subsequent changes by the module will be auto-
matically reflected by the Min/Max.

Dial Widget Behavior

7-4 NETWORK EDITOR

Saved Networks
In AVS 4, if a user had manually reset the dial Min/Max resolution, then it
was impossible to save the network, read it in again, and restore the cor-
rect Min/Max resolution values. The values supplied were wrong. In
AVS 5, this functionality works correctly.

Developer Issues
To save widgets to a network file, AVS uses the CLI manipulator com-
mand (AVS Developer’s Guide, pp. 5-47 to 5-48). The clause that establish-
es the widget’s parameter settings is the -P clause:

manipulator ... { -P <prop name> <prop type> <prop value> }

The -P clause is the CLI equivalent of the AVSadd_parameter_prop li-
brary routine. Indeed, to make sense of -P’s arguments, you have to look
up the explanation of the AVSadd_parameter_prop call in the AVS De-
veloper’s Guide, pp A-10 to A-12.

In AVS 4, bounded dials used the local_range property name to save
user-set Dial Editor Min/Max values. As noted above, this did not work.

In AVS 5, bounded dials use two new property names: local_min and lo-
cal_max, to hold these values. Their corresponding property type, data
type, and widget types are shown in Table 7-1. This is a shortened ver-
sion of the table on page A-11 of the AVS Developer’s Guide.

Thus, when a network containing bounded dial widgets whose Min/Max
values have been changed by the user is written to a file, it contains ma-
nipulator CLI commands that look like this:

manipulator ... -P local_min real new-min-value
 -P local_max real new-max-value

One can issue similar CLI commands interactively or in a script to set a
bounded dial widget’s resolution.

One can write a module that contains an AVSadd_parameter_prop call

like the following to set a bounded dial widget’s resolution:

AVSadd_parameter_prop(param_num, "local_min", "real", new-min-value)
AVSadd_parameter_prop(param_num, "local_max", "real", new-max-value)

This would be used to override the parameter’s absolute bounds, just as
if the user had used the Dial Editor.

Table 7-1 Property Name, Data Type, and Widget Type Correspondence

Property
Name

Property
Type

C Data
Type

FORTRAN
Data Type

Widget Types

local_range real float real dial, idial
local_min real float real dial, idial
local_max real float real dial, idial

Dial Widget Behavior

NETWORK EDITOR 7-5

Unbounded Dials

These changes appear on the Dial Editor of unbounded dials.

Min typein not ignored
In AVS 4, the Min typein value was actually ignored. Instead, the Max
typein value was taken as the sole numerator when calculating:

(Max - Min) / 360 = units per degree of needle rotation

In AVS 5, both values are used in the equation.

Range
A Range typein has replaced the Min/Max typeins on the unbounded
dial Dial Editor to set dial resolution.

The default resolution of the unbounded dial’s face is "once around is
100." (Note that the User’s Guide says "once around is 200." This is incor-
rect.)

Setting this typein establishes the new "once around is n" dial resolution.

Reset Min/Max
This new button will have no effect on unbounded dials.

Saved Networks
As with bounded dials, in AVS 4, if a user had manually reset the dial
resolution, then it was impossible to save the network, read it in again,
and restore the correct resolution values. The values supplied were
wrong. In AVS 5, this functionality works correctly.

Developer Issues
Unbounded dials are now the sole users of the local_range property
name, as found in the CLI manipulator command’s -P clause, and the
AVSadd_parameter_prop library routine.

Dial Widget Behavior

7-6 NETWORK EDITOR

DEVELOPING MODULES 8-1

CHAPTER 8 DEVELOPING
MODULES

Introduction

This chapter describes major new AVS 5 features available to module devel-
opers. You may also wish to consult the "Documentation: Clarifications/Cor-
rections" chapter for improved descriptions of several existing features
already documented in the AVS Developer’s Guide.

Module Generator

Reinitialize

In AVS 4, to clear all Module Generator settings you had to "hammer" the Mo-
dle Generator module and drag down a new instance of Module Generator
from the Palette.

In AVS 5, the Module Generator has a Reinitialize button at the top of its
main control panel. Pressing this button zeroes all settings and starts creating
a new module.

Support for Widgetless and Unbounded Parameters

The Module Generator’s Parameter Editor panel has two new buttons: No
Widget and Unbounded. (To make the Parameter Editor panel visible, press
Edit Parameters on the Module Generator’s main control panel.)

No Widget
Produces a parameter without an associated widget (widget type "none")
by generating an AVSconnect_widget(param_num, "none") call. Wid-
getless parameters are used, for example, by the AVS Animator module.
The Animator creates numerous parameters that it controls internally us-
ing CLI commands, and which have no user-visible or controllable wid-
gets.

Module Generator

8-2 DEVELOPING MODULES

Unbounded
A module will often use unbounded parameters and widgets when its
author cannot predict a parameter’s range, or when the author wants the
parameter range to be data-dependent, with the bounds only being estab-
lished during execution in the compute function with an AVSmodify_pa-
rameter call.

Previously, the Module Generator had no interface to produce unbound-
ed parameters. All parameters were bounded and the user had to hand
edit the AVSadd_parameter call in the generated C or FORTRAN file to
change a parameter to unbounded.

Now, an Unbounded button appears for all float parameters and "nor-
mal" integer parameters such as isliders, idials, and integer_typein.

When this button is on, the widgets created for a parameter are unbound-
ed, and the Min/Max typeins at the bottom of the Module Generator’s Pa-
rameter Editor are removed. The default is off.

Modifying Fields in Place

DEVELOPING MODULES 8-3

Modifying Fields in Place

The typical model for an AVS filter module is:

1. Free previous output field (if any) with AVSfield_free.
2. Create a new output field with AVSdata_alloc.
3. Copy data from input field to output field with some processing

along the way.

There are many cases where the output field is the same type and size as the
input field. In many of these cases it would be desirable to operate on the
data in place rather than make an additional copy of it. This is possible in
AVS 5 and later versions.

Rather than using AVSdata_alloc to allocate a new field, AVSfield_equiv_-
to_input is used to create an additional reference to an existing field. For in-
stance (from $AVS_PATH/examples/threshold.c):

static int thresh_compute_2(input, output, pmin, pmax)
AVSfield_float input,**output;
float *pmin,*pmax;
{
 if (*output != NULL)
 AVSfield_free (*output);

 *output = AVSfield_equiv_to_input(input);

 /*
 * Perform the calculations on input field here.
 */

 return(1);
}

By default, input fields in shared memory are Read Only so an attempt to
modify the data will result in an error. To make them writable, use the
READ_WRITE_IN option. Example:

in_port = AVScreate_input_port("Input Field",
 "3D uniform scalar float", REQUIRED | READ_WRITE_IN);

By using both the READ_WRITE_IN option and AVSfield_equiv_to_input,
a long chain of modules can access the same data and modify it in place, re-
sulting in large memory savings.

This feature is also useful for building a switch module that simply passes an
input field through to an output without making a copy. The sample module
in $AVS_PATH/examples/switch.c has a few input ports and a single output
port. One of the input ports is passed along to the output depending on a pa-
rameter. A related use would be a module with a single field input port and
several outputs. It could send that input to zero, one, or more outputs. In
these cases, the field is not modified so the READ_WRITE_IN option is not
required for AVScreate_input_port.

Modifying Fields in Place

8-4 DEVELOPING MODULES

Side Effects of Modifying Fields in Place

Users of modules using this feature should understand the consequences to
avoid unwanted side effects. Let's look at a simple example:

+---------------+
| Module A |
| Read Image |
+---------------+
 |--------------------------|
 | |
+---------------+ |
| Module B | |
| Some Filter | |
+---------------+ |
 | |
 | |
+---------------+ +----------------+
| Module C | | Module D |
| Display Image | | Display Image |
+---------------+ +----------------+

Suppose Module B is some sort of image processing module that modifies the
image in place. There is no guarantee whether Module D would fire with the
original image from A or the result of B.

The AVS flow executive (version 5 and later) will try to run modules that have
specified Read/Write access to their inputs after others connected to the same
source. In the example above, when A produces new output, the flow execu-
tive will fire D before B. However it is possible for D to run again, after B has
modified A's output, due to changes in another input port or parameter.

Note on Supplied AVS Modules

None of the modules supplied with AVS 5 modify their input data in place.

C++ and ANSI-C in AVS 5

DEVELOPING MODULES 8-5

C++ and ANSI-C in AVS 5

Introduction

AVS 5 provides improved support for both ANSI-C and C++ modules. This
support consists of:

• optional function prototype declarations for all AVS provided functions
(required for both languages), and

• example modules that illustrate proper coding practices.

AVS 5 does not provide specific C++ base classes for immediate use by pro-
grammers. It does provide a C++ example using a sample base class that il-
lustrates how subclasses can be derived.

Function Prototypes

The AVS header files now have definitions for all AVS functions in both Ker-
nighan and Ritchie-style C declarations (i.e., "extern int AVSset_module_na-
me();") and as the function prototypes needed for ANSI-C and C++.

All of these new function prototype declarations are defined using a macro,
AVS_EXTERN. AVS_EXTERN itself is defined in $AVS_PATH/include/avsarg-
s.h. avsargs.h is automatically included by all of the AVS header files.

In avsargs.h, a compiler definition called NeedFunctionPrototypes is automat-
ically set to 1 when either __STDC__ or __cplusplus is defined.

• If NeedFunctionPrototypes is 1, then the AVS_EXTERN call turns into a
function prototype declaration.

• If NeedFunctionPrototypes is set to 0, then AVS_EXTERN turns into a
Kernighan and Ritchie-style C declaration without the function argu-
ments being declared.

The user may override the automatic setting by predefining NeedFunction-
Prototypes to the desired value before any header files are included.

To Ensure Module Compatibility

Since AVS functions were not previously declared, there may be some dis-
crepencies between what is now declared and what users once had to declare
in their own code. To turn off any function declarations from the header files,
define the compiler option AVS_EXTERN_NO_DECLS to 1. This can be done
by including the directive "-DAVS_EXTERN_NO_DECLS=1" on your compile
line.

C++ and ANSI-C in AVS 5

8-6 DEVELOPING MODULES

General Practices for ANSI-C and C++ Compatibility

Several example modules have been copied and modified so that they can be
compiled by a C++ compiler: polygon2.cpp, read_image2.cpp, read_ucd2.cpp,
and widgets2.cpp. These have been altered so that they are acceptable to ei-
ther a C compiler or a C++ compiler. The changes required were not substan-
tial but are worth enumerating. These changes are not required for normal C
code modules. They are illustrations and tests of the ANSI-C/C++ interface.

flow.h
The <avs/flow.h> include file is not needed and should generally not be in-
cluded unless there is a very specific reason to do so.

In the past flow.h has been included by module writers to get the FLOW_-
MODULE structure declaration needed by AVSmessage. In fact, the
AVSmessage function’s third argument should have a NULL value. It
should not be AVSmodule or any module pointer. The value will be fig-
ured out correctly inside the function. The flow.h header file is incompati-
ble with C++ and has been removed from all example files.

AVSinit_modules()
In C++, this needs to be enclosed by a special "extern" declaration because
this function is still coded in Kernighan and Ritchie-style C so that the lib-
flow library can find it. For example (from $AVS_PATH/examples/read_im-
age2.cpp):

/* C++ wrapper is required for AVS C functions to find
this function whenit is compiled by C++ compiler */

#if __cplusplus
extern "C" {
#endif

static int read_image();

void
AVSinit_modules()
{
 AVSmodule_from_desc(read_image);
}

#if __cplusplus
}
#endif

Compute function declaration
This must be a function prototype to match the later declaration of the ac-
tual function. This is also true of other local functions in the same file, de-
pending upon the order of function declarations. Use AVS_STATIC (a
static version of AVS_EXTERN) to declare it appropriately. When passing
it to AVSset_compute_proc, cast it as an AVS_FNCP type value. For ex-
ample (from $AVS_PATH/examples/read_image2.cpp):

C++ and ANSI-C in AVS 5

DEVELOPING MODULES 8-7

/* In C++, the compute function must be declared as a prototype function */

AVS_STATIC(int read_image_compute, (AVSfield_char **data, char *filename));

static int
read_image()
{
 /* ... */

 /* Set the compute procedure */
 AVSset_compute_proc((AVS_FNCP)read_image_compute);

 /* Initialization and Destruction functions should also be cast
 when present:

 AVSset_init_proc((AVS_FNCP)read_image_init);
 AVSset_destrot_proc((AVS_FNCP)read_image_destroy);
 */

 /* ... */
}

return values
Functions that are implicitly declared to return an int value should return
that int value in order to avoid warnings.

casting
Some function calls may need to cast their arguments to match the func-
tion prototype in order to avoid compiler warnings. The following exam-
ples shows both declaring return values and casting (from $AVS_PATH/
examples/read_image2.cpp):

static int
read_image_compute(data, filename)
 AVSfield_char **data;
 char *filename;
{
 /* ... */

 /* AVSfield pointers should be cast as "generic" AVSfields to match
 the function prototype declarations */

 if (*data)
 AVSfield_free((AVSfield *) *data);

 /* AVSfield pointers return values may also need to be cast
 to specific subtypes */

 input = (AVSfield_char *)AVSdata_alloc("field 2D 4-vector 2-space byte", dims);

 /* Make sure that functions declared to return a value do so */
 return(1);
}

C++ and ANSI-C in AVS 5

8-8 DEVELOPING MODULES

exit()
In C++, the exit() function is declared in <stdlib.h>. This file should be in-
cluded conditionally if __cplusplus is defined and the module actually re-
quires it.

C++ Example

The example Makefile in $AVS_PATH/examples/Makefile has been extended to
include references to the local C++ compiler and its related libraries. CPP is
used to name the C++ compiler. CPPLIBS is used to name the related librar-
ies. You may need to redefine these environment variables on your target ma-
chine.

In order to use C++, you will need to modify the CPP and CPPLIBS definitions
to match your local system conventions.
CPPFLOWLIBS=$(FLOWLIBS) -lc -lC -lc
CPPSIMLIBS=$(CSIMLIBS) -lc -lC -lc
CPPHOME=/usr
CPPLIBS=-L$(CPPHOME)/lib
CPP=$(CPPHOME)/bin/CC
CPPFLAGS=$(CFLAGS) $(CPPLIBS)

To make the examples, type:

make -e cpp_examples

The C++ examples consist of:

• The modified C examples polygon2.cpp, read_image2.cpp, read_ucd2.cpp,
and widgets2.cpp. These programs are "ANSI-C and C++ conforming" but
are not object-oriented,

• A sample C++ module, cpp_example.cpp, that demonstrates a base class (in
cpp_base.cpp and cpp_base.h) with a subclass built upon it.

All of these examples can be built using "make cpp_examples" after you have
defined the CPP macros appropriately.

The cpp_example.cpp module builds on a base class called AVSModule defined
in cpp_base.h that defines constructor and destructor functions. The construc-
tor function, AVSModule::AVSModule, accepts a module name, a compute
function pointer, and a module type value. It then calls the appropriate AVS
libflow functions to declare the module. The header file declares a number of
inline functions to call AVSadd_parameter and other commonly used AVS
libflow functions.

The cpp_example.cpp file contains a subclass based on AVSModule called De-
rived. Derived sets up a constructor function, Derived::Derived, that uses
the base class functions to call libflow. It also provides a compute function.
Overall, this is a very simple example, but one that shows one way to employ
C++ when writing an AVS module.

C++ and ANSI-C in AVS 5

DEVELOPING MODULES 8-9

Compiler Warnings

You may receive compiler warnings when you compile the example modules.
Warnings will be of two general types. The exact text may vary depending
upon the compiler.

function declaration anachronism
In addition to function prototypes, ANSI-C has a similar function header
where the parameter types are declared inline. ANSI-C compilers may
complain about Kernighan and Ritchie-style C type declaration, but will
usually accept them. For example:

"read_image2.cpp", line 83: warning: old style defini-
tion of read_image_compute() (anachronism)

variable not used
The examples, adapted from the existing $AVS_PATH/examples module
examples, were not totally rewritten to make the ANSI-C and C++ cor-
rect. Thus, the compiler may warn of unused variables.

Unmapped Control Panels

8-10 DEVELOPING MODULES

Unmapped Control Panels

Some developers may create an interface in which they do not want a mod-
ule’s control panel to appear on the screen. Two options, -hide and -show
have been added to the CLI module command that makes this possible.

This is the new help text for the CLI module command:

avs> help module

The module is created if it does not already exist and its name is
printed out. If the module exists it is changed to match the given
arguments. If the name is given without a ".user.N" prefix it is assumed
to be a request to create a new module; the new name will be printed out.
The pend operations connect the module in between other modules or remove
it from a previous pend operation. A tag is an added identifier that allows
a module to be referenced as part of a group of related modules.

Usage: module <module.user.N>
{-xy X,Y} # location of module in network editor work space
{-host <host>} # remote host name
{-alias <alias>} # set a unique module alias name
{-ex <module_path>}# location of module executable/file
{-on/-off} # enable or disable the module
{-hide/-show} # hide or show module owned widgets <--New options
{-parent <macro name>} # this module is contained in the macro module
{-macro } # this module is a macro module
{-unshared} # prevents the module being mapped out during readnet
{-prepend <module:port>} # insert module before module port
{-prepend_tag <tag>} # insert module before tagged group
{-postpend <module:port>} # insert module after module port
{-postpend_tag <tag>} # insert module after tagged group
{-tag <tag>} # set or change the module tag ("" to clear)
{-type_tag <type_tag>} # set or change the type tag ("" to clear)
{-unpend } # remove module from pended connections

The -hide and -show options work both when the module is initially created,
and later on as a modification operation. They cause both the main module
panel and any other module-related panels to be hidden/shown. They only
affect the top most panel in a hierarchy. Therefore, a developer does not need
to do recursive -show operations later. Panels that are hidden can be shown
using either the original option on the CLI panel command, or these new op-
tions on the module command.

When a module is in the "Top Level Stack", its button will still show even
though the module panel itself is hidden. If the panel is within another panel,
or if it is a root level window, this will not be an issue. However, most panels
appear within the stack.

MODULES AND MODULE LIBRARIES 9-1

CHAPTER 9 MODULES AND
MODULE
LIBRARIES

Introduction

This section describes:

• The AVS 5 reorganization of module libraries.
• New AVS 5 modules.
• Existing modules that have significant behavior changes in AVS 5.

The module changes are summarized here. See the AVS Module Reference
manual for complete new/updated module man pages.

Module Libraries

Default Libraries

AVS 5 loads all AVS module libraries by default at system startup. The mod-
ule libraries appear as a scrolling list at the top of the Network Editor control
panel.

This change was accomplished by changing the ModuleLibraries line in the
system default $AVS_PATH/runtime/avsrc file to read as follows:

ModuleLibraries $Path/unsupp_mods/Unsupported \
 $Path/chem_lib/Chemistry \
 $Path/avs_library/Animation \
 $Path/avs_library/FiniteDiff
 $Path/avs_library/UCD \
 $Path/avs_library/Volume \
 $Path/avs_library/Imaging \
 $Path/avs_library/Supported

Your own local .avsrc file can override the system default. Edit its ModuleLi-
braries line to include just those module libraries you wish to have loaded.

Module Libraries

9-2 MODULES AND MODULE LIBRARIES

New Module Library Classifications

There are now over 240 supported AVS modules. To make it easier to find the
module that you want in the Network Editor’s Module Palette, the set of AVS
modules has been subdivided into eight module libraries. Seven module li-
braries contain supported modules. One contains unsupported modules.
The groupings are designed to minimize the need to switch among module li-
braries.

The module library structure is depicted in Figure 9-1. The module libraries
are:

Supported
Contains all supported AVS modules except the Chemistry and Anima-
tion module libraries.

UCD
Contains modules suitable for unstructured cell data networks. Note that
all UCD modules are also in the Supported module library.

Finite Difference
Contains modules suitable for finite difference analysis. This includes
most of the field modules. Note that all finite difference modules are also
in the Supported module library.

Volume
Contains modules suitable for volume visualization. Note that all vol-
ume modules are also in the Supported module library.

Imaging
Contains modules suitable for imaging. It includes the 40+ ip... imaging
modules. These imaging modules are also in the Supported module li-
brary.

Chemistry
Contains the chemistry example modules. These chemistry modules are
supported although they are not found in the Supported module library.

Animation
Contains the modules that make up the AVS Animation Application.
These modules are supported although they are not found in the Sup-
ported module library. On most systems, these modules require separate
licensing.

Unsupported
Contains the unsupported AVS modules.

Many modules, such as read field and geometry viewer, are found in multi-
ple module libraries. See the module library module man pages in the AVS
Module Reference manual for complete lists of which modules are in which li-
braries.

Module Libraries

MODULES AND MODULE LIBRARIES 9-3

UCD

Supported Module Library

Module Library

Volume
Module
Library Finite

Difference
Library

Imaging
Module Library

Animation
Module Library

Chemistry
Module
Library

Supported Modules

Unsupported Modules
Unsupported
Module
Library

 Figure 9-1 AVS 5 Module Library Organization

New and Enhanced Modules

9-4 MODULES AND MODULE LIBRARIES

New and Enhanced Modules

See the AVS Module Reference manual for complete module descriptions.

Imaging Modules

AVS 5 contains greatly augmented support for image processing. Most of
these modules are adaptations of the SunVision imaging processing library
(iplib). AVS module "wrapper" code was written to surround the core iplib li-
brary function calls.

In general, the modules supply this functionality:

• 2D and 3D byte, short, and float images
• single- and multi-band images (maximum of 12 bands)
• support for arbitrarily-shaped regions of interest (ROI) operations, image

probing, and image mensuration
• support for morphological, arithmetic, Fast Fourier Transformation, ana-

lytic, filtering, and geometric imaging operations

Table 9-1 lists the new imaging modules. The imaging modules are in the bi-
nary file $AVS_PATH/avs_library/sv_multm.

Table 9-1 New Imaging Modules

Name Description Type

calc warp coeffs create/read tiepoints and calculate warp coefficients for ip
warp module

data

ip read kernel read convolution kernel for ip convolve data
ip read mtable read morphology table for ip morph data
ip read sel read structuring element for ip dilate, ip erode, ip median data
ip read vff convert .vff format image to AVS field data
sketch roi compose ROI image from Image Viewer sketched lines data
draw grid draw a grid on top of an image filter
ip absolute generate absolute values of an image’s pixels filter
ip arithmetic add, sub, mul, div, min, max, constant operations filter
ip blend alpha or compositing blend of two images filter
ip contour draw iso-level contours on images filter
ip convolve convolve an image with a float kernel filter
ip dilate dilate an image filter
ip edge image edge detection by various algorithms filter
ip erode erode an image filter
ip fft Fast Fourier transform of an image filter
if fft display calculate magnitude and phase of a packed FFT image filter
if fft multiply multiply two packed FFT images filter

New and Enhanced Modules

MODULES AND MODULE LIBRARIES 9-5

ip fft pack fold conjugate symmetric FFT representation filter
ip fft unpack unfold conjugate symmetric FFT representation filter
ip float math floating point operations: log, log10, sqrt, exp, recip, cos, sin,

atan
filter

ip ifft inverse Fourier transform for conjugate datasets filter
ip lincomb inter-band linear combination filter
ip linremap linearly remap an image filter
ip logical bitwise logical operations: and, nand, nor, not, or, xor filter
ip lookup pass image through a lookup table filter
ip median median image filter filter
ip merge merge two images filter
ip morph morphological operations filter
ip reflect reflect or transpose an image filter
ip rescale simple linear remap of pixels in an image filter
ip rotate rotate an image filter
ip threshold threshold an image against a float value filter
ip twarp arbitrary image warp from warp table data filter
ip translate translate an image filter
ip warp polynomial image warp filter
ip zoom zoom image with floating point pixel offset filter
image measure find distance between two pixels in an image mapper
image probe report pixel value at selected point mapper
ip histogram compute image histogram mapper
ip read line extract pixel values along an interactively drawn sampling line mapper
ip compare compare two images data output
ip extrema find pixel value extrema data output
ip register determine highest correlation offset between image pairs data output
ip statistics return number of pixels, mean, variance data output
ip write vff write AVS field in .vff raster image file format data output

Table 9-1 New Imaging Modules

Name Description Type

New and Enhanced Modules

9-6 MODULES AND MODULE LIBRARIES

New UCD Modules

Table 9-2 is a list of the new unstructured cell data modules.

Updated UCD Modules

Table 9-3 is a list of the updated unstructured cell data modules.

Table 9-2 New UCD Modules

Name Description Type

ucd cell color color ucd structure based on cell or material id values mapper
ucd curl compute the curl of a vector UCD structure filter
ucd div compute the divergence of a vector UCD structure filter
ucd grad compute the vector gradient of a UCD structure filter
ucd math perform math operations between UCD structures filter
ucd minmax set min/max values of a UCD component; used with time

series data to prevent widget resets; and with color legend
module

filter

ucd plot create a field to graph a linear sample through a UCD mapper
ucd reverse cell repair topology of imported UCD structures filter
ucd rubber sheet map values as a 3D surface with height proportional to value mapper
scatter to ucd convert scatter field to a tetrahedral UCD structure filter
ucd vol integral calculate volume of a UCD structure, and the volume integral

of a scalar data component
data output

Table 9-3 Updated UCD Modules

Name Description Type

ucd slice 2D enhanced for animation: does not reset parameters after exe-
cution; has a continuous mode that doesn’t require Do Slice
parameter to be pressed to produce an output

mapper

ucd streamline can create colored stream ribbons; will accept a sample point
field

mapper

ucd to geom will create cell-based color contours; has additional port to
accept Color Field for this purpose

mapper

New and Enhanced Modules

MODULES AND MODULE LIBRARIES 9-7

New Volume Rendering Modules

Table 9-4 is a summary list of new volume rendering modules.

Updated Volume Rendering Modules

Table 9-5 summarizes updates to volume rendering modules.

Table 9-4 New Volume Rendering Modules

Name Description Type

compute shade combines colorizer, compute gradient, and gradient shade
module functionality into one memory-efficient module

filter

cube derived from SunVision volume rendering library. Ray traces
uniform volumes in these modes: texture mapping, maximum
value, transparent surfaces (based on a substances table), and
a Create Surface mode that stores intermediate results for
rapid recomputation of surface opacities and colors.

mapper

edit substances create the substance table for input to cube module data
time sampler supports sampling 3D volumes out of time-series data using

linear or cubic interpolation.
filter

x-ray provides orthographic projections of volumetric data. Can
render very large datasets.

filter

Table 9-5 Updated Volume Rendering Modules

Name Description Type

excavate has been moved to the Supported module libraries filter
tracer will now render scalar byte fields with a colormap in addition

to 4-vector byte fields. This saves considerable memory.
Will now handle uniform fields with points/extents informa-
tion.

mapper

vbuffer this unsupported module has been removed from AVS data output

New and Enhanced Modules

9-8 MODULES AND MODULE LIBRARIES

New and Enhanced Data Presentation Modules

Table 9-6 is a summary list of new modules for data presentation.

Table 9-6 New and Enhanced Data Presentation Modules

Name Description Type

color legend creates a color legend for a geometry window. Takes advan-
tage of the new object locking mechanism in the Geometry
Viewer.

mapper

generate axes Creates axes with moveable origin, min/max extents, and
independent control of X, Y, and Z axis labels, tick marks, tick
length, label spacing, tick mark spacing, label font and height

data

image to CGM converts an image to CGM format file data output
label provides fast support for titling in the Geometry Viewer data
3D bar chart converts a 2D floating point field into a group of 3D blocks or

planes for viewing in the Geometry Viewer
mapper

New and Enhanced Modules

MODULES AND MODULE LIBRARIES 9-9

Miscellaneous New Modules

Table 9-7 is a summary list of miscellaneous new modules.

Miscellaneous Enhanced Modules

Table 9-8 summarizes enhancements to miscellaneous existing modules.

Table 9-7 Miscellaneous New Modules

Name Description Type

average down samples x, y, or z data values independently filter
blend colormaps interpolates colormaps for the AVS Animator filter
dialog box uses a dialog box to create a long string parameter data
field to short data conversion for new supported data type filter
minmax set field min/max value; used to prevent dial reset during ani-

mations
filter

ribbons generates a ribbon representation from a geometry output of
the stream lines module. Also inputs a 3D vector field to con-
trol the orientation of the ribbons.

filter

track ball sends an object transformation to other modules data

Table 9-8 Miscellaneous Enhanced Modules

Name Description Type

create geom moved to Supported libraries data
field math handles byte, short, integer, float and double data values with

data ranges that match system capabilities
filter

field to float
field to int

have new, wider data ranges that match system capabilities filters

generate grid moved to Supported libraries data
geometry viewer supports optional colorized texture maps; pixmap output;

it can be made to output an image only on user command
to improve hardware renderer performance when down-
stream image module is connected; will now output an integer
"signal" whenever it rerenders so that it can synchronize with
video output modules.

data output

hedgehog scale value parameter’s minimum is now 0.0, not 0.01 mapper
image viewer accepts scalar images; will color as grayscale or by optional

colormap. Accepts any input data type, converting it to 0-255
normalized byte data before display. New upstream data sup-
port. Can be made to output an image only on user command
to improve performance when downstream image module is
connected.

data output

New and Enhanced Modules

9-10 MODULES AND MODULE LIBRARIES

luminance old "luminence" module, with fixed spelling. Old luminence
has been moved to the Unsupported library.

filter

pixmap modules all modules that took pixmaps as input/output have been
moved to the Unsupported module library. Note that this
includes render geometry and display pixmap. (Use geometry
viewer instead.)

various

pdb to geom moved to the Unsupported module library data
set view no longer resets center of rotation, no longer normalizes object data

Table 9-8 Miscellaneous Enhanced Modules

Name Description Type

AVS ANIMATION APPLICATION 10-1

CHAPTER 10 AVS
ANIMATION
APPLICATION

Known Problems Fixed

Between AVS 4 and AVS 5, the AVS Animator module has been made more
robust. Numerous known problems have been fixed such as:

• You can now animate cameras.
• Deleting and modifying keyframes now works all of the time. Modifica-

tions do not generate incorrect interpolation values.
• The AVS Animator no longer occasionally dies when modifying a key-

frame, moving to a new keyframe, or reading in saved animation scripts.
• The Full Animator’s Key Editors now always work, including moving a

key. Parameters are now correctly classified.
• Backwards playback with Key Advance now works.
• Problems related to rotations, such as incorrect interpolation values, Z

values in the Key Editor being incorrect, and saved scripts failing to re-
store the rotation values, have all been fixed.

The net effect of these changes is to make the AVS Animator a much more
solid and predictable tool for generating animations.

Animator Interface Changes

There are two changes to the AVS Animator’s interface.

Green/Red Keyframe Change/Do Not Change Indicator

The current action icon at the top of the Animator’s current status indicator
now changes color between red and green.

green
The indicator is almost always green. When green, the user can add, de-
lete, or modify a keyframe.

red
The icon changes briefly to red after a keyframe is added or modified.
When red, the user must not interact with the system. During this time,

New Modules

10-2 AVS ANIMATION APPLICATION

the AVS Animator is updating its state information from the other mod-
ules such as the geometry viewer. Changing keyframe values during this
time leads to unpredictable animations.

This "do not modify" time is usually very short. It only becomes notice-
able when the animation is very large, such as a complex geometry view-
er scene.

Setting Keyframe Times in the Full Animator

To set a new keyframe in the Full Animator, you should:

1. Arrange the scene to the desired configuration.
2. Type the New Keyframe Time into the widget.
3. Press Set Keyframe.

Formerly, steps 1 and 2 had to be reversed. If you followed the procedure in
the above order, then all parameter settings and Geometry Viewer manipula-
tions accomplished in step 1 were lost in step 2 as the AVS Animator reset the
scene to match the interpolated values that would already be present at the
New Keyframe Time. In short, it interpreted it as a "go to time n".

New Modules

AVS 5 contains several new modules that facilitate animation. These modules
are part of base AVS, not the AVS Animation Application. See their respective
man pages in the AVS Module Reference manual for details and sample net-
works.

minmax and ucd minmax

Many modules, such as isosurface, use the minimum/maximum data values
in a field or UCD structure to dynamically set the minimum/maximum
bounds on their parameter dials. This behavior can interfere with animations
of time-series data. Each new dataset in the time-series may have different
minimum/maximum bounds. You can find yourself carefully setting up an
animation of, for example, a particular isosurface value, only to discover
when you start reading the time-series data that isosurface is resetting the pa-
rameter dial that you want to remain fixed.

Two new modules, minmax and ucd minmax, solve this problem. They al-
low you to set fixed minimum and maximum field/UCD values that are wide
enough around the actual range of your data across the time-series so that no
downstream module will reset its dials.

New Modules

AVS ANIMATION APPLICATION 10-3

time sampler and blend colormaps

The new time sampler module extracts two sequential 3D fields from a 4D
time-series field and interpolates between their computational data values by
a choice of linear or cubic interpolation.

The new blend colormaps module interpolates linearly between two color-
maps in HSVA space.

New Modules

10-4 AVS ANIMATION APPLICATION

DOCUMENTATION CLARIFICATIONS/ CORRECTIONS 11-1

CHAPTER 11 DOCUMENTATION
CLARIFICATIONS/
CORRECTIONS

Existing Documentation: Clarifications and Corrections

Except for the AVS Module Reference manual, AVS documentation is not being
updated and reissued for AVS 5. This section contains clarifications, amplifi-
cations, and corrections to the existing documentation set.

Multiple Connections to an Input Port: AVSinput_changed

Some AVS modules, such as the image viewer and the geometry viewer, al-
low multiple connections to an input port. This is how, for example, you are
able to feed multiple images or objects—each from a different module—into
one image or geometry viewer scene window. Programmers have noticed a
reference to this capability in the second "connection number" parameter of
the AVSinput_changed call: AVSinput_changed(port_name, i) where i is the
number of the connection.

The multiple connections to a single input port feature is available only to
builtin modules: modules that are supplied with AVS as part of the main AVS
binary—the AVS kernel. User modules cannot make multiple connections to
a single input port This is a fundamental limitation of the kernel’s Flow Exec-
utive.

Thus, the documentation for AVSinput_changed is correct as written for user
modules: the second connection number parameter must always be 0 for C
modules and 1 for FORTRAN.

Loading Modules with the CLI module Command: the -ex Option

The CLI module command creates or modifies an instance of a module in the
Network Editor’s Workspace. It is used as part of CLI script files and net-
work files. Programmers debugging modules and people using remote mod-
ules may find that they are not getting the version of a module that they
expected.

The module command has a -ex <module-path> option whose documented
function is to load the executable from the specified binary file path. In fact,
this is not what will always happen. The -ex option is often ignored.

Loading Modules with the CLI module Command: the -ex Option

11-2 DOCUMENTATION CLARIFICATIONS/ CORRECTIONS

Assuming a module command like the following:

module usermodule.user.0 -ex /userdir/modules/usermodule

This is the procedure that AVS follows to load the module into the Work-
space:

1. If there is a module with that name ("usermodule") in the current
module library, this module will be loaded. The -ex option is ig-
nored.

2. If there isn’t a module with that name in the current module library,
then AVS looks in all of the other module libraries that are loaded.
These appear in the module library menu bar at the top of the Net-
work Editor’s main control panel. AVS examines the libraries in
the reverse order that they were loaded.
When AVS encounters a module with the same name, it examines
that module’s binary path (as shown in the Path field of the Module
Editor panel). If the Path field matches the -ex option on the CLI
module command, then that binary is used. If not, the search con-
tinues.
Note that if the module is linked together with other modules in a
single binary, and any of the modules in the binary is already in the
Workspace, then the binary’s in-core image is used; the binary is
not re-read from disk.

3. If the search in step 2 fails, then the first module encountered in any
of the other module libraries whose name matches is loaded (Path
doesn’t have to match).

4. If no module matches have been made, then the module binary is
read in using the -ex pathname.

5. If there is no -ex pathname, or there is no module match in the li-
braries, then an error message is generated.

Given these rules, here are some ways to get exactly the module binary that
you want. Either:

• Give the module a name that you know is unique and will not be present
in any loaded module library (force case 4 above).

Or:

• Make sure that the module in question is in the current module library
(force case 1) by reading it into the current module library with the
mod_read CLI command before you instantiate it:

mod_read /userdir/modules/usermodule
module usermodule.user.0 -ex /userdir/modules/usermodule

There are other techniques you could employ in different situations. For ex-
ample, you can start AVS with the -modules command line option, which will
load the binary into the default module library (last-loaded). This is equiva-
lent to using the Network Editor’s Read Module button. You can set the cur-
rent module library with the mod_lib -select <libname>.

Unstructured Cell Data

DOCUMENTATION CLARIFICATIONS/ CORRECTIONS 11-3

Unstructured Cell Data

ASCII UCD File Format: Specifying Cell Types

Though mentioned in passing in the "Unstructured Cell Data" appendix to
the AVS Developer’s Guide, the documentation does not make it clear what
strings you need to use to specify the different UCD cell types in an ASCII
UCD file (pp. E-9 to E-13).

The syntax of the cell specification line in an ASCII UCD file is:

<cell_idn> <material_id> <cell_type> <cell_vertex1> ... <cell_vertexn>

Replace <cell_type> with one of the strings in Table 11-1.

For example, a tetrahedral cell could be specified as follows:

1 1 tet 1 2 3 4

Cell Topology

It is sometimes necessary to know the "cell topology" of a cell. Although the
numbering of nodes in the various cell types is documented, the order in
which those nodes are combined to make up the face of a UCD cell (face con-
nectivity) is not documented.

Table 11-1 Strings to Specify UCD Cell Types in ASCII UCD Files

Cell Type Use String...

UCD_POINT pt
UCD_LINE line
UCD_TRIANGLE tri
UCD_QUADRILATERAL quad
UCD_TETRAHEDRON tet
UCD_PYRAMID pyr
UCD_PRISM prism
UCD_HEXAHEDRON hex

Unstructured Cell Data

11-4 DOCUMENTATION CLARIFICATIONS/ CORRECTIONS

Here is the original cell types figure from page E-6 of the AVS Developer’s
Guide.

0

3 5

1 2
4

7
0 3

4 6

1 25

UCD _TRIANGLE UCD_QUADRILATERAL UCD_LINE

0

1

2 3

4

5 6

7

8

9

1

2 3

4

5

6 7

0

8

9

10

11

12

12

UCD_TETRAHEDRON UCD_PYRAMID

0

1

2

3

4

5

6 7

8

9

0

10

11
12

13 14

UCD_PRISM

0

1 2

3

4

5 6

7

8

9

10

11

12

13

14

15

16

17
18

19

UCD_HEXAHEDRON UCD_POINT

0

 Figure 11-1 UCD Cell Types, Nodes, Mid-Edge Nodes, and Node Numbering

Unstructured Cell Data

DOCUMENTATION CLARIFICATIONS/ CORRECTIONS 11-5

The cell topologies are show in Table 11-2.

For mid-edge nodes, use the connectivities in Table 11-2, but include each
mid-edge node that you "pass over" going from node to node. For example,
the face connectivity of a UCD_TETRAHEDRON with mid-edge nodes is: 1 7
2 5 0 4; 2 8 3 6 0 5; 3 9 1 4 0 6; 1 9 3 8 2 7.

The include file avs/include/ucd_topo.h contains a series of data arrays (tet_to-
po[], pyr_topo[], etc.) that use this connectivity. (The first number on each line
is the number of nodes on that face.) This is what some AVS modules that
manipulate cell faces, such as ucd to geom, use. You can use any data struc-
ture that suits your application.

Table 11-2 3D Cell Topologies

Cell Type Cell Topology/Face Connectivity

UCD_TETRAHEDRON 1 2 0
2 3 0
3 1 0
1 3 2

UCD_PYRAMID 0 1 2
0 2 3
0 3 4
4 1 0

1 4 3 2
UCD_PRISM 5 4 3

0 1 2
1 4 5 2
1 0 3 4
0 2 5 3

UCD_HEXAHEDRON 0 1 2 3
1 5 6 2
3 2 6 7
0 3 7 4
0 4 5 1
4 7 6 5

FORTRAN Array Indexing and AVS Library Routines

11-6 DOCUMENTATION CLARIFICATIONS/ CORRECTIONS

FORTRAN Array Indexing and AVS Library Routines

All AVS library routines are written in C. FORTRAN bindings to these rou-
tines are provided so that FORTRAN modules can access AVS library func-
tionality. However, there are places where the fundamental differences
between the two languages become apparent. One such issue is how to refer-
ence the elements of parameters that are arrays.

FORTRAN uses 1-based indexing for array variables—a five element array is
numbered from 1 through 5. C uses 0-based indexing—a five element array is
numbered from 0 through 4.

AVS is not consistent in its treatment of array indexing.

The FORTRAN bindings for the following routines use 1-based indexing:

AVSinput_changed
AVSload_byte
AVSstore_byte

All other routines use 0-based indexing.

For example, when AVSfield_get_label is called from FORTRAN to acccess a
label from a set of four vector element labels, the labels are numbered 0, 1, 2,
and 3. This is true even though the normal FORTRAN convention would be
to number them 1, 2, 3, and 4.

Error Message

AVS 5 sends a more descriptive error message when mis-indexing has oc-
curred. In AVS 4, using FORTRAN AVSfield_get_label to reference the
fourth label element with the 1-based index value of 4 instead of the correct 0-
based index value of 3 resulted in this message:

AVSfield_get_label: there are not 4 labels

In AVS 5, the same mistake produces this error message:

AVSfield_get_label: there is no label 4

FORTRAN and AVSptr_alloc: Use AVStypesize for Portability

The AVSptr_alloc and AVSptr_offset routines (AVS Developer’s Guide, p. A-
72) provide one mechanism to allocate and reference data in FORTRAN. The
definition of AVSptr_alloc is:

INTEGER AVSPTR_ALLOC(NAME, NELEM, ELSIZE, CLEAN,
 BASEVEC, ADDR, OFFSET)

INTEGER NELEM, ELSIZE, CLEAN, OFFSET, ADDR
DIMENSION BASEVEC(1)
CHARACTER*(*) NAME

Geometry Library

DOCUMENTATION CLARIFICATIONS/ CORRECTIONS 11-7

AVSprt_offset’s parameters are similar.

The third parameter, elsize, defines the size in bytes of each element of the
data array. If you specify a constant here, such as 4 to represent INTEGER*4,
your code may not be portable across different hardware types. Instead, use
the AVStypesize function:

AVStypesize(AVS_TYPE_BYTE)
AVStypesize(AVS_TYPE_INTEGER)
AVStypesize(AVS_TYPE_REAL)
AVStypesize(AVS_TYPE_DOUBLE)
AVStypesize(AVS_TYPE_SHORT)

For example:

 irselt = AVSptr_alloc(’output field’, condim, AVStypesize(AVS_TYPE_INTEGER),
* 0, dimso, dimspo, doffset)

Geometry Library

GEOMcreate_label_flags: font_number

The documentation for GEOMcreate_label_flags call (AVS Developer’s Guide,
p. G-21) says that the font_number parameter is an integer from 0 through 21.
This is incorrect. font_number is an integer from 0 to 20, specifying one of 21
different fonts.

GEOMcreate_mesh

The description of the GEOMcreate_mesh call on page G-22 of the AVS De-
veloper’s Guide reads:

"...creates a mesh from a 2D array of vertices. The dimensions of the array
are specified by the m and n parameters. The first n vertices constitute the
first row of the mesh. There are m rows of vertices."

This is incorrect, the m and n are reversed in the third and fourth sentences.
The description should read:

"...creates a mesh from a 2D array of vertices. The dimensions of the array
are specified by the m and n parameters. The first m vertices constitute
the first row of the mesh, of which there are n rows."

graph_set_line_style CLI Command

11-8 DOCUMENTATION CLARIFICATIONS/ CORRECTIONS

Screen Space: +1.0 and -1.0 Not Always Visible

When placing objects (including titles) in screen space, which extends from -
1.0 to +1.0 in X, Y, and Z, objects should not be located at -1.0 or +1.0 in Z.
Some hardware renderers do not render objects at -1.0 or +1.0 in Z. Use -.99
or +.99 instead.

graph_set_line_style CLI Command

The documentation for the graph_set_line_style CLI command (AVS Develop-
er’s Guide, p. 5-41) lists the plot line style parameters as numbered from 0 to 3.
The is incorrect. The correct line style parameters are:

1 Solid
2 Dash
3 Dot
4 Dot-Dash

	Table of Contents
	Chapter 1 (Introduction)
	AVS 5 Documentation
	AVS 5 New Features
	Demos of New Features

	Chapter 2 (Starting AVS)
	$Path—Installing and Finding AVS Anywhere in a Directory Tree
	Continuation Character in .avsrc File
	New Startup Options

	Chapter 3 (Data Types)
	Short Field Data Type

	Chapter 4 (Image Viewer)
	Image Viewer: 8-Bit Scalar and Any-Data Images
	Image Viewer: Drawing in Image Viewer Windows
	Programmer Interface to Image Viewer Upstream Data
	image_refresh CLI Command
	Image Output and Image Viewer Performance

	Chapter 5 (Geometry Viewer and LibGeom Library)
	Outline Gouraud and Hardware Renderers
	Sending Scene Windows to a Different Display
	Image Output, Image Viewer and Geometry Viewer Performance
	Non-Transformable Objects
	Texture Maps
	Pixmap Output with Window ID
	Integer Synchronize Output
	New CLI Commands

	Chapter 6 (Graph Viewer)
	Graph Viewer Geometry Output

	Chapter 7 (Network Editor)
	Macro Modules: Improved Interface
	Dial Widget Behavior

	Chapter 8 (Developing Modules)
	Introduction
	Module Generator
	Mdoifying Fields in Place
	C++ and ANSI-C in AVS 5
	Unmapped Control Panels

	Chapter 9 (Modules and Module Libraries)
	Introduction
	Module Libraries
	New and Enhanced Modules

	Chapter 10 (AVS Animation Application)
	Known Problems Fixed
	Animator Interface Changes
	New Modules

	Chapter 11 (Documentation Clarifications/Corrections)
	Existing Documentation: Clarifications and Corrections
	Multiple Connections to an Input Port: AVSinput_changed
	Loading Modules with the CLI module Command: the -ex Option
	Unstructured Cell Data
	FORTRAN Array Indexing and AVS Library Routines
	FORTRAN and AVSptr_alloc: Use AVStypesize for Portability
	Geometry Library
	graph_set_line_style CLI Command

