
333333333 3333

AVS
MODULE

REFERENCE333333333333
Release 5

February, 1993

Advanced Visual Systems Inc.33333333
Part Number: 320-0014-03, Rev A

NOTICE

This document, and the software and other products described or referenced in it, are confidential and proprietary
products of Advanced Visual Systems Inc. (AVS Inc.) or its licensors. They are provided under, and are subject
to, the terms and conditions of a written license agreement between AVS Inc. and its customer, and may not be
transferred, disclosed or otherwise provided to third parties, unless otherwise permitted by that agreement.

NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT,
INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR
SUITABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A
WARRANTY BY AVS INC. FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF AVS INC.
WHATSOEVER. AVS INC. MAKES NO WARRANTY OF ANY KIND IN OR WITH REGARD TO THIS
DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

AVS INC. SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS
DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED
TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF AVS INC. HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The specifications and other information contained in this document for some purposes may not be complete,
current or correct, and are subject to change without notice. The reader should consult AVS Inc. for more
detailed and current information.

Copyright 1989, 1990, 1991, 1992, 1993
Advanced Visual Systems Inc.

All Rights Reserved

AVS is a trademark of Advanced Visual Systems Inc.

STARDENT is a registered trademark of Advanced Visual Systems Inc.
IBM is a registered trademark of International Business Machines Corporation.

AIX, AIXwindows, and RISC System/6000 are trademarks of International Business Machines Corporation.
DEC, ULTRIX, OpenVMS, VMS, DECwindows, DMS, VAX, ULTRIX Worksystem Software, and the DIGITAL logo

are trademarks or registered trademarks of Digital Equipment Corporation.
NFS was created and developed by, and is a trademark of Sun Microsystems, Inc.

HP is a trademark of Hewlett-Packard.
CRAY, CRAY X-MP EA, and CRAY Y-MP are registered trademarks of Cray Research, Inc.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.
SPARC is a registered trademark of SPARC International.

SPARCstation is a registered trademark of SPARC International,
licensed exclusively to Sun Microsystems, Inc.

OpenWindows, SunOS, Solaris, XDR, XGL, and SunVision
are trademarks or registered trademarks of Sun Microsystems, Inc.

UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.
Motif is a trademark of the Open Software Foundation.

IRIS and Silicon Graphics are registered trademarks of Silicon Graphics, Inc.
IRIX, IRIS Indigo, IRIS GL, Elan Graphics, IRIS Crimson, and Personal IRIS are trademarks of Silicon Graphics, Inc.

DG/UX and AViiON are trademarks and registered trademarks of Data General Corporation.
Mathematica is a trademark of Wolfram Research, Inc.

X WINDOW SYSTEM is a trademark of MIT.
PostScript is a registered trademark of Adobe Systems, Inc.

FLEXlm is a trademark of Highland Software, Inc.

RESTRICTED RIGHTS LEGEND (U.S. Department of Defense Users)

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
the Rights In Technical Data and Computer Software clause at DFARS 252.227–7013.

RESTRICTED RIGHTS NOTICE (U.S. Government Users excluding DoD)

Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in
the Commercial Computer Software — Restricted Rights clause at FAR 52.227–19(c)(2).

Advanced Visual Systems Inc.
300 Fifth Ave.

Waltham, MA 02154

AVS Modules3333333333333333333
NAME

AVS modules – introduction to manual pages for AVS modules

DESCRIPTION
This man page summarizes all modules available with the AVS distribution in alpha-
betical order. The individual module man pages follow in alphabetical order.

The manual pages are also available on-line. You can view them within AVS by
clicking on the small square "dimple" in any module icon with the middle or right
mouse button to open its Module Editor window. Then click the Show Module
Documentation button to view the complete manual page for the module. They may
also be seen using the regular help browser, in the following directory:

$AVS_PATH/runtime/help/modules

MODULE LIBRARIES
Modules are organized into module libraries for easy interactive access. By default,
these module libraries appear when you first start AVS:

Supported
Imaging
Volume
UCD
FiniteDiff
Animation (if present on your system)
Chemistry
Unsupported

All modules are in the Supported module library except Animation, Chemistry, and
the Unsupported modules.

Any one module can be in multiple module libraries. At the top of each module’s
man page there is an "Availability" line that lists which module libraries the module
can be found in, in addition to the default Supported library.

Each module library is described on its own man page.

INPUT/OUTPUT DATA TYPE NOTATION
The data-types that AVS modules operate on are described in the "Importing Data
into AVS" chapter of the AVS User’s Guide, and in the AVS Developer’s Guide in the
chapter, "AVS Data Types". Throughout the manual pages for AVS modules, a
number of terms are used to describe these data types. It is important to understand
these terms, as they specify what inputs a given module can receive, and what out-
puts it will generate.

any-dimension:
when a module accepts fields of any-dimension, this means that it can process
fields that are 1D, 2D, 3D, and in some cases 4D; but never more than this.

n-vector:
if a field has one value at each location, it is a scalar field. When a module
accepts n-vector fields, it can receive fields with an indeterminate number of
values at each location.

any-data:
if a module accepts any-data, this means it can receive byte, short, integer, float,
or double data. If it is more restrictive, this will be declared.

any-coordinates:
if a module accepts data of any-coordinates, this means that it can operate on
fields which have uniform, rectilinear, or irregular coordinates. If a module

33333333333333333333333333
AVS Module Reference Manual 1

AVS Modules3333333333333333333
cannot operate on one of these types of field, this will be declared.

PLATFORM DEPENDENCE
Some mapper modules required specialized graphics rendering support such as 3D
texture mapping (brick, excavate brick, etc.) and object transparency (alpha blend,
volume render, etc.). This specialized rendering support can be provided in
software (via the software renderer), or by hardware. However, not all hardware
rendering platforms support all specialized rendering features. The hardware
rendering features available on your platform should be defined in a table in the
release notes that accompany the AVS software product for that platform. The
software renderer supports most specialized rendering features except vertex tran-
sparency.

Each module with specialized rendering requirements has an "Availability" notation
near the top of its module man page that defines the support needed. If your
renderer does not support the function, the picture will not appear as documented.
For example, a texture-mapped object will appear as an uncolored, featureless object.
Transparent objects will be opaque, or not drawn at all. You can almost always
acquire the specialized rendering support by switching on the Software Renderer
option on the Geometry Viewer’s Cameras submenu. If no such selection appears on
the Cameras submenu, it means that the software renderer is probably the only
renderer available and is already performing rendering functions in the AVS
Geometry Viewer.

MODULE LISTING
The modules included in this release of AVS are:

AVS modules introduction to manual pages for AVS modules

Finite Difference Module Library
a list of supported modules that are also in the FiniteDiff
module library

Imaging Module Library
a list of supported modules that are also in the Imaging
module library

UCD Module Library a list of supported modules that are also in the UCD module
library

Unsupported Module Library
a list of unsupported modules

Volume Module Library
a list of supported modules that are also in the Volume
module library

AVS module groups Types of AVS modules

avs Starting the Application Visualization System. Describes
AVS command line options, .avsrc startup file keywords, and
environment variables.

alpha blend generate 2D image from 3D colored data (unsupported
library)

animated float send a sequence of floating point numbers to a module’s
parameter port

animated integer send a sequence of integers to a module’s parameter port

33333333333333333333333333
2 AVS Module Reference Manual

AVS Modules3333333333333333333
animate lines animate stream lines for a vector field

antialias antialias an image

arbitrary slicer map 3D scalar field to 3D mesh

average down downsize a field in X, Y, or Z by averaging

AVS Animator keyframe animation module (Animation library)

background create a shaded backdrop image

blend colormaps interpolate between two colormaps in HSVA space

boolean send a user-entered boolean value to one or more module(s)
boolean parameter port(s)

brick show uniform volume as a solid (requires 3D texture map-
ping support)

bubbleviz generate spheres to represent values of 3D field

calc warp coeffs calculate warp coefficients for ip warp module

cfd values calculate values for a field containing read plot3D data
(unsupported library)

character string send a user-entered string to one or more module(s) string
parameter port(s)

clamp restrict values in data field

clip geom specify arbitrary clipping planes for geometric objects
(requires arbitrary clipping plane support)

color legend display color-to-data value mappings in geometry viewer
window

color range store minimum and maximum field values in an AVS color-
map

colorize geom assign vertex colors, vertex transparency, and/or UVW
values to verticies of a geometry using field and colormap
(requires vertex transparency and/or 3D texture mapping
support)

colorizer convert field of data values to color values

colormap manager share colormaps among subnetworks (unsupported library)

combine scalars combine scalar fields into a vector field

compare field compare two AVS fields, display and write data difference

composite blend two images using alpha transparency

compute gradient compute gradient vectors for 2D or 3D data set

compute shade combined colorizer/compute gradient/gradient shade
module

contour to geom create geometry of 2D or 3D scalar field contour slices

contrast perform linear transformation on range of field values

convolve apply a signal processing filter to 2D field

create geom interactively create and manipulate geometry objects such as
polylines, arcs, and surfaces

33333333333333333333333333
AVS Module Reference Manual 3

AVS Modules3333333333333333333
crop extract subset of elements from a field

cube perform ray-traced volumetric rendering on volume data

data dictionary read external data file using a form specification

Data Viewer run the Data Viewer application

dialog box use a long dialog box to create a long string

display image show image in a display window

display pixmap show pixmap in a display window (unsupported library)

display tracker display and directly manipulate the tracer module’s output

dot surface generate points that define an isosurface (unsupported
library)

downsize reduce size of data set by sampling

draw grid draw a grid on top of an image

edit substances create a substance table for the cube module

euler transformation send object transformation matrix to other modules

excavate remove an octant from a 3D uniform field, revealing interior
features

excavate brick show uniform volume with orthogonal slices (requires 3D
texture mapping support)

extract graph extract and display a graph of a 1D slice from a 2D data set

extract scalar extract a scalar field from a vector field

extract vector subset of field vector elements as new field

field legend select value from scalar field using color legend

field math perform math operations between fields

field to byte transform any field to an byte-valued field

field to double transform any field to a field of double-precision floating
point values

field to float transform any field to a field of single-precision floating
point values

field to int transform any field to an integer-valued field

field to mesh transform a 2D scalar field to a surface in 3D space

field to short transform any field to a field of short values

field to ucd convert AVS field to unstructured cell data format

file browser send a filename to one or more module(s) filename parame-
ter port(s)

file descriptor create a data form specification to read an external data file

flip normal change direction of each vertex normal for a geometry object

float send a floating point number to one or more module(s) float-
ing point parameter port(s)

generate axes generate 3D geometric axes

33333333333333333333333333
4 AVS Module Reference Manual

AVS Modules3333333333333333333
generate colormap output AVS colormap

generate filters generate 2D filters for image processing

generate grid creates grids on XY, XZ, and YZ coordinate planes

generate histogram plot distribution of data values in a scalar field

geometry viewer display and manipulate collections of 3D objects (Geometry
Viewer subsystem)

gradient shade apply lighting and shading to colored data set

graph viewer create XY and contour plots of data (Graph Viewer subsys-
tem)

hedgehog show vectors in a 3D 3-vector field

histogram stretch balance the histogram of a data set

image compare display two images together

image manager share images among subnetworks (unsupported library)

image measure measure distance between two image pixels

image probe report data values at selected pixel location

image to cgm convert image to CGM and store in file

image to pixmap convert image to pixmap (unsupported library)

image to postscript convert image to gray-scale or color PostScript and store in
file

image viewer display and manipulate collections of images (Image Viewer
subsystem)

integer send a user-entered integer to the integer parameter port of
one or more module(s)

interpolate compute intermediate values to change the size of a field

ip absolute absolute value of a field

ip arithmetic arithmetic operations on fields

ip blend alpha or compositing blend of two fields

ip compare compare two fields

ip contour draw iso-level contours

ip convolve convolve with image float kernel

ip dilate dilate a field

ip edge enhance edges in a field

ip erode erode a field

ip extrema find data value extrema

ip fft Fourier transform a field

ip fft display calculate magnitude an phase of packed FFT field

ip fft multiply multiply two packed complex fields

ip fft pack fold conjugate symmetric FFT representation

33333333333333333333333333
AVS Module Reference Manual 5

AVS Modules3333333333333333333
ip fft unpack unfold conjugate symmetric FFT representation

ip float math floating point operations on a field

ip histogram field histogram

ip ifft inverse Fourier transform for conjugate data sets

ip lincomb inter-band linear combination

ip linremap linearly remap a field

ip logical bitwise logical operations

ip lookup pass field through lookup table

ip median median field filter

ip merge merge two fields

ip morph morphological operation

ip read kernel read a convolution kernel from a file into a field

ip read line read line of data between two image pixels

ip read mtable read a morphology table from a file into a field

ip read sel read a structuring element from a file into a field

ip read vff import a SunVision .vff-format image file into an AVS field

ip reflect rotate or transpose field

ip register determine maximum correlation position

ip rescale rescale a field

ip rotate rotate a field

ip statistics find field mean and variance

ip threshold threshold field against a float value

ip translate field translation

ip twarp arbitrary field warp using warp data from table

ip warp polynomial image warp

ip write vff save an AVS image-format field as a SunVision .vff-format
image file

ip zoom zoom field with interpolation

isosurface generate an isosurface for a volume of data

label creates a title for flexible geometry viewer annotation

local area ops image processing based on pixel neighborhoods

luminance compute the luminance of an image

minmax set min and max values of a selected vector in an AVS field

mirror reverse array indices in a 2D or 3D data set

Module Generator create skeletal C or FORTRAN module source code from
menu description

offset deform, or "blow up" a geometry object based on vector
values at each node

33333333333333333333333333
6 AVS Module Reference Manual

AVS Modules3333333333333333333
oneshot send a oneshot value to one or more module(s) "oneshot"

parameter port(s)

orthogonal slicer slice through 3D or 2D field with plane perpendicular to
coordinate axis

output postscript convert pixmap to PostScript and store in file (unsup-
ported library)

particle advector release grid of particles into velocity field

pdb to geom create molecule geometry from Protein Data Bank(PDB) file
(unsupported library)

pixmap to image transform AVS pixmap to AVS image (unsupported library)

print field create an ASCII printable/readable version of an AVS field

probe interactively show numeric data values in a geometry ren-
dered field

read field read AVS field from a disk file, or import data files into AVS
field format

read geom reads a data file containing an AVS ´geometry´

read image read image file from disk into a field

read plot3d read a PLOT3D format file into an AVS field (unsupported
library)

read ucd read UCD structure from disk file

read volume read volume file from disk into a field

render geometry manipulate collections of 3D objects (unsupported library)

render manager share geometries among subnetworks (unsupported library)

replace alpha replace the alpha channel (transparency) in an image

ribbons generate ribbon representation of streamlines

samplers extract a subset of locations from a 3-vector 3D field

scatter dots generate spheres at points in 3D space

scatter to ucd convert a scatter field to a tetrahedral UCD structure

set view view objects in geometry viewer from fixed orthogonal
orientations

shrink make polygons of a geometry object smaller

sketch roi create a region-of-interest field

sobel apply an edge detecting filter to 2D field

statistics display statistics on AVS field contents

stream lines generate stream lines for a vector field

3D bar chart 3d bar chart with average statistics and annotation

threshold restrict values in data field

thresholded slicer slice through volume data with high/low values invisible

time sampler extract 3D time slices from 4D time series field with interpo-
lation

33333333333333333333333333
AVS Module Reference Manual 7

AVS Modules3333333333333333333
tracer perform ray-traced volumetric rendering on volume data

track ball send object transformation matrix to other modules

transform pixmap perform 3D transformation on pixmap (unsupported library;
requires 2D texture mapping support)

transpose exchange dimensions in a 2D or 3D data set

tristate send a tristate value to one or more module(s) tristate
parameter port(s)

tube convert lines to cylindrical tubes

ucd anno show data values of cells or nodes of a UCD structure

ucd cell convert ucd cell-based data into node data

ucd cell color color ucd structure based on cell or material id values

ucd contour generate list of color values associated with unstructured cell
data

ucd crop subset UCD structure data using slice plane or box

ucd curl compute the curl of a vector UCD structure

ucd div compute the divergence of a vecor UCD structure

ucd extract extract single node component from a UCD structure

ucd extract scalars extract scalar node components from scalar and vector com-
ponents of a UCD structure

ucd extract vector extract single vector node component from scalar com-
ponents of a UCD structure

ucd grad compute the vector gradient of a UCD structure

ucd hex to tet convert a UCD structure from hexahedral cells to tetrahedral
cells

ucd hog show UCD node vector values as line segments in 3D space

ucd iso generate an isosurface for a UCD structure with scalar node
data

ucd isolines generate isolines on the exterior boundary of a UCD struc-
ture

ucd legend creates a color legend relating UCD data to a color scale

ucd math perform math operations between UCD structures

ucd minmax set min and max values of a component in a UCD structure

ucd offset deform a UCD structure based on vector values at each node

ucd plot create a field to graph a linear sample through a UCD struc-
ture

ucd print create a readable format of a UCD structure

ucd probe interactively show numeric data values in a geometry ren-
dered UCD structure

ucd reverse cell repair topology of imported UCD structures; reverse cell
normals

33333333333333333333333333
8 AVS Module Reference Manual

AVS Modules3333333333333333333
ucd rslice slice away portions of a UCD structure

ucd rubber sheet map values as a 3D surface with height proportionate to
value

ucd slice2D extract 2D slice from a UCD structure

ucd streamline generate stream lines for a UCD structure with vector node
data

ucd threshold restrict values in a UCD structure

ucd to geom convert a UCD structure into an AVS geometry

ucd tracer perform ray-traced volumetric rendering on a UCD struc-
ture

ucd vector mag compute the magnitude of a vector ucd

ucd vol integral calculate the volume of a UCD structure, and the volume
integral of a scalar data component

vector curl compute the curl of a vector field

vector div compute the divergence of a vector field

vector grad compute the vector gradient of a scalar field

vector mag compute the magnitude of a vector field

vector norm normalize a vector field

volume bounds generate bounding box of 3D 3-vector field

volume manager share volumes among subnetworks (unsupported library)

volume render volume render a uniform volume with geometry (requires
3D texture mapping with alpha transparency and volume
rendering support)

wireframe convert object from surface to wireframe representation

write field write a field description to disk

write image store image data in a file

write ucd write unstructured cell data to disk

write volume write volume data to a file

x-ray perform simple orthographic volume visualization

33333333333333333333333333
AVS Module Reference Manual 9

Finite Difference Module Library3333333333333333333
NAME

FiniteDiff Module Library – modules suited to finite difference networks

DESCRIPTION
The FiniteDiff module library is a subset of the supported AVS modules that are
suited to finite difference applications.

This man page lists the modules in two ways: alphabetically, and classified by their
type (Data Input, Filters, Mappers, Data Output). See the individual module man
pages for specific information on each module.

ALPHABETIC LIST
3D bar chart file browser tube
animated float file descriptor vector curl
animated integer flip normal vector div
animate lines float vector grad
arbitrary slicer generate axes vector mag
average down generate colormap vector norm
boolean generate grid volume bounds
brick generate histogram volume render
bubbleviz geometry viewer wireframe
character string gradient shade write field
clamp graph viewer write image
clip geom hedgehog write volume
color legend histogram stretch x-ray
color range image to cgm
colorize geom image to postscript
colorizer image viewer
combine scalars integer
compare field interpolate
compute gradient isosurface
compute shade label
contour to geom minmax
contrast mirror
create geom oneshot
crop orthogonal slicer
cube particle advector
display image print field
display tracker probe
downsize read field
edit substances read geom
euler transformation read volume
excavate ribbons
excavate brick samplers
extract graph scatter dots
extract scalar set view
extract vector shrink
field legend statistics
field math stream lines
field to byte threshold
field to double thresholded slicer
field to float time sampler
field to int tracer
field to mesh track ball
field to short transpose

33333333333333333333333333
10 AVS Module Reference Manual

Finite Difference Module Library3333333333333333333
DATA INPUT MODULES

animated float file browser read field
animated integer file descriptor read geom
boolean float read volume
character string generate axes samplers
clip geom generate colormap set view
color range generate grid track ball
create geom integer
edit substances label
euler transformation oneshot

FILTERS
animate lines flip normal vector mag
average down generate histogram vector norm
clamp gradient shade wireframe
colorize geom histogram stretch x-ray
colorizer interpolate
combine scalars minmax
compute gradient mirror
compute shade ribbons
contrast shrink
crop threshold
downsize time sampler
excavate transpose
extract graph tube
extract scalar vector curl
extract vector vector div
field math vector grad
field to byte,
double, float,
int, short

MAPPERS
3D bar chart excavate brick probe
arbitrary slicer field legend scatter dots
brick field to mesh stream lines
bubbleviz hedgehog thresholded slicer
color legend isosurface tracer
contour to geom orthogonal slicer volume bounds
cube particle advector volume render

DATA OUTPUT
compare field image to cgm write field
display image image to postscript write image
display tracker image viewer write volume
geometry viewer print field
graph viewer statistics

33333333333333333333333333
AVS Module Reference Manual 11

Imaging Module Library3333333333333333333
NAME

Imaging Module Library – modules suited to Imaging networks

DESCRIPTION
The Imaging module library is a subset of the supported AVS modules that are
suited to imaging applications.

This man page lists the modules in two ways: alphabetically, and classified by their
type (Data Input, Filters, Mappers, Data Output). See the individual module man
pages for specific information on each module.

VECTOR LENGTHS
Many of the ip image processing modules are described as accepting n-vector input.
In fact, the maximum number of vector elements (or "channels", or "bands") that
these modules accept is 12.

ALPHABETIC LIST
3D bar chart generate filters ip read mtable
animated float generate grid ip read sel
animated integer generate histogram ip read vff
antialias geometry viewer ip reflect
average down gradient shade ip register
background graph viewer ip rescale
boolean histogram stretch ip rotate
calc warp coeffs image compare ip statistics
character string image measure ip threshold
clamp image probe ip translate
color legend image to cgm ip twarp
color range image to postscript ip warp
colorizer image viewer ip write vff
combine scalars integer ip zoom
compare field interpolate label
composite ip absolute local area ops
compute gradient ip arithmetic luminance
compute shade ip blend minmax
contour to geom ip compare mirror
contrast ip contour oneshot
convolve ip convolve orthogonal slicer
crop ip dilate print field
data dictionary ip edge read field
display image ip erode read image
downsize ip extrema replace alpha
draw grid ip fft set view
extract graph ip fft display sketch roi
extract scalar ip fft multiply sobel
extract vector ip fft pack statistics
field legend ip fft unpack threshold
field math ip float math transpose
field to byte ip histogram write field
field to double ip ifft write image
field to float ip lincomb
field to int ip linremap
field to mesh ip logical
field to short ip lookup
file browser ip median
file descriptor ip merge

33333333333333333333333333
12 AVS Module Reference Manual

Imaging Module Library3333333333333333333
float ip morph
generate axes ip read kernel
generate colormap ip read line

DATA INPUT MODULES
animated float float label
animated integer generate axes oneshot
background generate colormap read field
boolean generate filters read image
calc warp coeffs generate grid set view
character string integer sketch roi
color range ip read kernel
data dictionary ip read mtable
file browser ip read sel
file descriptor ip read vff

FILTERS
antialias histogram stretch ip median
average down image compare ip merge
clamp interpolate ip morph
colorizer ip absolute ip reflect
combine scalars ip arithmetic ip rescale
composite ip blend ip rotate
compute gradient ip contour ip threshold
compute shade ip convolve ip translate
contrast ip dilate ip twarp
convolve ip edge ip warp
crop ip erode ip zoom
downsize ip fft local area ops
draw grid ip fft display luminance
extract graph ip fft multiply minmax
extract scalar ip fft pack mirror
extract vector ip fft unpack replace alpha
field math ip float math sobel
field to byte, ip ifft threshold
double, float, ip lincomb transpose
int, short ip linremap

generate histogram ip logical
gradient shade ip lookup

MAPPERS
3D bar chart field to mesh ip histogram
color legend image measure ip read line
contour to geom image probe orthogonal slicer
field legend

DATA OUTPUT
compare field image viewer print field
display image ip compare statistics
geometry viewer ip extrema write field
graph viewer ip register write image
image to cgm ip statistics
image to postscript ip write vff

33333333333333333333333333
AVS Module Reference Manual 13

UCD Module Library3333333333333333333
NAME

UCD Module Library – modules suited to UCD and finite element analysis networks

DESCRIPTION
The UCD module library is a subset of the supported AVS modules that are suited to
UCD and finite element analysis applications.

This man page lists the modules in two ways: alphabetically, and classified by their
type (Data Input, Filters, Mappers, Data Output). See the individual module man
pages for specific information on each module.

ALPHABETIC LIST
animated float read ucd ucd isolines
animated integer samplers ucd legend
blend colormaps scatter to ucd ucd math
character string set view ucd minmax
clip geom tube ucd offset
create geom ucd anno ucd plot
data dictionary ucd cell to node ucd print
field to ucd ucd cell color ucd probe
file browser ucd contour ucd reverse cell
file descriptor ucd crop ucd rslice
flip normal ucd curl ucd rubber sheet
float ucd div ucd slice 2D
generate axes ucd extract ucd streamline
generate colormap ucd extract scalars ucd threshold
generate grid ucd extract vector ucd to geom
geometry viewer ucd grad ucd tracer
graph viewer ucd hex to tet ucd vecmag
integer ucd hog ucd vol integral
oneshot ucd iso write ucd
read field

DATA INPUT MODULES
animated float file browser integer
animated integer file descriptor oneshot
character string float read field
clip geom generate axes read ucd
create geom generate colormap samplers
data dictionary generate grid set view

FILTERS
blend colormaps ucd curl ucd math
field to ucd ucd div ucd minmax
flip normal ucd extract ucd offset
scatter to ucd ucd extract scalars ucd reverse cell
tube ucd extract vector ucd threshold
ucd cell to node ucd grad ucd vecmag
ucd crop ucd hex to tet

MAPPERS
ucd anno ucd isolines ucd rubber sheet
ucd cell color ucd legend ucd slice 2D
ucd contour ucd plot ucd streamline
ucd hog ucd probe ucd to geom
ucd iso ucd rslice ucd tracer

33333333333333333333333333
14 AVS Module Reference Manual

UCD Module Library3333333333333333333
DATA OUTPUT

geometry viewer ucd print write ucd
graph viewer ucd vol integral

33333333333333333333333333
AVS Module Reference Manual 15

Unsupported Module Library3333333333333333333
NAME

Unsupported Library – unsupported AVS modules

DESCRIPTION
The Unsupported module library contains modules distributed with AVS, but which
are unsupported. They may be unsupported for a variety of reasons. Often, the
modules are obsolete and are being staged to unsupported before being removed
from AVS altogether.

This man page lists the modules in two ways: alphabetically, and classified by their
type (Data Input, Filters, Mappers, Data Output). See the individual module man
pages for specific information on each module.

ALPHABETIC LIST
alpha blend
cfd values
colormap manager
display pixmap
dot surface
image manager
image to pixmap
luminence
output postscript
pdb to geom
pixmap to image
read plot3D
render geometry
render manager
transform pixmap
volume manager

DATA INPUT MODULES
colormap manager
image manager
pdb to geom
read plot3d
volume manager

FILTERS
cfd values
dot surface
luminence

MAPPERS
image to pixmap
pixmap to image

DATA OUTPUT
alpha blend
display pixmap
output postscript
render geometry
render manager
transform pixmap

33333333333333333333333333
16 AVS Module Reference Manual

Volume Module Library3333333333333333333
NAME

Volume Module Library – modules suited to volume visualization networks

DESCRIPTION
The Volume module library is a subset of the supported AVS modules that are suited
to volume visualization applications.

This man page lists the modules in two ways: alphabetically, and classified by their
type (Data Input, Filters, Mappers, Data Output). See the individual module man
pages for specific information on each module.

ALPHABETIC LIST
3D bar chart extract vector read field
animated float field legend read volume
animated integer field math scatter dots
arbitrary slicer field to byte set view
average down field to double statistics
boolean field to float threshold
brick field to int thresholded slicer
bubbleviz field to mesh time sampler
character string field to short tracer
clamp file browser track ball
clip geom file descriptor transpose
color legend flip normal volume bounds
color range float volume render
colorize geom generate axes wireframe
colorizer generate colormap write field
combine scalars generate grid write image
compare field generate histogram write volume
compute gradient geometry viewer x-ray
compute shade gradient shade
contour to geom graph viewer
contrast histogram stretch
crop image to CGM
cube image to postscript
data dictionary image viewer
display image integer
display tracker interpolate
downsize isosurface
edit substances label
euler transformation minmax
excavate mirror
excavate brick oneshot
extract graph orthogonal slicer
extract scalar print field

probe

DATA INPUT MODULES
animated float euler transformation integer
animated integer file browser label
boolean file descriptor oneshot
character string float read field
clip geom generate axes read volume
color range generate colormap set view
data dictionary generate grid track ball
edit substances

33333333333333333333333333
AVS Module Reference Manual 17

Volume Module Library3333333333333333333
FILTERS

average down flip normal
clamp generate histogram
colorize geom gradient shade
colorizer histogram stretch
combine scalars interpolate
compute gradient minmax
compute shade mirror
contrast threshold
crop time sampler
downsize transpose
excavate wireframe
extract graph x-ray
extract scalar
extract vector
field math
field to byte, double, float, integer, short

MAPPERS
3D bar chart cube probe
arbitrary slicer excavate brick scatter dots
brick field legend thresholded slicer
bubbleviz field to mesh tracer
color legend isosurface volume bounds
contour to geom orthogonal slicer volume render

DATA OUTPUT
compare field image to cgm write field
display image image to postscript write image
display tracker image viewer write volume
geometry viewer print field
graph viewer statistics

33333333333333333333333333
18 AVS Module Reference Manual

AVS Module Groups3333333333333333333
NAME

AVS module groups – Types of AVS modules

DESCRIPTION
The AVS modules can be grouped according to the type of data they operate on, and
the operations they perform on that data. This can be helpful, for instance, when you
need to find out which modules take fields and convert them to geometries, or which
modules save data to disk. The following is a possible division of AVS modules by
data type and function.

MODULE GROUPS
READING DATA

read field read image read ucd
read geom read volume pdb to geom
read plot3D file descriptor data dictionary
ip read vff time sampler

DISPLAYING DATA

display image display pixmap image viewer
geometry viewer graph viewer display tracker
print field compare field

SAVING/PRINTING DATA

image to postscript output postscript write field
write image write volume write ucd
print field ucd print image to cgm
ip write vff

COLORING DATA

colorizer colorize geom color range
generate colormap field legend ucd contour
ucd legend

GENERATING VALUES TO PARAMETER PORTS

animated float animated integer boolean
character string generate colormap integer
float file browser float
oneshot tristate generate filters
samplers field legend euler transformation
ucd legend minmax ucd minmax
dialog box

FIELD CONVERSION

field to byte field to double field to float
field to int extract scalar combine scalars
extract vector field to mesh field to ucd
field to short

FIELD PROCESSING AND FILTERING

clamp crop downsize
threshold histogram stretch interpolate
mirror offset transpose
extract scalar extract vector combine scalars
cfd values excavate blend colormaps
minmax

33333333333333333333333333
AVS Module Reference Manual 19

AVS Module Groups3333333333333333333
CONVERTING FIELDS TO GEOMETRIES

clip geom bubbleviz excavate brick
field to mesh isosurface contour to geom
hedgehog probe stream lines
volume bounds thresholded slicer arbitrary slicer
scatter dots brick particle advector
volume render 3D bar chart

CONVERTING FIELDS/UCD TO GRAPHS

orthogonal slicer generate histogram
extract graph ip read line ucd plot
3D bar chart

VECTOR PROCESSING

hedgehog particle advector stream lines
extract scalar combine scalars extract vector
compute gradient vector div vector grad
vector mag vector norm vector curl
samplers compute shade ribbons

CONVERTING VOLUMES TO IMAGES

tracer orthogonal slicer display tracker
cube x-ray edit substances
euler transformation track ball

CONVERTING FIELD TO UCD

field to ucd
scatter to ucd

UCD UTILITIES

ucd anno ucd extract ucd hex to tet
ucd cell to node ucd extract scalars ucd extract vector
ucd contour ucd legend write ucd
ucd vecmag ucd print ucd rslice
ucd rubber sheet ucd curl ucd div
ucd grad ucd math ucd cell color
ucd minmax ucd reverse cell ucd vol integral

UCD MAPPING

ucd crop ucd hog ucd isosurface
ucd isolines ucd offset ucd probe
ucd slice2D ucd streamlines ucd threshold
ucd tracer

CONVERTING UCD STRUCTURES TO GEOMETRIES

ucd to geom

CONVERTING GEOMETRIES TO IMAGES

geometry viewer

CONVERTING PIXMAPS AND IMAGES

pixmap to image image to pixmap transform pixmap

IMAGE PROCESSING—IMAGE ANALYSIS

33333333333333333333333333
20 AVS Module Reference Manual

AVS Module Groups3333333333333333333
ip contour ip dilate ip erode
ip extrema ip histogram ip lincomb
image probe image measure ip read line
ip linremap ip merge ip morph
ip rescale ip threshold ip statistics
ip blend ip register ip read mtable
ip read kernel ip read sel
contrast crop mirror
generate filters convolve luminance
background sobel interpolate
threshold clamp antialias
composite image compare local area ops
transpose replace alpha

IMAGE PROCESSING—IMAGE ARITHMETIC

ip absolute ip float math ip logical
ip compare ip arithmetic

IMAGE PROCESSING—DRAWING AND EDITING

ip lookup draw grid sketch roi

IMAGE PROCESSING—FILTERING

ip convolve ip edge ip median

IMAGE PROCESSING—GEOMETRIC OPERATIONS

ip reflect ip rotate ip twarp
ip warp calc warp coeffs ip zoom
ip translate mirror

IMAGE PROCESSING—TRANSFORMATION

ip fft ip fft display ip fft multiply
ip fft pack ip fft unpack ip ifft

IMAGE PROCESSING—INPUT/OUTPUT

ip read vff ip write vff ip read mtable
ip read kernel ip read sel

GEOMETRY UTILITIES

flip normal offset shrink
tube wireframe set view
generate axes generate grid create geom
color legend dialog box

PRESENTATION MODULES

color legend generate axes 3D bar chart
label image to cgm image to postscript

33333333333333333333333333
AVS Module Reference Manual 21

avs3333333333333333333
NAME

avs – Application Visualization System

SYNOPSIS
avs option(s)

DESCRIPTION
The Application Visualization System (AVS) is an interactive tool for scientific visual-
ization. It includes the following subsystems:

d Image Viewer. A high-level tool for manipulating and viewing images.

d Graph Viewer. A high-level tool for graphing data.

d Geometry Viewer. Allows you to compose "scenes" that contain geometrically-
defined objects. The objects must have been created by programs or AVS
modules that use AVS’s GEOM programming library. You can transform the
objects themselves (move, rotate, scale); you can change the viewing parameters
(e.g. move the eye point, perspective view, etc.); and you can control the way in
which the graphical images are rendered (lighting and shading, Z-buffering,
etc.).

d Network Editor. A visual programming interface for connecting computational
modules together into networks that perform visualization functions.

AVS also includes a sample application, the AVS Data Viewer. The Data Viewer
provides a simplified, pulldown menu interface for building visualization networks.
It is a useful tool for the novice user learning basic scientific visualization techniques.

STARTING AVS
AVS may be located anywhere on your system. To find AVS, you should:

1. Add the AVS binary directory to your default path. For example, if AVS were
located in /users/me/avs, then csh users would add a line like the following to one
of their startup files, usually .cshrc or .login:
set path=($path /users/me/avs/bin)

while sh or ksh users would add a line like the following to their startup file, usu-
ally .profile:
PATH=$PATH:/users/me/avs/bin

2. Define a Path for AVS by one of the following means. Path defaults to /usr/avs
until you define it otherwise. The examples are listed in their order or pre-
cedence. In these examples, AVS is located in /users/me/avs:

d Start AVS with the -path option:
avs -path /users/me/avs

d Have the following line in your personal .avsrc file:
Path /users/me/avs

d Define the environment variable AVS_PATH:
csh: setenv AVS_PATH /users/me/avs

sh or ksh: AVS_PATH=/users/me/avs; export AVS_PATH

You should define AVS_PATH in any event in one of your startup files.

Use the avs command to start AVS when your terminal or workstation is directly-
connected to the system that will run AVS.
avs

When running AVS as a remote X client on a different hardware platform that does

33333333333333333333333333
22 AVS Module Reference Manual

avs3333333333333333333
not support remote hardware rendering (few do) or when you are displaying on an
"X terminal" you should use the avs command together with the -nohw option or
NoHW 1 startup file keyword. For example:
avs -nohw

AVS runs as an X Window System client, and thus requires that the DISPLAY
environment variable be set correctly. These are usually the only options necessary
to start an AVS session. However, see the AVS release notes for your platform for
additional platform-specific information on which options, such as VisualType, may
be required to start AVS correctly on your workstation.

CONTROLLING AVS STARTUP
Three entities can affect how AVS starts. They are listed in their order of precedence:

1. Command line options.

2. The .avsrc startup file. The startup file contains keyword-value pairs. AVS
always reads the system default startup file in $AVS_PATH/runtime/avsrc first.
Users may override or supplement these system default options with a personal
.avsrc file. AVS will look for a personal startup file in ./.avsrc (in the current
directory), then $HOME/.avsrc (in your HOME directory). It uses the first .avsrc
that it finds.

3. Environment variables.

OPTIONS
All optional keywords begin with a hyphen (e.g. –data). In many cases, the keyword
is followed by an additional word (e.g. a directory name). You must separate the key-
word and the additional word with whitespace (SPACE and/or TAB characters).

All options keywords can be abbreviated, as long as there is no ambiguity. For
example, –data can be abbreviated to –da. But you cannot abbreviate it to –d, since
this might indicate either –data or –display.

In many cases, you can use an entry in the AVS startup file (.avsrc) as an alternative
to a command line option. For example, a DataDirectory entry in the startup file is
equivalent to a –data option. See the next section for details on the startup file.

–class string
(startup file equivalent: none) This is the command line option
equivalent of the DISPLAYCLASS environment variable. You can use it
to make AVS behave in different ways when it is started from different
types of display hardware. -class has two effects:

1. An Xdefaults file specifies the "look" of the AVS interface; what
shades of grey are used for command buttons, what fonts to use,
whether the background is "stippled" or a flat color, etc. When -class
string is given, AVS does not use the default
$AVS_PATH/runtime/avs.Xdefaults file. Instead, it looks for an
Xdefaults.string file in the $AVS_PATH/avs/runtime directory and
uses it. At present, the only alternate X defaults file supplied is
Xdefaults.X.

2. If such a file is present, it will use an alternate startup file,
$AVS_PATH/runtime/avsrc.string. Otherwise, it uses
$AVS_PATH/runtime/avsrc. It will also look for a .avsrc.string file in
the current, then HOME directory and use it instead of your usual
.avsrc file.

-class is used when running AVS from an "X terminal." See the full

33333333333333333333333333
AVS Module Reference Manual 23

avs3333333333333333333
discussion in the "AVS on Color X Servers" appendix to the AVS
User’s Guide.

–cli (startup file equivalent: none) Run AVS with the Command Language
Interpreter functioning in the terminal emulator window from which
AVS was invoked. This takes an optional argument, which is a CLI com-
mand string, to be executed after AVS starts up. See the chapter on the
"Command Language Interpreter" in the AVS Developer’s Guide for
details.

-compile_library source_filespec compiled_filespec
(startup file equivalent: none) This is a utility for maintaining module
libraries whose component modules are changing. It follows a "source
module library" vs "compiled module library" paradigm. Specifically,
-compile_library takes the source_filespec to be an AVS module library
file containing a list of file commands followed by the name of a module
binary file. It executes each module listed in order to extract the module
description information. From this, it generates compiled_filespec as an
AVS module library file containing the description information neces-
sary to load the module into the Network Editor’s Palette quickly
without actually executing the module binary. This option does not start
a full AVS session.

See the "Constructing a Module Library" discussion in the "Advanced
Network Editor" chapter of the AVS User’s Guide for more information.

–data directory
(startup file equivalent: DataDirectory) Specifies the directory in which
all subsystem data input file browsers, including the Image Viewer, the
Graph Viewer, the Geometry Viewer, and the data input modules in the
Network Editor, will initially look for data files (files used an input to
computational modules). This is the major tool for redirecting AVS’s
default data input focus off the sample data files provided in
$AVS_PATH/data and onto your own data files.

The default data directory is $AVS_PATH/data. If an AVS Path is not
defined, it defaults to /usr/avs.

–dials devicefilespec
(startup file equivalent: DialDevice) Specifies the serial communications
port to which a dialbox device is attached (e.g. /dev/tty2). If -dials is
present, AVS automatically connects the dialbox dials to the Geometry
Viewer’s rotation, translation, and scaling transformations. You must
know which serial communications port your dialbox is connected to.
This argument also corresponds to the environment variable DIALS.
Dialboxes are not supported on all platforms.

–display display-name
(startup file equivalent: none) Specifies the X Window System display
on which AVS is to display. This overrides the current setting of the
DISPLAY environment variable.

–gamma number
(startup file equivalent: Gamma) Controls the brightness of the display
for all AVS windows except Geometry Viewer output windows pro-
duced with a hardware renderer. The default varies from platform to
platform. Values between 1.7 to 2.2 are good starting points for experi-
mentation. Higher real values produce a lighter display.

33333333333333333333333333
24 AVS Module Reference Manual

avs3333333333333333333
–geometry [geom-option(s)]

(startup file equivalent: none) Automatically invokes the Geometry
Viewer subsystem at startup. There will be no Data Viewers button to
access other subsystems. If you use this option, it must be the last option
on the command line, followed only by the options listed below that are
specific to this subsystem. All other options that follow -geometry will be
ignored.

–scene scene-file.scene or geomcli-file.scr
(startup file equivalent: none) This option executes the
Geometry Viewer’s Read Scene function, using the file
scene-file.scene or geomcli-file.scr, depending upon the setting
of the AVS_GEOM_WRITE_V30 environment variable.

–filter pathname
Specifies pathname as the directory to search for geometry
conversion utilities, named ..._to_geom. See the "Importing
Data Into AVS" chapter of the User’s Guide.

The default directory for these programs is $AVS_PATH/bin.

–defaults filename
Specifies a Geometry Viewer defaults file. The format of this
file is described in the "Geometry Viewer Script Language"
appendix.

–geometry Xgeometry
Specifies an X Window System geometry (e.g. 500x500-5-5)
for the initial window created by the Geometry Viewer.

-noroll Turns off track rolling. Track rolling occurs when you per-
form a transformation and release the mouse button while
the mouse is still moving. This "flings" the transformable,
causing it to continue in motion.

–usage Displays a list of Geometry Viewer startup options.

–graph Automatically invokes the AVS Graph Viewer at system startup. There
will be no Data Viewers button to access other subsystems.

–image Automatically invokes the AVS Image Viewer at system startup. There
will be no Data Viewers button to access other subsystems.

–library filespec
(startup file equivalent: ModuleLibraries) Specifies which AVS module
library file to load into the Network Editor at system startup. Module
library files are ASCII files describing sets of modules.
$AVS_PATH/avs_library/Supported is an example. This is the major tool
that allows you to load your own sets of modules—either modules
you’ve written yourself or subsets of the supplied modules that you have
customized to your needs—instead of always relying on the system
default module libraries specified in the $AVS_PATH/runtime/avsrc file.

To load more than one module library, use multiple -library filespec
option pairs.

It is equivalent to using the Network Editor’s Read Module Library
function.

33333333333333333333333333
AVS Module Reference Manual 25

avs3333333333333333333
–modules directory or filename

(startup file equivalent: none) Specifies the directory or file in which the
AVS Network Editor subsystem initially will look for executable
modules. All executable files in a directory are examined to determine
whether they contain one or more modules.

-modules differs from -library above in that it loads binary module files,
not ASCII module library files. It is slower to load modules as binary
files rather than libraries.

You can use more than one –modules options to specify multiple indivi-
dual module binaries, or to have AVS search through multiple direc-
tories for modules. This is the main tool for loading individual modules
(perhaps modules that you are debugging) that you have not yet formal-
ized into a module library. It is equivalent to the Network Editor’s Read
Module(s) function. It cannot be used to read remote modules.

The default modules directory is $AVS_PATH/avs_library. If an AVS
Path is not defined, it defaults to /usr/avs.

–name string
(startup file equivalent: Name) Causes the specified name to appear in
window manager window title bars instead of "AVS". Names containing
blanks or special characters should be enclosed in double quotes ("").

Widget windows under control of the Layout Editor will be named with
the specified string followed by their corresponding module’s designa-
tion (for example, -name MyAVS causes boolean parameter widget win-
dows to appear as "MyAVS boolean.user.0"). If these names are too
long, you can force truncation back to the simple string by appending
the ! character to the string (for example, -name "MyAVS!"). Note that a
! requires surrounding double quotes.

–netdir directory
(startup file equivalent: NetworkDirectory) Specifies the directory in
which the AVS Network Editor subsystem initially will look for network
files (Read Network and Write Network functions). This is the tool to
use to redirect AVS’s default network focus away from the samples pro-
vided in $AVS_PATH/networks and onto your own network files.

The default network directory is $AVS_PATH/networks.

–network network-file
(startup file equivalent: none) Starts AVS and brings up the Network
Editor’s module control panel with the controls for the network
displayed. The full Network Editor subsystem is not displayed or acces-
sible. This is one way to make an individual production network avail-
able to a user.

-nodmc (startup file equivalent: DirectModuleCommunication 0) Turns off the
default direct module-to-module communication. This is useful if you
want to perform timing tests to compare network execution speed
with/without direct module-to-module communication.

-nohw (startup file equivalent: NoHW 1) Tells the AVS Geometry Viewer to not
initialize any hardware renderers. Without a hardware renderer, the
AVS Geometry Viewer will use a software renderer to create its 3D
scenes instead of the platform’s native graphics facilities.

-nohw must be used when you are running AVS as a remote X client on

33333333333333333333333333
26 AVS Module Reference Manual

avs3333333333333333333
a different hardware platform that does not support remote hardware
rendering (few do) or when you are using an "X terminal." The software
renderer creates an X image rendering of the 3D scene and ships only the
image to the local X server for display rather than a stream rendering
commands that may not be understood by the local system.

-nomenu (startup file equivalent: NoMenu) Prevents the main AVS control panel
from appearing. This is intended to be used by application developers
who need to hide the fact that AVS underlies the application. Their
application would issue it as part of the command it uses to start AVS.

-parallel n (startup file equivalent: none) Sets the maximum number of module
processes that will attempt to execute in parallel at any one time. The
default is 1 (no parallelization.) You should set this figure intelligently
for the system(s) that you are running on. If two processors are available
(a two-processor system, or a local and a remote system) then this figure
can reasonably be set to 2. If you give a value that exceeds the number of
processors available, the underlying operating systems will serialize the
processes. There is no inherent upper limit to the n parameter.

Modules must be in separate processes to execute in parallel. Most
modules supplied with AVS are combined into a single executable that
runs as a single process. Thus, they will not run in parallel unless they
are divided into separate processes. This may be done wholesale with
the -separate option, or precisely using the Network Editor’s module
group editing facility. See the discussion on parallel module execution
in the "Advanced Network Editor" chapter of the AVS User’s Guide for
more information.

–path directory
(startup file equivalent: Path) Specifies the directory tree in which AVS
itself is installed.

In the absence of this command line option, or a Path specification in
your personal .avsrc keyword file, or the AVS_PATH environment vari-
able being defined, path defaults to /usr/avs.

If you specify another path, then the default data directory and network
directory are modified accordingly. For example:

If: path = /usr/local/avs
Then: data directory = /usr/local/avs/data

network directory = /usr/local/avs/networks

This option is also useful to switch between multiple versions of AVS
(for example, a test release and a production release).

–reindex (startup file equivalent: none) This option creates AVS help system
.topics files. It does not start an AVS session. It is useful if you are creat-
ing help files for applications that you want to be accessible through the
AVS help system. See the appendix on creating help files in the AVS
Developer’s Guide for more information.

-renderer "string"
(startup file equivalent: Renderer) Specifies which renderer will be the
default selected in the Geometry Viewer when a camera window is first
created. "string" is the literal name found on the renderer buttons under
the Geometry Viewer’s Cameras menu, usually either "Software
Renderer" or "Hardware Renderer", though other strings are possible. It

33333333333333333333333333
AVS Module Reference Manual 27

avs3333333333333333333
must match exactly, in spelling, case, and spacing. The double quote
marks must be present. Where there is a hardware renderer available,
-renderer defaults to "Hardware Renderer". If the user specified -nohw,
then only one renderer is available, the software renderer, and this
option is ignored.

–separate (startup file equivalent: none) This option disables AVS’s multiple
modules in one process feature. It forces each module to execute as a
separate process, whether or not it is combined in an executable with
other modules. The option is primarily useful for debugging, or when
parallel module execution is desired. (In this last case, it is better to not
use -separate, since it usually increases memory utilization. Instead,
individually divide modules into different executables using the Net-
work Editor’s module process group editing facility.) See the section on
"Multiple Modules in a Single Process" in the AVS Developer’s Guide.

–server (startup file equivalent: none) This option opens a connection that an
external process can use to connect to AVS and exchange with it a stream
of Command Language Interpreter (CLI) commands and their output.
See the chapter on the CLI in the AVS User’s Guide for details.

–shm/noshm
(startup file equivalent: SharedMemory on/off) This turns the AVS
shared memory option on and off. When shared memory is on, AVS
keeps only one copy of AVS field and UCD data that all modules in a
network share. (GEOM-format data and pixmaps do not use shared
memory.) This improves performance by saving memory and processor
time. -noshm can disable shared memory if, for example, AVS’s use of
the finite shared memory area is interfering with other applications. On
most systems shared memory is on by default.

–size XDIMxYDIM
(startup file equivalent: ScreenSize) Specifies size, in pixels, to use for
AVS’s virtual display screen size. AVS will automatically resize its inter-
face to fit into the virtual screen. You could use this to confine AVS to
run within one section of your screen instead of across the whole screen.

–spaceball devicefilespec
(startup file equivalent: SpaceballDevice) Specifies the serial communi-
cations port to which a Spaceball device is attached (e.g. /dev/tty2). If
-spaceball is present, AVS automatically connects the Spaceball device to
the Geometry Viewer’s rotation, translation, and scaling transformations.
You must know which serial communications port your spaceball is con-
nected to. This entry also corresponds to the environment variable
SPACEBALL. Spaceballs may not be supported on all platforms.

–timer (startup file equivalent: none) Writes Geometry Viewer performance
data to stderr. This should be used in conjunction with the Object Info
panel to display the number of polygons being rendered. To get the
measurement, use track rolling to set the object in continuous motion
(middle mouse button to rotate, release mouse button while mouse is
still moving, thereby "flinging" the object into continuous motion). Wait
several seconds (the longer, the more accurate), then press any mouse
button in the window to stop the object. Minimize mouse movements
while the measurement is being taken. The measurement looks like:

73 frames in 6.632989 seconds for 11.005596 FPS

33333333333333333333333333
28 AVS Module Reference Manual

avs3333333333333333333
FPS stands for "frames per second." By convention, the "standard unit" is
$AVS_PATH/data/geometry/teapot.geom, in the default-sized window, with
no additional rendering options (color, shading, etc.). In this case, FPS
can be referred to as TPS ("teapots per second").

–version Displays the AVS version number. (Does not start an AVS session.)

–usage Displays a usage message for AVS. No AVS session is started.

AVS STARTUP FILE
When it begins execution, AVS uses a startup file, which specifies such things as
where AVS is located, which module libraries to load, the locations of various direc-
tories, where to look for Help files, how big to make the AVS interface, etc.

AVS always first reads the system default startup file in $AVS_PATH/runtime/avsrc.
If an AVS Path is not defined on the command line, in your personal .avsrc file, or by
means of the AVS_PATH environment variable, it defaults to /usr/avs/runtime/avsrc.

Users may override or supplement the options in the system startup file with a per-
sonal .avsrc file. AVS looks for user .avsrc files in the order listed, using the first that
it finds:
./.avsrc (current directory)
$HOME/.avsrc (home directory)

You can copy the system default $AVS_PATH/runtime/avsrc file to your HOME or
other directory, modify it according to your needs and preferences, and rename it
with the "." prefix.

If you give the -class X command option, or set the DISPLAYCLASS X environment
variable, AVS will use a different startup file: $AVS_PATH/runtime/avsrc.X. In the
same manner as the regular startup file, AVS will look for personal .avsrc.X file in the
current directory, then your HOME directory. This file is used to customize AVS
when you are running it from an "X terminal."

.avsrc Startup File Format
Each line of the AVS startup file consists of keyword-value pair, with whitespace
separating the keyword and the value. For example:

Path /users/me/avs

ModuleLibraries $Path/avs_library/Supported \

/usr/johnp/avs/modules/MyModlib

NetworkWindow 867x567+407+2

NetworkDirectory /usr/johnp/avs/nets

DataDirectory /usr/johnp/avs/data

DialDevice /dev/tty02

Use the \ character to continue specifications across line boundaries.

Often, the keyword corresponds to one of the command line options described in the
preceding section. If you use a command line option, it overrides the specification, if
any, in the startup file.

Startup File Keywords
The AVS startup file keywords are listed below.

NOTE: Where startup file keywords have command line equivalents, see the com-
mand line description above for the most complete discussion of the feature.

33333333333333333333333333
AVS Module Reference Manual 29

avs3333333333333333333
Applications filespec

(command line equivalent: none) Causes AVS to use a file other than
$AVS_PATH/runtime/AVS.applns to build the large Applications menu.
This is how a user would create their own set of application networks
and have them accessible from AVS’s Applications menu without modi-
fying the central system file. If a simple filename is given rather than an
absolute file and pathname, AVS will look for the file in the directory
defined by Path on the command line, in the .avsrc file, or by the
AVS_PATH environment variable. If no AVS Path has been defined,
Path defaults to /usr/avs.

BoundingBox switch
(command line equivalent: none) If BoundingBox on is set, then the
AVS Image Viewer and Geometry Viewer will come up with their
Bounding Box control already turned on. A "bounding box" is a less
compute-intensive style of moving geometric objects and Image Viewer
subimages. Instead of moving the object "real time," it only moves a
wirebox representation of the object. Only when you release the mouse
button is the object/subimage rendered at its new location. Bounding-
Box is most useful when you are using AVS on lower performance
graphics systems, with the software renderer, or from an "X terminal."
Bounding Box is usually off by default.

Colors r g b gray
(command line equivalent: none) This option controls how many cells of
a system colormap AVS will attempt to allocate to itself when it starts. r g
b g represent numbers for red, green, blue, and gray. This is primarily
intended for people who are using AVS from an "X terminal" or Pseu-
doColor workstation that objects to the number of colormap cells that
AVS tries to allocate for itself. See the discussion on "AVS on Color X
Servers" in the AVS User’s Guide.

DataDirectory directory
(command line equivalent: –data) Specifies the directory in which the
various AVS data input file browsers used in the subsystems (Image
Viewer, Graph Viewer, and Geometry Viewer) and Network Editor
modules ‘‘read data’’ modules (read field, read geometry, etc.) initially
will look for data files. This is the main tool to refocus AVS’s data input
attention off the sample data files in $AVS_PATH/data and onto your
own data files. If no AVS Path has been defined on the command line, in
the .avsrc file, or by the AVS_PATH environment variable, Path defaults
to /usr/avs.

DialDevice devicefilespec
(command line equivalent: -dials) Specifies devicefilespec as the serial
communications port to which a dialbox device is attached (e.g.
/dev/tty1). If DialDevice is specified, AVS automatically connects the
dialbox dials to the Geometry Viewer’s rotate, translate, and scale
transformations.

This entry also corresponds to the environment variable DIALS. Dial-
boxes may not be supported on all platforms.

DirectModuleCommunication switch
(command line equivalent: -nodmc) Turns direct module-to-module
communication on and off. This is useful if you want to perform timing
tests to compare network execution speed with/without direct module-

33333333333333333333333333
30 AVS Module Reference Manual

avs3333333333333333333
to-module communication. Direct module-to-module communication is
on by default.

DisplayPixmapWindow Xgeometry
(command line equivalent: none) Controls the default X Window Sys-
tem geometry of the display pixmap module’s window.

Gamma number
(command line equivalent: -gamma) Controls the brightness of the
display for all AVS windows except Geometry Viewer output windows
produced with a hardware renderer. The default varies from platform to
platform. Values between 1.7 to 2.2 are good starting points for experi-
mentation. Higher real values produce a lighter display.

GridSize n (command line equivalent: none) Controls the size in pixels of the Lay-
out Editor’s alignment squares when Snap to Grid is switched on. The
default is 10.

HelpPath directory ...
(command line equivalent: none) Expands the list of directories that
AVS will search to find a module’s documentation when you click Show
Module Documentation in the module’s Module Editor window. This is
useful when you are using modules other than the set provided with
AVS. For the format of the "Help" path, see Appendix D of the AVS
Developer’s Guide, concerning "On-Line Help".

Hosts fullfilespec
(command line equivalent: none) Gives the name of a "Hosts" file that
lists machines, access methods, and directories of remote modules. It
provides a personal override to the system default
$AVS_PATH/runtime/hosts file when you click on the Network Editor’s
Read Remote Module(s) button under Module Tools. See the "Running
Remote Modules" section in the AVS User’s Guide "Advanced Network
Editor" chapter for details.

ImageAutomagnify switch
(command line equivalent: none) In AVS 3 and later releases, the display
image window will not rescale an image when the window is resized.
Turning this option "on" will restore the AVS2 behavior of automatically
magnifying the image.

ImageScrollbars switch
(command line equivalent: none) If set to the value off, suppresses the
adding of scrollbars to display windows that are too small for the image
they are currently displaying. (You can always see more of the image
simply by dragging it with the mouse.)

ModuleLibraries filespec filespec ...
(command line equivalent: -library) Specifies which libraries of modules
will be loaded into the Network Editor’s module palette. The last
module library listed will be the "default" library showing in the module
Palette when you enter the Network Editor. The other module libraries
listed can be called up by clicking on their iconic representation at the
top of the Network Editor’s main panel. To continue the list of module
libraries to a new line, use the \ .avsrc continuation character.

ModulePanelHeight integer
(command line equivalent: none) Controls the proportion of the Net-
work Construction window devoted to the module Palette as opposed

33333333333333333333333333
AVS Module Reference Manual 31

avs3333333333333333333
to the Workspace.

Name string
(command line equivalent: -name) Causes the specified name to appear
in window manager window title bars instead of "AVS". Names contain-
ing blanks or special characters should be enclosed in double quotes ("").

Widget windows under control of the Layout Editor will be named with
the specified string follows by their corresponding module’s designation
(for example, Name MyAVS causes boolean parameter widget windows
to appear as "MyAVS boolean.user.0"). If these names are too long, you
can force truncation back to the simple string by appending the ! charac-
ter to the string (for example, Name "MyAVS!"). Note that a ! requires
surrounding double quotes.

NetworkDirectory directory
(command line equivalent: –netdir) Specifies the directory in which the
AVS Network Editor subsystem initially will look for network files
(Read Network and Write Network functions).

NetworkWindow Xgeometry
(command line equivalent: none) Specifies the X Window system
geometry of the Network Construction Window, which includes the
Network Editor menu, the Module Palette, and the Workspace in which
you construct networks of modules. You may need this if your display is
substantially smaller than the usual 1280x1024 pixels.

NoHW switch
(command line equivalent: -nohw) NoHW 1 tells the AVS Geometry
Viewer to not initialize any hardware renderer. Without a hardware
renderer, the AVS Geometry Viewer will use a software renderer to
create its 3D scenes instead of the platform’s native graphics facilities.

NoHW 1 must be used when you are running AVS as a remote X client
on a different hardware platform that does not support remote hardware
rendering (few do) or when you are using an "X terminal." The software
renderer creates an X image rendering of the 3D scene and ships only the
image to the local X server for display rather than a stream of rendering
commands that the local display may not understand. The default is
NoHW 0 (do initialize hardware renderers) on systems that support a
hardware renderer.

NetWriteAllParams switch
(command line equivalent: none) AVS saves only parameters that have
been modified out to a network file. Setting this option to on, will enable
saving all parameters, as was the default in AVS 2. The default is off.

NoMenu (command line equivalent: -nomenu) Prevents the main AVS control
panel from appearing. This is intended to be used by application
developers who need to hide the fact that AVS underlies the application.

Path (command line equivalent: –path) Specifies the directory tree in which
AVS itself is installed. For example, if AVS is installed in /user/me/avs,
you would define Path in your .avsrc as follows:
Path /users/me/avs

Other lines that refer to the same directory can then be abbreviated with
the symbol $Path, e.g.:

33333333333333333333333333
32 AVS Module Reference Manual

avs3333333333333333333
ModuleLibraries $Path/avs_library/Supported

DataDirectory $Path/data

PrintNetwork command
(command line equivalent: none) The Network Editor’s Print Network
button normally sends output to your default printer. This lets you
specify an alternate print command to execute. The command should be
a regular shell command, such as:
lpr -Plw2

ReadOnlySharedMemory switch
(command line equivalent: none) Shared memory is normally "read
only." Occasionally, the system developer might wish to keep shared
memory turned on, but allow it to be written into. Setting ReadOn-
lySharedMemory 0 accomplishes this. The default is 1.

Renderer "string"
(command line equivalent: -renderer "string") Specifies which renderer
will be the default selected in the Geometry Viewer when the first cam-
era window is created. "string" is the literal name found on the renderer
buttons under the Geometry Viewer’s Cameras menu, usually either
"Software Renderer" or "Hardware Renderer", though other strings are
possible. It must match exactly, in spelling, case, and spacing. The dou-
ble quote marks must be present. Where there is a hardware renderer
available, Renderer defaults to "Hardware Renderer". If the user
specified NoHW 1, then only one renderer is available, the software
renderer, and this option is ignored.

SaveMessageLog switch
(command line equivalent: none) If set to the value on, causes the AVS
message log to be preserved when the AVS session ends normally. By
default, the message log (/tmp/avs_message.log_XXX, where XXX is the
AVS process number) is deleted automatically. The log file is always
preserved if AVS exits abnormally (e.g. Ctrl-C interrupt, system crash).

ScreenSize XDIMxYDIM
(command line equivalent: size) Specifies the size of AVS’s virtual
display in pixels, confining AVS to run within this area. AVS scales its
interface to fit the virtual screen.

SharedMemory switch
(command line equivalent: shm/noshm) Specifying SharedMemory off
turns off AVS’s shared memory feature.

SpaceballDevice devicefilespec
(command line equivalent: -spaceball) Indicates the serial communica-
tions port to which a Spaceball device is attached (e.g. /dev/tty1). If
Spaceball is specified, AVS automatically connects the Spaceball to the
Geometry Viewer’s rotate, translate, and scale transformations.

This entry also corresponds to the environment variable SPACEBALL.
Spaceballs may not be supported on all platforms.

StackSelector option
(command line equivalent: none) People who build very large networks
sometimes find that the Network Editor’s control panel "overflows,"
making some of the module buttons difficult to access, because the radio
buttons take up too much of the control panel. Setting StackSelector

33333333333333333333333333
AVS Module Reference Manual 33

avs3333333333333333333
choice_browser displays the module names as a scrolling list similar to
the file browsers instead of as the default radio_buttons.

VisualType visualtype
(command line equivalent: none) This command may be necessary
when you are seeing less color rendition than you know your display is
capable of.

AVS normally uses the X server’s default visual. Occasionally, this is the
wrong visual to use. For example, the default may be set to PseudoColor
when there actually is a TrueColor visual available. (The standard X
Window System command to list which X visuals are available and
which is being used as the default is xdpyinfo. This command may not be
available on all platforms.)

VisualType lets you specify a visualtype, either PseudoColor, TrueColor,
or DirectColor. AVS will then search the X server’s visual list until it
finds the first visual with the given visual type and use it.

You can also specify an explicit visual using the string VisualID fol-
lowed by a number n that is the decimal equivalent of the X server’s hex-
adecimal visual id for the visual you want to use. For example:
VisualType VisualID 41

This option may also be useful to people using AVS from "X terminals."

Note: Poor color rendition may also be caused because your display is
using double buffering. It may be using its 24 planes as two double-
buffered 12 planes (or 12/6, or 8/4). Turning off double buffering on the
Geometry Viewer’s Cameras submenu will fix this, but you will see the
object being drawn.

WindowMgr mgr
(command line equivalent: none) This option ensures that the Network
Editor’s Layout Editor and the X Window System window manager that
you are using work correctly together. The default for this parameter is
specified in the $AVS_PATH/runtime/avs.Xdefaults file. The currently
recognized values are: awm, mwm (Motif-style window managers),
twm, uwm, olwm(Open Look), and dxwm(Dec XVI).

XWarpPtr on
(command line equivalent: none) Causes the mouse cursor to be
automatically moved ("warped") into typein panels when they appear.
XWarpPtr is off by default.

AVS ENVIRONMENT VARIABLES
AVS uses the following environment variables. Only DISPLAY must be set correctly
before AVS will work.

AVS_ADAPT_TABLE switch
A block table is a data structure that maps field points’ I, J, K indicies
in an irregular field within a "block" of X, Y, Z world space. Modules
such as arbitrary slicer and probe use the block table to interpolate
values at points "on" their sampling surface, determining which
need to be mapped as colored polygons.

AVS normally builds a regular, evenly-dimensioned block table.
Where data points are fairly uniformly spaced within the field, such
a block table provides efficient access to the I, J, K values in each

33333333333333333333333333
34 AVS Module Reference Manual

avs3333333333333333333
block of the grid—each block has approximately the same number of
points. However, where data values are concentrated in some areas
of the field, but sparse elsewhere (e.g., the wing surface of the
bluntfin.fld dataset) search times in the dense blocks become much
longer.

An adaptive block table creates the block table as an octree. Where
data values are dense, the block grid is divided and subdivided
again until each block contains only a short list of I, J, K values to
search through, improving performance.

Adaptive block tables are slower to construct, but execute more
rapidly in the areas with dense grids. People with irregular datasets
where the distribution of data points is uneven should try setting
AVS_ADAPT_TABLE 1 to see if it improves the performance of the
arbitrary slicer, threshold slicer, streamline, particle advector,
hedgehog, probe, and color geom modules. AVS_ADAPT_TABLE
is 0 (off) by default.

AVS_GEOM_WRITE_V30 switch
A 1 value causes the Geometry Viewer’s Save Scene and Save
Object functions to save scenes and objects as Geometry Viewer
Script Language .scene and .obj files, as occurred in AVS Release 3.0
and earlier, rather than in a single CLI .scr file. It is provided for
backward compatibility. It is 0 (off) by default.

AVS_HELP_PATH
Specifies one or more locations in the file system for AVS to use
when searching for on-line help files. See Appendix D of the AVS
Developer’s Guide for more on this variable.

AVS_MEM_CHECK switch

AVS_MEM_HISTORY switch

AVS_MEM_VERBOSE integer
These three environment variables are all used by the alternate
memory allocation routines invoked with the include file
$AVS_PATH/include/mem_defs.h. These routines replace the UNIX
standard memory allocation utilities such as malloc with AVS utilities
that perform extensive dynamic memory allocation/deallocation
bug checking. See the "Memory Allocation Debugging" section in
the "Advanced Topics" chapter of the AVS Developer’s Guide for more
information on these utilities.

AVS_MG_TROFF switch
Causes the AVS Module Generator to generate its module man page
documentation templates in troff format rather than the default pre-
formatted text man page using tabs and blanks. This option is 0 (off)
by default.

DIALS devicefilespec
Indicates the serial communications port to which a dialbox device is
attached. Dialboxes may not be supported on all platforms.

DISPLAY host:server.screen
(required) Used by the X Window System to indicate the display
screen at which you’re working.

33333333333333333333333333
AVS Module Reference Manual 35

avs3333333333333333333
DISPLAYCLASS string

string is used to specify an alternate $AVS_PATH/runtime/Xdefaults
file, such as the supplied $AVS_PATH/runtime/Xdefaults.X. Also
causes AVS to use alternate .avsrc.string startup files, both the default
in the $AVS_PATH/runtime directory (no such alternative is supplied
with the release), and user .avsrc files. Both may be customized to
make AVS behave differently on different types of display hardware,
such as an X terminal. -class is the command line equivalent.

EDITOR The AVS Module Generator will use this common UNIX environ-
ment variable’s value as the default text editor that it will start when
you press the Module Generator’s Edit function.

SPACEBALL devicefilespec
Indicates the serial communications port to which a Spaceball device
is attached. Spaceballs may not be supported on all platforms.

33333333333333333333333333
36 AVS Module Reference Manual

alpha blend3333333333333333333
NAME

alpha blend – generate 2D image from 3D colored data

SUMMARY
Name alpha blend

Availability requires alpha blending support in hardware

Unsupported this module is in the unsupported library

Type data output

Inputs field 3D 4-vector byte uniform

Outputs pixmap

Parameters Name Type Default Min Max
X-Rot float 0.0 none none
Y-Rot float 0.0 none none

DESCRIPTION
The alpha blend module generates an image (2D grid of pixels) from a 3D block of
voxels. (Voxels are the 3D analogue of pixels.) The alpha blending technique treats the
voxel block as a set of 2-dimensional images, stacked on top of one another. For each
line of sight, you can see though layers that contain semi-transparent voxels, up to
the nearest layer with an opaque voxel.

The voxel color values are blended from back to front, using each voxel’s opacity
value:

auxiliary
11
1
333333333333

11
1333333333333

red
11
1
333333333333

11
1333333333333

green
11
1
333333333333

11
1333333333333

blue
11
1
333333333333

11
1333333333333

11
1

this field interpreted as
voxel’s opacity value

these three fields make up
voxel’s color value

This produces cloud-like images, with the densities of the clouds controlled by the
Opacity ramp of the colormap that assigned the color values.

AVAILABILITY
This module requires alpha blend support in hardware. Alpha blend is supported on
only a few hardware renderers (see the release note information that accompanies
AVS on your platform). The software renderer does not support alpha blend. See
the newer, faster tracer as an alternative. alpha blend will only appear in the unsup-
ported module palette on systems where it is available.

INPUTS
Data Field (required; field 3D 4-vector byte uniform)

The input data must be a 3D block of voxels. That is, the data at each
point of the 3D field must be a 4-vector of bytes in the alpha-red-green-
blue format used in images.

PARAMETERS
By default, the "front" from which the block is viewed is the direction of the positive
Z-axis. You can change the direction by rotating the block about the X-axis and/or
Y-axis, using these parameters:

X-Rot A floating point value that simulates rotating the data set around the X-
axis (horizontal).

Y-Rot A floating point value that simulates rotating the data set around the Y-
axis (vertical).

33333333333333333333333333
AVS Module Reference Manual 37

alpha blend3333333333333333333
OUTPUTS

Pixmap The output data is in the form of an AVS pixmap.

EXAMPLE 1
The following network shows how 3D data can be colored using the colorizer
module, then blended into a 2D image using the alpha blend module:

GENERATE COLORMAP READ VOLUME

| |

| |------------|

| |

COLORIZER

|

|

ALPHA BLEND

|

|

TRANSFORM PIXMAP

|

|

DISPLAY PIXMAP

Note that this network uses the transform pixmap module to allow the user to resize
the image with the window manager. Otherwise, the generated image will be a fixed
size, determined by the size of the original data set. For instance, a 64x64x64 data set
would produce a fixed-size 128x128 pixel image. (The extra pixels accommodate
rotation of the data, which produces a larger image.)

EXAMPLE 2
Another interesting technique is to apply a light source to the data. In order, to do
this, the gradient of the data (which approximates the "surface normal") must be
computed. A network for doing this "gradient shading" is:

GENERATE COLORMAP READ VOLUME

| |

|--------------| |----------------|

| | |

COLORIZER COMPUTE GRADIENT

| |

| |-----------|

| |

GRADIENT SHADE

|

|

ALPHA BLEND

|

|

TRANSFORM PIXMAP

|

|

DISPLAY PIXMAP

LIMITATIONS
Because of the shearing technique used to simulate axis rotations, there are certain X-
and Y-axis angles for which the image breaks up and eventually disappears com-
pletely. Complete rotations around one axis only (zero rotation around the other
axis) always work correctly.

33333333333333333333333333
38 AVS Module Reference Manual

alpha blend3333333333333333333
RELATED MODULES

Modules that could provide the Data Field input:
colorizer
gradient shade

Modules that could be used in place of alpha blend:
tracer
cube
x-ray

Modules that can process alpha blend output:
transform pixmap
display pixmap

33333333333333333333333333
AVS Module Reference Manual 39

animated float3333333333333333333
NAME

animated float – send a sequence of floating point numbers to a module’s parameter
port

SUMMARY
Name animated float

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data coroutine

Inputs none

Outputs float

Parameters Name Type Default Min Max
min value float typein 0.0 unbounded unbounded
max value float typein 0.0 unbounded unbounded
steps int typein 10 2 unbounded
sleep switch on
mode choice one time

DESCRIPTION
The animated float module automatically modifies floating point parameters. It is
used to create simple animations or to drive user simulation code. You plug
animated float into another module’s floating point parameter port (color-coded
dark purple), type in minimum and maximum floating point values, and a number of
steps (default 10). When you turn off sleep, animated float calculates the delta value
((max-min)/step), starts at the minimum value, and begins to send a continuous
sequence of evenly-spaced floating point numbers down the connection to the receiv-
ing module. Because animated float is a coroutine, the AVS flow executive passes
one floating point parameter value down the network at a time until the network has
fully executed, then signals animated float to send the next floating point parameter
value. animated float can be set to either "One-time" (e.g., 1 2 3 4 5), "Continuous"
(e.g., 1 2 3 4 5 1 2 3 4 5) or "Bounce" (e.g., 1 2 3 4 5 4 3 2 1) when it reaches the max-
imum value. In the last two cases, animated float continues to execute until you
again toggle "sleep."

For example, you could connect animated float to the isosurface module’s "level"
parameter port. By setting minimum, maximum, and step values, you could watch a
series of output pixmaps that show the different isosurfaces for each value.

It is often useful to set the minimum and maximum values relative to the range of
your data. The statistics module can be used to determine reasonable value for these
parameters.

The "frame rate" (speed) of the animation depends upon how compute-intensive the
downstream modules are. With a compute-bound module like tracer, the animation
will be quite slow. With simple modules, it will more closely resemble continuous
motion. There is no direct way to regulate the speed at which animated float exe-
cutes.

Before you can connect animated float to the receiving module, you must make that
receiving module’s parameter port visible. To make a parameter port visible, call up
the module’s Editor Window panel by pressing the middle or right mouse button on
the module icon dimple. Next, look under the "Parameters" list to find the parameter
you want to plug into. Position the mouse cursor over that parameter’s button and
press any mouse button. When the Parameter Editor appears, click any mouse but-
ton on its "Port Visible" switch. A purple parameter port should appear on the
module icon. Connect this parameter port to the animated float module icon in the

33333333333333333333333333
40 AVS Module Reference Manual

animated float3333333333333333333
usual way.

If you bring up the receiving module’s control panel, you can watch the parameter
values change.

animated float can be connected to multiple modules.

You can save an animation created with animated float. Use the image viewer
module’s Action submenu to save a "flipbook" cycle of images (See Example 1).

PARAMETERS
minimum value

A typein to specify the lowest value in the floating point number
sequence. It is typed in as a real number (e.g., 1.25 or -.005). There are
no upper or lower bound restrictions. The default is 0.0.

maximum value
A typein to specify the maximum value in the floating point number
sequence. It is typed-in as a real number (e.g., 5.5 or .003). If the max-
imum value is less than the minimum value, the delta calculated will be
negative and the animation will run backwards. There are no upper or
lower bound restrictions. The default is 0.0.

steps An integer typein specifying how many steps the interval between
minimum and maximum should be divided into. It cannot be less than
two. The default is 10.

sleep A toggle switch that turns animated float on and off. It is off by default.
When you turn off the stream of floating point numbers by pressing
sleep, some number of additional values may continue to flow through
the network before animated float actually goes to sleep.

mode A set of choices which determine what animated float does when it
reaches its maximum value. The default is "One-time".

One-time
With "One-time" on (the default), the values are sent only once (e.g.,
1 2 3 4 5), and animated float sleeps once the values are sent.

Continuous
When "Continuous" is selected, the values being sent wrap around
continuously from highest to lowest (e.g., 1 2 3 4 5 1 2 3 4 5 ...).

Bounce
When "Bounce" is selected, the values count up and then count down
again repeatedly (e.g., 1 2 3 4 5 4 3 2 1 ...).

OUTPUTS
Floating Point Number (parameter)

A floating point number intended to be input into a floating point
parameter port of another module.

EXAMPLE 1
The following network animates the Offset parameter of the brick module. The out-
put is sent to two places: to the usual geometry viewer module, and to the image
viewer module through the geometry viewer’s image output port. The animation
can be saved using the image viewer’s Action submenu.

33333333333333333333333333
AVS Module Reference Manual 41

animated float3333333333333333333
READ VOLUME

|

ANIMATED FLOAT |

| |

|----------| |

| |

BRICK

|

GEOMETRY VIEWER

|

IMAGE VIEWER

EXAMPLE 2
The following network animates the alpha value (transparency) of a volume that has
been gradient-shaded, then rendered with tracer. Note that display tracker sends an
upstream transform to the tracer module.

GENERATE COLORMAP READ VOLUME

| |

|--------------------|

COLORIZER |

| COMPUTE GRADIENT

| |

|---------------| |

GRADIENT SHADE

|

ANIMATED FLOAT |

|------------| |

| |

|---------| | |

| TRACER

| |

| DISPLAY TRACKER

|------------|

RELATED MODULES
Modules that can process animated float output:

any module with a floating point parameter

SEE ALSO
animated integer, which behaves exactly like animated float, but for integer parame-
ters.

The example script ANIMATED FLOAT demonstrates the animate float module.

33333333333333333333333333
42 AVS Module Reference Manual

animated integer3333333333333333333
NAME

animated integer – send a sequence of integers to a module’s parameter port

SUMMARY
Name animated integer

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data coroutine

Inputs none

Outputs integer

Parameters Name Type Default Min Max
min value int typein 0 unbounded unbounded
max value int typein 0 unbounded unbounded
steps int typein 10 2 unbounded
sleep switch on
mode choice one time

DESCRIPTION
The animated integer module automatically modifies integer parameters. This can
be used to create simple animations or to drive user simulation code. You plug
animated integer into another module’s integer parameter port (color-coded light
purple), type in minimum and maximum integer values, and a number of steps
(default 10). When you turn off sleep, animated integer calculates the delta value
((max-min)/step), starts at the minimum value, and begins to send a continuous
sequence of evenly-spaced integer numbers down the connection to the receiving
module. Because animated integer is a coroutine, the AVS flow executive passes one
parameter value down the network at a time until the network has fully executed,
then signals animated integer to send the next integer parameter value. animated
float can be set to either "one time" (e.g., 1 2 3 4 5), "continuous" (e.g., 1 2 3 4 5 1 2 3 4
5) or "bounce" (e.g., 1 2 3 4 5 4 3 2 1) when it reaches the maximum value. In the last
two cases, animated float continues to execute until you again toggle "sleep."

For example, you could connect animate integer to the orthogonal slicer module’s
"slice plane" parameter port. By setting minimum, maximum, and step values, you
could watch a series of output pixmaps that show progressive slices through the
volume data. Without interrupting animated integer, you could change the axis
from among I, J, and K and see the animated slice sections from any axis.

It is often useful to set the minimum and maximum values relative to the range of
your data. The statistics module can be used to determine reasonable value for these
parameters.

The "frame rate" (speed of the animation) depends upon how compute-intensive the
downstream modules are. With a compute-bound module like tracer, the animation
will be quite slow. With simple modules it will more closely resemble continuous
motion. There is no direct way to regulate the speed at which animated integer exe-
cutes.

Before you can connect animated integer to the receiving module, you must make
that receiving module’s parameter port visible. To make a parameter port visible,
call up the module’s Editor Window panel by pressing the middle or right mouse
button on the module icon dimple. Next, look under the "Parameters" list to find the
parameter you want to plug into. Position the mouse cursor over that parameter’s
button and press any mouse button. When the Parameter Editor window appears,
click any mouse button on its "Port Visible" switch. A light purple parameter port
should appear on the module icon. Connect this parameter port to the animated

33333333333333333333333333
AVS Module Reference Manual 43

animated integer3333333333333333333
integer module icon in the usual way.

If you bring up the receiving module’s control panel, you can watch the parameter
values change.

animated integer can be connected to multiple modules.

You can save an animation created with animated integer. Use the image viewer
module’s Action submenu to save a "flipbook" cycle of images.

PARAMETERS
minimum value

A typein to specify the lowest value in the integer number sequence. It is
typed-in as a whole number (e.g., 25 or -170). This parameter has no
upper or lower bounds. The default is 0.

maximum value
A typein to specify the maximum value in the integer number sequence.
It is typed-in as a whole number (e.g., -255 or 700). If the maximum
value is less than the minimum value, the delta calculated will be nega-
tive and the animation will run backwards. This parameter is
unbounded. The default is 0.

steps An integer typein specifying how many steps the interval between
minimum and maximum should be divided into. If the (max-min)/step
delta calculation produces real values, each value is rounded down to
the nearest whole integer value. Step cannot be less than two. The
default is 10.

sleep A toggle switch that turns animated integer on and off. It is off by
default. When you turn off the stream of integer numbers by pressing
sleep, some number of additional values may continue to flow through
the network before animated integer actually goes to sleep.

mode A set of choices which determine what animated float does when it
reaches its maximum value. The default is "one time".

one time
With "one time" on (the default), the values are sent only once (e.g., 1
2 3 4 5), and animated float sleeps onbce the values are sent.

continuous
When "continuous" is selected, the values being sent wrap around
continuously from highest to lowest (e.g., 1 2 3 4 5 1 2 3 4 5 ...).

bounce
When "bounce" is selected, the values count up and then count down
again repeatedly (e.g., 1 2 3 4 5 4 3 2 1 ...).

OUTPUTS
Integer Number (parameter)

An integer number intended to be input into an integer parameter port
of another module.

EXAMPLE 1
The following network animates slices through a volume:

33333333333333333333333333
44 AVS Module Reference Manual

animated integer3333333333333333333
READ VOLUME

|

GENERATE COLORMAP |

|---------| |

| |

COLORIZER

|

ANIMATED INTEGER |

|------| |

| |

ORTHOGONAL SLICER

|

|

IMAGE VIEWER

RELATED MODULES
Modules that can process animated integer output:

any module with an integer parameter

SEE ALSO
animated float, which behaves exactly like animate integer, but for floating point
parameters.

The example script ANIMATED INTEGER demonstrates the animate integer
module.

33333333333333333333333333
AVS Module Reference Manual 45

animate lines3333333333333333333
NAME

animate lines – animate lines for a vector field

SUMMARY
Name animate lines

Availability FiniteDiff module library

Type filter

Inputs geometry
upstream transform

Outputs geometry

Parameters Name Type Default Min Max
Objects text
Max Length text
Length integer 2 2 16
Animate oneshot off

DESCRIPTION
animate lines takes a set of streamlines output by the stream lines module and ani-
mates them. animate lines outputs successive segments of the streamlines to produce
a dynamic representation of them.

Because animate lines is a coroutine, the AVS flow executive passes one set of line
segments down the network at a time, until the network has fully executed, then sig-
nals animate lines to send the next set of line segments.

The "frame rate" (speed of the animation) depends upon how many streamlines are
passed as input to animate lines. With up to an intermediate number of streamlines
the animation appears as continuous motion. There is no direct way to regulate the
speed at which animate lines executes.

INPUTS
Stream Lines (geometry)

A set of disjoint lines generated by the module stream lines.

Upstream Transform (optional, invisible, autoconnect)
When the animate lines module coexists with stream lines, and
geometry viewer in a network, geometry viewer feeds information on
how stream lines’ point, circle or other "sample probe" has been moved
back to this input port on the animate lines module. animate lines then
relays the information up the network to stream lines. The modules con-
nect automatically, through data pathways that are normally invisible.
This gives direct mouse manipulation control over stream line’s sample
probe.

PARAMETERS
Objects A text window which displays the number of line segments which make

up the input streamlines.

Max Length
A text window which displays the maximum length of the input stream-
lines.

Length An integer dial which controls the length of the line segments that are
animated along the path of the streamlines.

33333333333333333333333333
46 AVS Module Reference Manual

animate lines3333333333333333333
Animate (oneshot)

A oneshot button that initiates the animation of the streamlines.

OUTPUTS
Animated Lines (geometry)

successive portions of the input streamlines are output sequentially.

EXAMPLE
The following network reads in a 3D vector field, and calculates streamlines for the
field. animate lines is used to dynamically represent the output of stream lines.

READ FIELD

|

|-------------------|

| |

STREAM LINES |

| VOLUME BOUNDS

| |

ANIMATE LINES |

| |

|-------------------|

|

GEOMETRY VIEWER

RELATED MODULES
hedgehog, particle advector, stream lines

33333333333333333333333333
AVS Module Reference Manual 47

antialias3333333333333333333
NAME

antialias – antialias an image

SUMMARY
Name antialias

Availability Imaging module library

Type filter

Inputs field 2D uniform 4-vector byte (image)

Outputs field 2D uniform 4-vector byte (image)

Parameters none

DESCRIPTION
The antialias module downsamples an image using a Gaussian 3x3 convolution
filter. This produces an antialiasing effect, reducing jagged edges. The output image
is half the size of the input image in each dimension—a 512x512 image becomes a
256x256 image after antialiasing.

INPUTS
Image (required; field 2D uniform 4-vector byte)

The image to be antialiased.

OUTPUTS
Image (field 2D uniform 4-vector byte)

The output antialiased image. This image is half the size of the input
image in each dimension.

EXAMPLE 1
The following network reads an image, antialiases it, and displays it through the
image viewer.

READ IMAGE

|

ANTIALIAS

|

IMAGE VIEWER

RELATED MODULES
Modules that could provide the Image input:

colorizer
composite
convolve
field math
localops
read image
replace alpha

Modules that can process antialias output:
extract scaler
image viewer
display image

See also downsize, interpolate, average down, ip convolve, sobel

33333333333333333333333333
48 AVS Module Reference Manual

antialias3333333333333333333
The script ANTIALIAS demonstrates the antialias module.

33333333333333333333333333
AVS Module Reference Manual 49

arbitrary slicer3333333333333333333
NAME

arbitrary slicer – map 3D scalar field to 3D mesh

SUMMARY
Name arbitrary slicer

Availability Volume, FiniteDiff module libraries

Type mapper

Inputs field 3D scalar any-data any-coordinates
colormap (optional)
upstream transform (optional, invisible, autoconnect)

Outputs geometry

Parameters Name Type Default Min Max Values
X Rotation float 0.0 0.0 360.0
Y Rotation float 0.0 0.0 360.0
Distance float 0.0 -2.0 2.0
Mesh Res integer 36 8 144
Sampling Style radio point point, trilinear

DESCRIPTION
The arbitrary slicer module extracts a 2D slice from a 3D volume of data. The slice
plane can be oriented arbitrarily — it need not be parallel to any of the coordinate
axes.

The volume of data is represented as a 3D scalar field (which defines a uniform lat-
tice within the volume). The slice plane is represented as a 2D grid, with a
parameter-controlled resolution. The intersection of the volume and the grid is a
mesh of vertices in 3D space.

Each vertex in the mesh is assigned a color that corresponds to one or more values of
the 3D scalar field. Since, in general, the mesh vertices do not coincide with the origi-
nal lattice points, an interpolation method can be used — see the Sampling Style input
parameter below.

By default, the volume is placed at the origin and the slice plane is the X-Y plane. The
orientation of the slice plane is controlled by two mechanisms. First, you can control
the position of the slice plane using the floating-point dials, X rotation and Y rotation.
Second, you can "pick" the slice plane object by clicking on it with the left mouse but-
ton. Once it has been "picked" you can orient the slice plane using the same "virtual
trackball" paradigm that is used in the Geometry Viewer. Then arbitrary slicer
receives an upstream transform from the geometry viewer module which tells it how
the slice plane has beem moved. Using this information arbitrary slicer computes a
new mesh output. These two mechanisms can be used together to manipulate the
slice plane, in which case the dial transformations are applied first, followed by the
upstream transform.

You can control the resolution of the mesh using the mesh res parameter. At lower
resolutions, fewer original data points are used in the computations; at higher resolu-
tions, more points are used.

Note that by default the mesh is displayed with No Lighting selected. To override
this feature, select the slice plane object in the Geometry Viewer, and change its type
from No Lighting to Gouraud, lines, or flat.

The optimal way to use this module is to start off with a low resolution mesh, posi-
tion it as desired, then increase the resolution and turn on trilinear mapping.

33333333333333333333333333
50 AVS Module Reference Manual

arbitrary slicer3333333333333333333
INPUTS

Data Field (required; field 3D scalar any-data any-coordinates)
The input data must be a 3D field, with any type of scalar data value at
each location in the field. The field can be uniform, rectilinear, or curvi-
linear.

Colormap (optional; colormap)
By default, the value computed for each vertex of the mesh is used as the
hue in HSV space. If you specify a colormap, the values are used to
index into the colormap.

Upstream Transform (optional, invisible, autoconnect)
When the arbitrary slicer module coexists with the geometry viewer
module in a network, and the slice plane object has been "picked",
geometry viewer feeds information on how the slice plane has been
moved back to this input port on the arbitrary slicer module. The two
modules connect automatically, through a data pathway that is normally
invisible. This gives direct mouse manipulation control over arbitrary
slicer’s slice plane.

PARAMETERS
X Rotation A floating point dial widget that controls the rotation of the slice surface

in the X direction. The center of rotation is mid-way through the slice
plane, like a revolving door, as opposed to at the edge of the slice plane,
like a swinging door. The initial rotation is 0.0 (no rotation). The dial is
unbounded and may be rotated more than 360 degrees in either the posi-
tive or negative direction. This controls the orientation of the slice plane
in object space.

Y Rotation A floating point dial widget that controls the rotation of the slice surface
in the Y direction. The center of rotation is mid-way through the slice
plane, like a revolving door, as opposed to at the edge of the slice plane,
like a swinging door. The initial rotation is 0.0 (no rotation). The dial is
unbounded and may be rotated more than 360 degrees in either the posi-
tive or negative direction. This controls the orientation of the slice plane
in object space.

Distance A floating point value between -2.0 and 2.0 which moves the slice plane
back and forth in the direction of the normal to the slice plane. This value
is scaled by the largest dimension of the input field. Consequently, you
can move the slice plane along the normal from -(2 ∗ max dimension) to
(2 ∗ max dimension).

Mesh Res Controls the resolution of the slice plane mesh. Higher resolution
meshes result in higher quality representations, but take longer to com-
pute and render. The default mesh is 8x8.

Sampling Style
(radio buttons) Controls the way in which each vertex of the output
mesh is assigned a color:

d If point, a nearest-neighbor algorithm is used. Each mesh vertex is
assigned the byte value of the nearest point in the lattice.

d If trilinear, a trilinear interpolation is performed. The value at each
vertex depends on the byte values at the eight lattice points that are
the corners of the "enclosing cube".

The trilinear interpolation method is more accurate but takes longer to compute,

33333333333333333333333333
AVS Module Reference Manual 51

arbitrary slicer3333333333333333333
particularly with larger meshes.

OUTPUTS
Geometry (geometry)

The output is an AVS geometry.

EXAMPLE
This example shows a common usage of the arbitrary slicer module. The volume
bounds modules gives a reference frame for orienting the slice plane.

READ FIELD

|

|

GENERATE COLORMAP |------------------|

| | |

|----------| | |

| | |

| | |

ARBITRARY SLICER VOLUME BOUNDS

| |

|------------------|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the input field:

read field
read volume
Any module that outputs a 3D field.

Modules that can replace arbitrary slicer:
brick
orthogonal slicer
thresholded slicer

Modules that can process arbitrary slicer’s output:
geometry viewer
render geometry
Any module that inputs a geometry

SEE ALSO
The example script PROBE demonstrates the arbitrary slicer module.

33333333333333333333333333
52 AVS Module Reference Manual

average down3333333333333333333
NAME

average down – downsize a field in X, Y, or Z by averaging

SUMMARY
Name average down

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field 2D|3D uniform scalar byte

Outputs field same-dims uniform scalar byte

Parameters Name Type Default Min Max
X int dial 4 1 16
Y int dial 4 1 16
Z int dial 4 1 16

DESCRIPTION
average down reduces the size of a 2D or 3D scalar uniform byte field in any combi-
nation of dimensions. To create the reduction, it averages the values of adjacent data
points in a "chunk" whose size is given by the X, Y, and/or Z parameters. (Z is only
present if the input is 3D.)

For example, if you have a 2D 7x5 field and you want to average down by 3 in the X
dimension, and 2 in the Y dimension, the result will be a 2D 3x3 field whose values
are based on averages composed of the following chunks of cells:

0 1 2 3 4 5 6 (old i’s)

------------------- ------------------- -----

0 | X X X | | X X X | | X | 0

1 | X X X | | X X X | | X |

------------------- ------------------- -----

oldj 2 | X X X | | X X X | | X | 1 (new j’s)

3 | X X X | | X X X | | X |

------------------- ------------------- -----

4 | X X X | | X X X | | X | 2

------------------- ------------------- -----

0 1 2 (new i’s)

These smaller fields use less memory and render more quickly. For example, one
could use average down temporarily while experimenting with other modules’
parameter changes until a satisfactory output is achieved, and then remove the aver-
age down module to produce a full resolution rendering.

average down differs from the similar downsize and interpolate modules in several
ways:

d Where downsize simply selects one of the adjacent data values and discards
the others, average down averages among the adjacent data values.

d downsize and interpolate downsize all three dimensions uniformly. average
down’s dial parameters let you select any combination of X, Y, and Z for the
reduction. This is useful, for example, in medical datasets where the X and Y
dimensions are high resolution images (for example, 256 x 256), while the Z
dimension is small (for example, 16 slices). With average down you can down-
size the high resolution image planes while retaining the same number of slices.

d average down is to be preferred over interpolate for downsizing data. At .5
reduction, the two are the same. However, at .25 reduction in X and Y (X and Y
dial parameter values set to 4 in average down, or a parameter dial setting on

33333333333333333333333333
AVS Module Reference Manual 53

average down3333333333333333333
interpolate), average down will have averaged 16 data values, while interpo-
late has averaged just the four "corner" data values.

d average down is more restrictive on the type of input field it will accept.

INPUTS
Data Field (required; field 2D|3D uniform scalar byte)

The input field must be a 2D or 3D scalar uniform field containing byte
data.

PARAMETERS
X An integer dial that establishes the "chunk" size of points in the X dimen-

sion that will be averaged together. The minimum is 1 (no reduction);
the maximum is 16, and the default is 4.

Y An integer dial that establishes the "chunk" size of points in the Y dimen-
sion that will be averaged together. The minimum is 1 (no reduction);
the maximum is 16, and the default is 4.

Z An integer dial that establishes the "chunk" size of points in the Z dimen-
sion that will be averaged together. The minimum is 1 (no reduction);
the maximum is 16, and the default is 4. This control only appears if the
input is 3D.

OUTPUT
Data Field (field same-dims uniform scalar byte)

The output field has the same dimensionality as the input field, but the
number of elements in the specified dimensions is reduced to 1/dial-
value. "Remainder" values, for example— a 10x12 field reduced in X by
4 with 2 remaining values—are averaged together.

The min_val and max_val (minimum and maximum data values) of the
input field, if present, are invalidated in the output field since the opera-
tion has likely changed these values. The new coordinate data in the
output field is used to define the physical extents as being equal to the
original data, but at lower resolution.

EXAMPLE
READ VOLUME

|

|

AVERAGE DOWN

GENERATE COLORMAP |

| |

|----------| |

TRACER

|

DISPLAY TRACKER

RELATED MODULES
interpolate
downsize

Modules that could provide the field input:
read field
read volume
extract scalar
any module that outputs a 2D or 3D scalar uniform byte field

Modules that can process the output field:

33333333333333333333333333
54 AVS Module Reference Manual

average down3333333333333333333
any module that can process a field

SEE ALSO
The example script AVERAGE DOWN demonstrates the average down module.

33333333333333333333333333
AVS Module Reference Manual 55

AVS Animator3333333333333333333
NAME

AVS Animator – create keyframe animations of data visualizations

SUMMARY
Name AVS Animator

Availability vendor dependent

Type data input

Inputs none

Outputs integer (frame number)
integer (frames/second)
float (current time)
field 2D scalar float uniform (parameter path)

Parameters various, internal use

DESCRIPTION
The AVS Animator is an interface to create keyframe animations of AVS data visual-
izations. It is the centerpiece of a set of modules that collectively form the AVS Ani-
mation Application. To use the AVS Animator, simply move its module icon into
the Network Editor Workspace. The module is part of the Animation module
library. It does not need to be connected to other modules. The compact Animator
interface panel will appear.

The AVS Animator can be used to automatically generate animations of:

d All object manipulations produced by the Geometry Viewer interface including
object, camera, and light transformations, object properties and colors. One can
thus animate objects rotating or moving in space, or cameras "flying by" objects
or zooming in to examine them closely, or objects changing properties such as
dissolving from opaque into transparent.

d Changes produced in a Geometry, Image, Graph Viewer, display image, or
display tracker output window produced by modifying parameters on subrou-
tine modules in an AVS network. One could animate multiple slice planes
marching through volumes, or image processing filters acting on an image.

The AVS Animator is a keyframe animator. In typical use, the user sets up an initial
scene in a Geometry Viewer window. The contents of the scene window may have
been read directly into the Geometry Viewer using Read Object or Read Scene, or it
may have been produced by an AVS network. The user then presses a button that
establishes this as a "keyframe." The Animator records the current settings of all
Geometry Viewer options and network module parameters. Next, the user intro-
duces some change into the scene window: either using the Geometry Viewer inter-
face to move the object(s) or the camera, or manipulating the parameter controls of
the modules in the network that produced the output geometry. Again, pressing a
key establishes this as a new keyframe. The Animator records those Geometry
Viewer and module parameter settings that have changed since the previous key-
frame.

To play back the animation, press one of the playback buttons. The Animator uses
the values of the keyframes and frames per second to automatically generate
"inbetween" values for all Geometry Viewer and module parameter settings that are
being animated, producing a smooth, interpolated animation in the output window.

The user can change keyframe positions, the number of interpolation steps, the type
of interpolation used, the direction and manner of playback (keyframes only, for-
ward, backward, circular, bounce), edit individual keyframe values, and gradually

33333333333333333333333333
56 AVS Module Reference Manual

AVS Animator3333333333333333333
build up a full animation by recording and playing back multiple individual anima-
tion tracks (just object rotation, then just camera movement, then just module param-
eter value changes). A .animrc file can be used to instruct the Animator to ignore
parameter changes from listed modules.

Animations are saved as compact ASCII scripts that contain the instructions for
recreating animations. Other modules in the Animation Application can save the
animations as actual frames, preprocess the frames for video output, and write the
output to video devices.

Because the Animator automatically generates inbetween frames, it differs from
existing AVS "flipbook" animation facilities in the Image Viewer, Geometry Viewer,
and display image and display pixmap modules, which require the user to manually
create and record all frames that make up an animation sequence. Animations,
unlike flipbooks, are easily edited. Animator animation scripts are much more com-
pact to store than flipbook frames.

OUTPUTS
frame number

An integer that contains the current frame number, as reported at the top
left of the Animator control panel. This port can be used to generate a
synchronization signal for coroutine modules that have a synchronous
input port option such as the particle advector module.

frames/second
An integer that represents the current playback interpolation rate. The
default value is 30 frames/second, which corresponds to NTSC video
rates. (PAL is 25 frames/second and film is usually 24 frames/second.)
This output can be used for video output modules that need to know the
video rate.

current time
A real number that represents the current time in seconds (e.g. 62.25).
This value could be fed into a module that generates a time stamp label
in the geometry viewer.

parameter path (field 2D scalar real uniform)
A field structure containing keyframe setting information for an indivi-
dual parameter in the animation.

EXAMPLE 1
This network shows the AVS Animator recording the output of a typical visualiza-
tion network. Note that the Animator is not connected to the main network.

33333333333333333333333333
AVS Module Reference Manual 57

AVS Animator3333333333333333333
READ FIELD

|

GENERATE COLORMAP |---------------|

| | |

| ORTHOGONAL SLICER |

| | |

|--------------| | |

FIELD TO MESH VOLUME BOUNDS

| |

|---------------|

|

GEOMETRY VIEWER

AVS ANIMATOR

EXAMPLE 2
This network shows the AVS Animator recording the output of the particle advector
module. The Animator does not normally work with coroutine modules. However,
particle advector has been modified to include a synchronous execution option port.
The AVS Animator’s rightmost frame number output port acts as a "fire once" signal
to particle advector’s leftmost input port, causing it to simulate one advection step
each time the Animator playback increments the frame number.

READ FIELD

|

|------------------------|

| |

AVS ANIMATOR | VOLUME BOUNDS

| | |

|-------| | |

PARTICLE ADVECTOR |

| | |

|----|------------------------|

|

GEOMETRY VIEWER

SEE ALSO
write frame seq
read frame seq
output ImageNode
prepare video
output VideoCreate

The AVS Animator and its associated modules are fully described in the Animating
AVS Data Visualizations document.

AVAILABILITY
The AVS Animator and its associated modules may be available only under separate
license from your AVS vendor. If present, the modules may be kept in a separate
module library in the $AVS_PATH directory that must be loaded manually, or by
including it in a personal .avsrc file. See your platform’s release notes for specific
information.

LIMITATIONS
The AVS Animator records changes that are made to the following entities, but does
not interpolate between their old and new values. Animations with such changes
will suddenly "jump" to the new renditions.

33333333333333333333333333
58 AVS Module Reference Manual

AVS Animator3333333333333333333
d Object rendering modes (such as wireframe dissolving into gouraud), in the

Geometry Viewer.

d Data values, such as fields, UCD structures, and geometries. The AVS Animator
records and interpolates changes occuring through the AVS interface that are
detectable via CLI commands; it does not interpolate between data values such
as might be found in two fields containing data on the same grid, but at different
times. Such an animation could be achieved by writing an "interpolate field"
module.

d Coroutine modules, such as simulations, that act asychronously with an AVS net-
work. To be animated, coroutine modules would need to be rewritten with a
synchronous input port option. The particle advector module is so modified.

d Image and Graph Viewer control panel manipulations. (However, the images
and graphs apearing in these viewers are animated.)

The AVS Animator neither records nor interpolates changes made to a colormap
through the generate colormap or ucd contour modules. The Animator also does
not record or interpolate Geometry Viewer label manipulations if the label is a title.
If the label is attached to an object, the label moves in conjunction with the object

33333333333333333333333333
AVS Module Reference Manual 59

background3333333333333333333
NAME

background – create a shaded backdrop image

SUMMARY
Name background

Availability Imaging module library

Type data

Inputs field 2D 4-vector byte uniform (image) (OPTIONAL)

Outputs field 2D 4-vector byte uniform(image)

Parameters Name Type Default Min Max
Upper Left Hue Dial float 0.67 0.0 1.0
Upper Right Hue Dial float 0.67 0.0 1.0
Lower Left Hue Dial float 0.0 0.0 1.0
Lower Right Hue Dial float 0.0 0.0 1.0
Upper Left Sat Slider float 1.0 0.0 1.0
Upper Left Value Slider float 1.0 0.0 1.0
Upper Right Sat Slider float 1.0 0.0 1.0
Upper Right Value Slider float 1.0 0.0 1.0
Lower Left Sat Slider float 1.0 0.0 1.0
Lower Left Value Slider float 0.0 0.0 1.0
Lower Right Sat Slider float 1.0 0.0 1.0
Lower Right Value Slider float 0.0 0.0 1.0
X Resolution Typein int 128 0 1024
Y Resolution Typein int 128 0 1024
Dither Switch off

DESCRIPTION
background generates a linearly-shaded image that is typically used as a background
for other renderings. You specify the color of each corner with a separate Hue dial.
You then use sliders to specify the saturation and value of the color, again individu-
ally for each corner. background takes the hue-saturation-value of each corner and
evenly blends them toward the center of the image.

The results of background can be used with the replace alpha and composite
modules to create the effect of a semi-transparent tinted film overlaid upon a regular
image. For example, you could create a grey overcast on the image of a sunny sky.
When doing this, connect the image to background’s input port—this will create a
background image the same size as the input image.

The default output image is a 128x128 pixels, shaded blue-to-black image.

INPUTS
Image (optional; field 2D 4-vector byte uniform)

The input image automatically sets the X Dimension and Y Dimension
of the output image. It has no other effect.

PARAMETERS
Upper Left Hue
Upper Right Hue
Lower Left Hue
Lower Right Hue

Floating point dials to select the hue (color) of each corner. The defaults
for the upper left and right are .67 (blue); the defaults for the lower left
and right are 0.0.

33333333333333333333333333
60 AVS Module Reference Manual

background3333333333333333333
Note:

0.000 = black 0.320 = green 0.670 = blue 1.000 = red
0.167 = yellow 0.500 = cyan 0.833 = magenta

Upper Left Sat
Upper Left Value
Upper Right Sat
Upper Right Value
Lower Left Sat
Lower Left Value
Lower Right Sat
Lower Right Value

Floating point slider bars to select the saturation (how much "white" is
mixed in with the hue (1.0=none) and value (how much "black" is mixed
in with the hue (1.0=none). All parameters default to 1.0 (fully saturated
with no black) except both lower values. These are set to 0.0, making the
default lower part of the image all-black.

X Resolution
Y Resolution

An integer typein specifying the size, in pixels, of the output image. The
default is 128x128. These parameters will not be visible if there is an
optional input image.

Dither A close examination of the background image would reveal contour
bands of color as the corners shade off if interpolating over a small range
of colors over a large screen distance. Dither adds a bit of noise in the
lower bits of the color value to smooth out this contouring effect. This is
a boolean switch that is off by default.

OUTPUTS
Image (field 2D 4-vector byte uniform)

The shaded output image.

EXAMPLE 1
The following network creates a shaded image and writes the image to disk:

BACKGROUND

|

|--------------------|

IMAGE VIEWER WRITE IMAGE

EXAMPLE 2
The following network takes an image, computes the luminance, uses that to create
an alpha mask, renders a shaded background, and composites the rendered image
over the shaded background:

33333333333333333333333333
AVS Module Reference Manual 61

background3333333333333333333
READ IMAGE

|

__________________________|

| | |

BACKGROUND LUMINANCE |

| | |

| CONTRAST |

| |------| |

| REPLACE ALPHA

| |

|----------------------| |

COMPOSITE

|

DISPLAY IMAGE

EXAMPLE 3
This network takes a geometry, displays it on the screen, then converts the screen
pixmap to an image, computes its luminance, uses that to create an alpha mask,
renders a shaded background and composites the rendered image over the shaded
background.

In the contrast module, you typically want contrast_in_minimum and
contrast_in_maximum to both equal 1 to get any non-zero pixel to overlay the back-
ground.

READ GEOM

|

RENDER GEOMETRY

|-----------------------|

PIXMAP TO IMAGE |

__________________________| DISPLAY PIXMAP

| | |

BACKGROUND LUMINANCE |

| | |

| CONTRAST |

| |------| |

| REPLACE ALPHA

| |

|----------------------| |

COMPOSITE

|

DISPLAY IMAGE

RELATED MODULES
Modules that could provide the Image input:

read image, pixmap to image
Modules that can process background output:

any module that takes an Image as an input...
image viewer
composite

33333333333333333333333333
62 AVS Module Reference Manual

background3333333333333333333
SEE ALSO

Two BACKGROUND example scripts demonstrate the background module.

33333333333333333333333333
AVS Module Reference Manual 63

blend colormaps3333333333333333333
NAME

blend colormaps – interpolate between two colormaps in HSVA space

SUMMARY
Name blend colormaps

Availability UCD module library

Type filter

Inputs cmap1 (first colormap)
cmap2 (second colormap)

Outputs colormap

Parameters Name Type Default Min Max
scale float dial 0.00 0.00 1.00

DESCRIPTION
blend colormaps interpolates linearly between two colormaps in HSVA space. This
is useful when using the AVS Animator module, which does not interpolate between
colormaps. The Animator will interpolate the scale parameter, which governs the
proportionate value of cmap1 to cmap2. It can also be used with animated float, etc.

Every value of every band (hue, saturation, value, and opacity (alpha)) is evaluated
separately. Generally, it is best to confine the differences between the two input
colormaps to one variable, such as transparency, or the results can be non-intuitive.
Note that interpolation between hue values (such as 0.00 for red and 0.66 for blue)
will produce the intermediate yellow, green, and cyan shades, not a "dissolve" from
red to blue. The module assumes colormaps that are 256 entries long.

INPUTS
cmap1 (required; colormap)

The first colormap. This colormap can be created by the generate color-
map module, which can also save the colormap to a file.

cmap2 (required; colormap)
The second colormap. This colormap can be created by the generate
colormap module, which can also save the colormap to a file.

PARAMETERS
scale The dial scale controls the blending between the colormaps. When scale

= 0.0 the output is entirely cmap1. When scale = 1.0, the output is
entirely cmap2. In the middle, the output is:
out = (cmap1 ∗ (1.0 - scale)) + (cmap2 ∗ scale)

OUTPUTS
cmap out (colormap)

The output colormap.

EXAMPLE 1
This network uses the AVS Animator to rotate a volume rendering and change the
colormap’s transparency simultaneously.

One could also use the animated float module instead of the AVS Animator to ani-
mate the colormap blending alone. animated float’s output would feed into blend
colormap’s scale parameter. To make the parameter port visible, click on the
module’s dimple to bring up the Module Editor, then click on the scale parameter to
bring up the Parameter Editor. Then toggle Port Visible.

33333333333333333333333333
64 AVS Module Reference Manual

blend colormaps3333333333333333333
GENERATE COLORMAP GENERATE COLORMAP READ FIELD

|________ __________| |

| | |

BLEND COLORMAPS |

|____________ _______________|

| |

EULER TRANSFORMATION | |

|_____________________|___ | AVS ANIMATOR

| | |

TRACER

|

DISPLAY TRACKER

RELATED MODULES
generate colormap

SEE ALSO
The example script BLEND COLORMAPS demonstrates the blend colormaps
module.

33333333333333333333333333
AVS Module Reference Manual 65

boolean3333333333333333333
NAME

boolean– send a user-entered boolean value to one or more module(s) boolean
parameter port(s)

SUMMARY
Name boolean

Availability Imaging, Volume, FiniteDiff module libraries

Type data

Inputs none

Outputs boolean

Parameters Name Type Default
Boolean Value choice off

DESCRIPTION
The boolean module sends a single user-specified boolean value to one or more
boolean-type parameter ports on one or more receiving modules. Its purpose is to
make it possible for you to simultaneously control boolean parameter input to more
than one module using only a single input widget.

Before you can connect boolean to the receiving module, you must make that receiv-
ing module’s parameter port visible. To make a parameter port visible, call up the
module’s Editor Window panel by pressing the middle or right mouse button on the
module icon dimple. Next, look under the "Parameters" list to find the parameter
you want to plug into. Position the mouse cursor over that parameter’s button and
press any mouse button. When the Parameter Editor window appears, click any
mouse button on its "Port Visible" switch. A white parameter port should appear on
the module icon. Connect this parameter port to the boolean module icon in the
usual way.

PARAMETERS
Boolean Value (boolean)

The single user-supplied boolean value, either on or off, to be sent to the
receiving module(s) boolean parameter port(s). The default value is off.

OUTPUTS
Boolean (boolean)

The boolean value is sent to all modules with boolean-type parameter
ports that are connected to the boolean module.

EXAMPLE 1
In the following network, the boolean module has been connected to isosurface’s
"Flip Normal" parameter:

BOOLEAN READ VOLUME

| |

|--------| |------|

| |

ISOSURFACE

|

|

GEOMETRY VIEWER

33333333333333333333333333
66 AVS Module Reference Manual

boolean3333333333333333333
RELATED MODULES

Modules that can process boolean output:
all modules with boolean-type parameter ports

33333333333333333333333333
AVS Module Reference Manual 67

brick3333333333333333333
NAME

brick – show uniform volume as a solid

SUMMARY
Name brick

Availability Volume, FiniteDiff module libraries
requires 3D texture mapping support

Type mapper

Inputs field 3D uniform n-vector any-data
upstream transform (optional, invisible, auto-connect)

Outputs geometry

Parameters Name Type Default Min Max
X Rotation float dial 0.0 unbounded unbounded
Y Rotation float dial 0.0 unbounded unbounded
Offset float dial 0.0 unbounded unbounded
Sides boolean on

DESCRIPTION
The brick module is another way of visualizing 3D uniform volume data. The arbi-
trary slice module displays a slice plane through a volume of data. Outside the slice
plane, everything is clear "empty air." brick displays the volume as a solid— you see
the six outside surfaces of an otherwise opaque volume (hence the name "brick").
You can use the X Rotation, Y Rotation, and Offset parameters to slice a chunk off
the brick to reveal the data inside, as one might lop off part of a fruitcake. If you turn
off the Sides switch, you will see just the slice plane. The effect is similar to the out-
put of arbitrary slicer. Only one of the six surfaces of the volume is a moveable slice
plane.

brick creates its picture of the volume data using 3D texture mapping (arbitrary
slicer uses sampling). In this method, the boundary of the volume has three values,
u, v, w, associated with each of its vertices. When brick’s slice plane intersects this
volume, u, v, w values are computed for the vertices of the resulting solid. These
values are attached to the vertices of the geometry object which brick produces, and
are used by geometry viewer to perform 3D texture mapping.

Texture mapping is much faster than the sampling technique used by arbitrary slicer,
particularly for large datasets. The point sampling is always done at the resolution
of the data; thus differences in data values within a small area are not obscured as
they can be with arbitrary slicer.

The 3D texture map is created with a combination of the generate colormap, color-
izer, and possibly color range modules. Their output is connected to the geometry
viewer module’s center texture map port (see example below).

brick has the invisible "upstream transform" input port. This means that "brick"
shows up as an object in the Geometry Viewer’s object hierarchy. If you select the
"brick" object and rotate, scale, or translate it with the mouse, the geometry viewer
module informs the brick module of the new orientation of the slice plane, and brick
remaps the volume data accordingly. The effect is that you have direct mouse mani-
pulation control over the shape of the brick.

AVAILABILITY
This module requires 3D texture mapping support. 3D texture mapping is sup-
ported on only a few hardware renderers (see the release note information that
accompanies AVS on your platform). If a renderer does not support 3D texture map-
ping, then the volume will appear, but the geometry object will appear as a

33333333333333333333333333
68 AVS Module Reference Manual

brick3333333333333333333
featureless white solid.

Where there are multiple renderers available, you can select Software Renderer on
the Geometry Viewer’s Cameras submenu to switch renderers. Otherwise, the
software renderer is the only renderer present. After changing to the software
renderer, you may have to change one of the brick module’s dials to get the proper
results.

INPUTS
Data Field (required; field 3D uniform n-vector any-data)

The input field is a 3D uniform volume. The data can be of any type.

Upstream Transform (optional, invisible, autoconnect)
When the brick module coexists with the geometry viewer module in a
network, geometry viewer feeds information on how the "brick" object
has been moved in the Geometry Viewer back to this input port on the
brick module. The two modules connect automatically, through a data
pathway that is normally invisible. This gives direct mouse manipula-
tion control over brick’s slice plane.

PARAMETERS
X Rotation A floating point dial widget that controls the rotation of the slice surface

in the X direction. The center of rotation is mid-way through the slice
plane, like a revolving door, as opposed to at the edge of the slice plane,
like a swinging door. The initial rotation is 0.0 (no rotation). The dial is
unbounded and may be rotated more than 360 degrees in either the posi-
tive or negative direction.

Y Rotation A floating point dial widget that controls the rotation of the slice surface
in the Y direction. The center of rotation is mid-way through the slice
plane, like a revolving door, as opposed to at the edge of the slice plane,
like a swinging door. The initial rotation is 0.0 (no rotation). The dial is
unbounded and may be rotated more than 360 degrees in either the posi-
tive or negative direction.

Offset A floating point dial widget that controls the movement of the slice sur-
face in the Z direction. The 0.0 initial value is defined to be midway
through the volume. Hence, a volume with a Z dimension of 64 has 0.0
in the middle, with +32.0 and -32.0 in either direction. The dial itself is
unbounded. If you enter a value outside the actual volume, the slice sur-
face stops at the actual bounds.

Sides A boolean switch that controls whether all six surfaces of the volume are
displayed (on), or only the slice surface (off). Sides is on by default.

OUTPUTS
Geometry (geometry)

The output geometry is the solid version of the volume.

EXAMPLE 1
The following network reads a byte volume. The volume is fed to colorizer to paint
the byte values as colors, to brick to map the surfaces, and to volume bounds to
draw a box around the limits of the volume. The generate colormap, colorizer, and
geometry viewer parts of the network are vital; they create the 3D texturemap. All
in turn feed into geometry viewer.

33333333333333333333333333
AVS Module Reference Manual 69

brick3333333333333333333
READ VOLUME

|

GENERATE COLORMAP |

| |

| |--------------|---------------|

| | | |

COLORIZER BRICK VOLUME BOUNDS

| | |

| | |

|----------| |---------------|

| |

GEOMETRY VIEWER

EXAMPLE 2
The following network is the same as the previous example in basic structure. The
difference is that the uniform volume data is a 3D field of real values, not bytes. The
vector mag module is used to convert the vector field into a scalar float field. The
addition of the color range module scales the color values in the colormap to match
the range of the data. It should be included whenever the data is not of type byte.

READ FIELD

|

|

VECTOR MAG

GENERATE COLORMAP |

| |

| |-------------|---------------|

| | | |

COLOR RANGE BRICK VOLUME BOUNDS

| | |

COLORIZER | |

|------------| |---------------|

| |

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read volume
read field
Any module that outputs a 3D uniform field

Modules that could be used in place of brick:
excavate brick
volume render
arbitrary slicer
orthogonal slicer
thresholded slicer

Modules that can process brick output:
geometry viewer

SEE ALSO
Two BRICK example scripts demonstrate the brick module.

33333333333333333333333333
70 AVS Module Reference Manual

bubbleviz3333333333333333333
NAME

bubbleviz – generate spheres to represent values of 3D field

SUMMARY
Name bubbleviz

Availability Volume, FiniteDiff module libraries

Type mapper

Inputs field 1D/2D/3D scalar any-data any-coordinates
colormap

Outputs field 1D 3-coord 4-vector real

Parameters Name Type Default Min Max
Radius float 0.0 0.0 100.0

DESCRIPTION
The bubbleviz module generates spheres of various radii and colors at the element
locations of a 1D, 2D or 3D field. This is a "cuberille" style of volume visualization,
except that it uses spheres rather than cubes.

The colors and radii of the spheres are calculated by mapping the input field values
to the color and opacity values in the colormap. This means that you can change the
color of spheres by editing the hue, saturation and brightness panels of the colormap
widget. The radii of the spheres is taken from the opacity data (last field) of the input
colormap. To change the radii of an entire group of spheres, simply edit the generate
colormap’s opacity panel.

This module can be used for non-uniform input fields (rectilinear or irregular).

Note that systems which do not have hardware support for sphere rendering have an
additional Geometry Viewer control that lets you specify the number of polygons
used to render spheres. The control’s slider is located at the bottom of the Geometry
Viewer control panel, and is titled "subdivision". The subdivision value ranges from 1
to 8; using a low value, e.g. 2, can improve the performance of bubbleviz consider-
ably. In addition, overall system performance can be improved by shrinking the
dataset size using the downsize module.

INPUTS
Data Field (required; field 1D/2D/3D scalar any-data any-coordinates)

The principal input data for the bubbleviz module is a 1D, 2D or 3D
field. The data at each point of the field can be byte, integer, float or
double. The values will be interpreted as numbers in the range 0..255.

Color Map (colormap)
The colormap may be of any size. Since each input datum is a byte, the
natural size for the colormap is 256. If you specify a larger colormap, its
entries beyond the 256th are unused.

A zero value in the opacity field of the colormap suppresses the genera-
tion of a sphere for the input datum.

PARAMETERS
Radius A multiplier factor for the sphere radii. This is particularly useful for

irregular fields, for which the computational-to-physical mapping often
makes the default spheres too small. The value of Radius is used to scale
the opacity element in the input colormap.

The default Radius is zero; this causes spheres to be rendered as points
(individual pixels).

33333333333333333333333333
AVS Module Reference Manual 71

bubbleviz3333333333333333333
OUTPUTS

Data Field (field 1D 3-coord 4-vector real)
The output is a list of points in 3D space, with a 4-vector of reals at each
point:

d The first element is interpreted as the sphere’s radius. If the radius
value is 0.0, no sphere is generated as output. If the radius value is
1.0, the sphere’s radius will equal the current value of the Radius
parameter.

d The 2nd–4th elements of the lookup value specify the red-green-blue
components of the sphere’s color (0.0 = no color; 1.0 = maximum
color).

EXAMPLE
A typical network using this module looks like this:
GENERATE COLORMAP READ VOLUME

| |

| |---------------------|----------------|

| | | |

COLOR RANGE | |

| | |

|------------------| | |

| | |

BUBBLEVIZ VOLUME BOUNDS

| |

| |

SCATTER DOTS |

| |

|------------------|

|

GEOMETRY VIEWER

Note that the list of points generated by the bubbleviz module is converted to a
geometry by the scatter dots module.

RELATED MODULES
Modules that could provide the Data Field input:

read volume
read field

Modules that could be used in place of bubbleviz:
colorizer
gradient shade
dot mapper

Modules that can process bubbleviz output:
scatter dots

LIMITATIONS
The bubbleviz module can generate extremely large databases (one sphere per voxel
for volume data). Use 0.0 values in the last field of the input colormap ("opacity"
field) to eliminate unnecessary data.

33333333333333333333333333
72 AVS Module Reference Manual

bubbleviz3333333333333333333
SEE ALSO

The example script BUBBLEVIZ demonstrates the bubbleviz module.

33333333333333333333333333
AVS Module Reference Manual 73

calc warp coeffs3333333333333333333
NAME

calc warp coeffs – calculate warp coefficients for ip warp

SUMMARY
Name calc warp coeffs

Availability Imaging module library

Type data

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 1D uniform 2-vector float (optional, tiepoints)
image viewer id structure (invisible, autoconnect)
mouse info structure (invisible, autoconnect)

Outputs field 1D 2-vector float (warp coefficients)
image draw structure

Parameters Name Type Default Min Max
choice choice linear
N tiepoints int dial 3|4|6|9 3 unbounded
set pick mode oneshot
Pick Status string none

DESCRIPTION
calc warp coeffs calculates the warp coefficients required by the ip warp module.
calc warp coeffs calculates the XY warp coefficients from the given tiepoint list using
matrix inversion.

The warp coefficients can be created in two ways:

d If you already have a set of XY tiepoints, you can input it as a field through the
optional input port.

d You can interactively select the tiepoints through the image viewer using
upstream picking.

When used interactively, designating the tiepoints involves an interaction between
calc warp coeff and the image viewer module. calc warp coeff must be receiving the
same image input as the image viewer module. calc warp coeffs’s left image draw
structure output must be connected to the image viewer module’s leftmost image
draw structure input. calc warp coeffs’s right warp coefficient output is connected
to ip warp’s center coefficient input. (See "Example 1" below).

To select the tiepoints in the Image Viewer window:

1. The calc warp coeffs module must have control of the left mouse button in the
Image Viewer window. When calc warp coeffs is first connected and data first
passes through it, it should have control of the left mouse button.

2. Specify the type of warp, and any changes to the default N tiepoints (3-linear,
4-bilinear, 6-quadratic, 9-biquadratic).

3. Select the first "source" tiepoint by clicking with the left mouse button. calc
warp coeffs’s message box will prompt you for the corresponding "destination"
tiepoint. Each source/destination pair will be connected with a line. The
prompting will continue until N tiepoints have been selected. Then, the
module will fire.

If there are multiple images in the Image Viewer window, and/or multiple sketching
modules, then some other module or the Image Viewer itself may have control of the
left mouse button. To get control back to calc warp coeffs,

33333333333333333333333333
74 AVS Module Reference Manual

calc warp coeffs3333333333333333333
1. Make the image the current image (use shift-left mouse button or left mouse

button).

2. Press set pick mode on calc warp coeffs’s control panel.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, the coefficient calculation is performed just once.

Data Field (optional; field 1D uniform 2-vector float)
This input port will receive a 1D 2-vector float field that is the list of
tiepoints. Tiepoints come in pairs—there is a source tiepoint and a desti-
nation tiepoint. Each tiepoint is a 2-vector float. The first vector is the X
coordinate; the second vector is the Y coordinate. Thus, the first element
of the 1D field is a source tiepoint (2-vector float), the second element is a
destination tiepoint (2-vector float), and so on through the field.

The module must know how many tiepoint pairs are in the field. By
convention, this value (# of tiepoints ∗ 2) should be stored in the field’s
maximum X extent value. A module that is creating the warp field
would set this value with the AVSfield_set_extent routine. There is no
interactive way to set this value. This input is optional.

image viewer id structure (optional; invisible, autoconnect)
This input port is invisible by default. It is used when interactively
selecting tiepoints. It connects automatically to the image viewer
module’s image viewer id structure output. The two modules commun-
icate the image viewer module’s scene id on this connection. Normally,
you can ignore its existance.

mouse info structure (optional; invisible, autoconnect)
This input port is invisible by default. It is used when interactively
selecting tiepoints. It connects automatically to the image viewer
module’s mouse info structure output. The two modules communicate
image name, mouse pointer location and button up/down information
on this connection. Normally, you can ignore its existance.

PARAMETERS
choice A set of radio buttons that determines the order and type of the warp. If the
number of input tiepoints is equal to the minimum stated below, a warp using the
returned coefficients perfectly match the tiepoints. If the number of input tiepoints
exceeds the minimum, a set of coefficients which best fit the tiepoints is returned.

linear produces a separable set of coefficients for X and Y; that is, the xy
term is zero. This warp type requires at least three tiepoints and
limits the subsequent warp to rotation, scaling, reflection, and
skewing.

bilinear allows non-zero XY coefficients and requires at least four tiepoints.

quadratic requires six input tiepoints and returns a separable set of quadratic
coefficients.

biquadratic
requires nine tiepoints and returns a non-separable quadratic set of
coefficients.

33333333333333333333333333
AVS Module Reference Manual 75

calc warp coeffs3333333333333333333
N tiepoints

An integer dial that specifies the number of tiepoint pairs to generate.
This is used when there is no tiepoint input field, and tiepoints are being
generated interactively. The default is 3, 4, 6, or 9, depending upon the
type of warp. The maximum is unbounded.

set pick mode
A oneshot that sets the image viewer’s upstream mouse picking focus to
this module. It is used when interactively generating points.

Pick status A string "prompter" that guides the user through interactively selecting
warp initial XY tiepoint and destination XY tiepoint pairs. The number
of prompts depends upon the N tiepoints value. The center input con-
tains the polynomial warp coefficients.

OUTPUTS
Data Field (required; field 1D uniform 2-vector float)

The field containing the polynomial warp coefficients. It is a 1D uniform
2-vector float field. The first vector element contains the X polynomial
warp coefficients; the second vector element contains the Y polynomial
warp coefficients. This output is meant to be fed to ip warp’s center
input port.

image draw structure (optional)
The left output port contains the image draw structure that connects to
the image viewer module’s leftmost input port. It is optional if you
input a field of tiepoints. It is required when you interactively select
tiepoints.

EXAMPLE 1
This network shows the connections necessary to interactively generate tiepoints.
(The invisible, automatically created upstream connections between image viewer
and calc warp coeffs are not shown.)

READ IMAGE

|

|

|-------------|----|

| | |

CALC WARP COEFFS | |

| | | |

| |---------| | |

| | | |

| IP WARP |

| | |

|---------| | |

| |----|

IMAGE VIEWER

EXAMPLE 2
This network shows the tiepoints provided through a field.

33333333333333333333333333
76 AVS Module Reference Manual

calc warp coeffs3333333333333333333
READ FIELD READ IMAGE

| |

| |

| |-------------|

| | |

CALC WARP COEFFS |

| |

|---------| |

| |

IP WARP

|

|

IMAGE VIEWER

RELATED MODULES
ip warp

SEE ALSO
The example script Imaging/CALC WARP COEFFS demonstrates this module.

33333333333333333333333333
AVS Module Reference Manual 77

cfd values3333333333333333333
NAME

cfd values - calculate values for a field containing read plot3D data

SUMMARY
Name cfd values

Availability Unsupported module library

Type filter

Inputs field 1D, 2D, or 3D irregular 5-vector float

Outputs field 1- to 12-vector irregular same type as input

Parameters Name Type Default Min Max
Gamma float 1.4 1 5
Gas Const float 1 0 5
Value choice all
vector length integer 12 1 12

DESCRIPTION
cfd values takes the 5 vector irregular field, which read plot3D outputs, and derives
7 additional values for each point in the field. Thus, cfd values outputs a field of the
same type as its input field, but with a vector of up to 12 values at each field location.
Note that the input field must have a 5-vector at each location.

The field that cfd values receives from read plot3D has the following 5 values: den-
sity, X momentum, Y momentum, Z momentum, and stagnation.

From the these 5 values cfd values computes 7 new values: energy, pressure,
enthalpy, mach number, temperature, total pressure, total temp. The gamma con-
stant(γ) and the gas constant (R) are user controllable parameters, and the following
variables are defined:

U 1 = density

U 2 = x momentum

U 3 = y momentum

U 4 = z momentum

U 5 = stagnation

The equations used to derive the new values are as follows:

energy (E) =
U 1

U 53333

pressure (p) = (γ − 1)

U 5 −

2
133

U 1

(U2
2 + U3

2 + U4
2)333333333333333

enthalpy =
U 1

p3333

mach number (M) =
cU 1

(U2
2 + U3

2 + U4
2)1/2

33333333333333333

temperature (T) =
(U 1R)

p3333333

total pressure (p 0) = p (1 +
2

γ − 133333M 2) γ − 1
γ33333

33333333333333333333333333
78 AVS Module Reference Manual

cfd values3333333333333333333
total temp (T 0) = T (1 +

2
γ − 133333M 2)

Note that, in calculating the 7 derived quantities, cfd values uses the same assump-
tions about the non-dimensionality, or normalization, of data that the National
Aeronautics and Space Administration’s PLOT3D, and the read plot3D module
themselves use.

cfd values displays a set of buttons for specifying which values to include in its out-
put field. To specify the number of values in the output field, first select the desired
number of values using the "vector length" parameter. Then, pick which values to
include; cfd values will output when you have chosen vector length elements. Note
that, cfd values, actually only computes the values required by your selections.

INPUTS
Data Field (required; field 1D, 2D, or 3D irregular 5-vector float)

cfd values receives its input field from the module read plot3d. This is a
1D, 2D, or 3D irregular field, with a vector of 3 to 5 values at each field
location.

PARAMETERS
Gamma A floating point value between 1 and 5, which determines the value of

the (γ) constant. The formulas assume an ideal gas with a constant ratio
of specific heats, (γ). The default value is 1.4.

Gas Constant
A floating point value between 0 and 5, which determines the value of
the gas constant. The default value is 1.

Value A list of 12 buttons, displaying the names of the values that cfd values
computes. To specify that a specific value should be included in cfd
values’s output field, click on the value’s button. The field output by cfd
values can have between 1 and 12 values at each field location.

vector length
An integer dial, which specifies the number of data values at each loca-
tion in the field cfd values outputs.

OUTPUTS
Output Field (field 1- to 12-vector irregular same type as input)

The output field is the same type as the input data field. However, the
cfd values module computes up to 7 new values for each field location.
Thus, the output may have a vector of between 1 and 12 values at every
point in the field.

EXAMPLE
The following example shows how cfd values and read plot3d can be used. The
extract scalar on the right extracts one value from the 12-vector that cfd values out-
puts. isosurface computes the isosurface for this scalar output, and volume bounds
is used to draw a bounding box for the data. The left hand extract scalar module
extracts another value from cfd values output. This second scalar field is used to
color the isosurface. The color range module is used to scale the colormap to the
range of the extracted cfd value. This network will allow you, for example, to gen-
erate an isosurface of the density in a field, and then color this isosurface based on
the temperature values at each point on the isosurface.

33333333333333333333333333
AVS Module Reference Manual 79

cfd values3333333333333333333
READ PLOT3D

|

|

CFD VALUES

|

GENERATE COLORMAP |---------|--------|

| | |

| EXTRACT SCALAR EXTRACT SCALAR

| | |

|-----| |-------|----| |

| | | |---------|---------|

COLOR RANGE | | |

| | | VOLUME BOUNDS

|---------| | | |

| | | |

ISOSURFACE |

| |

|----------------------|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read plot3D
Modules that can process cfd values’s output:

isosurface
orthogonal slicer
hedgehog
bubbleviz
tracer

REFERENCES
Pieter Buening, PLOT3D Reference Manual.

SEE ALSO
The example scripts READ PLOT3D and CFD VALUES demonstrate the cfd values
module.

33333333333333333333333333
80 AVS Module Reference Manual

character string3333333333333333333
NAME

character string - send a user-entered string to one or more module(s) string parame-
ter port(s)

SUMMARY
Name character string

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data

Inputs none

Outputs string

Parameters Name Type Default
character typein off

DESCRIPTION
The character string module sends a single user-specified string to one or more string
parameter ports on one or more receiving modules. Its purpose is to make it possible
for a user to simultaneously control string parameter input to more than one module
using only a single string input widget.

Before you can connect character string to the receiving module, you must make that
receiving module’s parameter port visible. To make a parameter port visible, call up
the module’s Editor Window panel by pressing the middle or right mouse button on
the module icon dimple. Next, look under the "Parameters" list to find the parameter
you want to plug into. Position the mouse cursor over that parameter’s button and
press any mouse button. When the Parameter’s Editor Window appears, click any
mouse button over its "Port Visible" switch. A blue-green (teal) parameter port
should appear on the module icon. Connect this parameter port to the character
string module icon in the usual way one connects modules.

Note that the module file browser is functionally equivalent to character string. They
both allow you to send strings to one or more other modules. Conceptually, how-
ever, the strings sent by file browser will tend to be filenames. While those sent by
character string can be filenames, they are not limited to these.

PARAMETERS
character string (string)

The single string, specified through a string typein widget, to be sent to
the receiving module(s) filename string parameter port(s). The default
value is NULL.

OUTPUTS
string (string)

The string value is sent to all modules with string-type parameter ports
that are connected to the character string module.

EXAMPLE 1
The following network shows (a somewhat contrived) example of how the character
string module can be used to send a string constant to two different modules:

33333333333333333333333333
AVS Module Reference Manual 81

character string3333333333333333333
CHARACTER STRING

|

|-----------------------|

| |

READ IMAGE READ IMAGE

| |

| |

IMAGE VIEWER CONTRAST

|

|

IMAGE VIEWER

RELATED MODULES
Modules that can process character string’s output:

all modules with string-type parameter ports

SEE ALSO
The DEMO script cli.scr demonstrates the character string module.

33333333333333333333333333
82 AVS Module Reference Manual

clamp3333333333333333333
NAME

clamp – restrict values in data field to user-specified range

SUMMARY
Name clamp

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension n-vector any-data any-coordinates

Outputs field of same type as input

Parameters Name Type Default Min Max
clamp_min float 0.0 none none
clamp_max float 255.0 none none

DESCRIPTION
The clamp module transforms the values of a field as follows:

d Any value less than the value of the clamp_min parameter is set to clamp_min.

d Any value greater than the value of the clamp_max parameter is set to
clamp_max.

d All values within the clamp_min-to-clamp_max range are not changed.

After being clamp’ed, a data set’s values are all in this range:
clamp_min ≤ value ≤ clamp_max

If appropriate, clamp also changes the values of the min_val and max_val attributes
of the output field in accordance with the clamp_min and clamp_max values. clamp
works with uniform, rectilinear and irregular fields, whether they are vector or
scalar.

The statistics module can be used to determine the min_val and max_val of the
input field, so you can know what range is reasonable to clamp to.

Note the difference between the clamp and threshold modules:

d threshold sets values outside the specified range to be zero.

d clamp sets values outside the specified range to be the range’s minimum and
maximum values.

INPUTS
Data Field (required; field any-dimension n-vector any-data any-coordinates)

The input data may be any AVS field. It may be uniform, rectilinear or
irregular; and either vector or scalar.

PARAMETERS
clamp_min

A floating-point number that specifies the minimum output value.

clamp_max
A floating-point number that specifies the maximum output value.

OUTPUTS
Data Field (field same-dimension same-vectorsame-data same-coordinates)

The output field has the same dimensionality and type as the input field.

EXAMPLE
The following network reads in an AVS field. The statistics module is used to display
the field contents with and without clamping:

33333333333333333333333333
AVS Module Reference Manual 83

clamp3333333333333333333
READ FIELD

|

|--------------------|

| |

CLAMP STATISTICS

|

|

STATISTICS

RELATED MODULES
Modules that could provide the Data Field input:

read volume
any other filter module

Modules that could be used in place of clamp:
threshold

Modules that can process clamp output:
colorizer
any other filter module

Modules that tell you the range of data in the field:
statistics
print field
generate histogram

SEE ALSO
The example script CLAMP demonstrates the clamp module.

33333333333333333333333333
84 AVS Module Reference Manual

clip geom3333333333333333333
NAME

clip geom – specify arbitrary clipping planes for geometric objects

SUMMARY
Name clip geom

Availability UCD, Volume, FiniteDiff module libraries
requires arbitrary clipping plane support

Type data

Inputs none

Outputs geometry

Parameters Name Type Default Choices
clip plane choice Red Plane Red, Green, Blue, Cyan
Inside oneshot
Outside oneshot
Don’t Clip oneshot
Inherit oneshot
Reparent oneshot
Show Outline oneshot
Hide Outline oneshot

DESCRIPTION
The clip geom module allows the user to specify four clipping planes to the
geometry viewer module. Each clipping plane can have an arbitrary orientation and
position. When an object is clipped by a plane, only the geometry that lies on one
side of the clipping plane will be drawn.

The four clipping planes are named: Red Plane, Green Plane, Blue Plane and Cyan
Plane. Each clipping plane is defined as a normal geom object that is created the first
time that the clip plane is manipulated from the module. Clip planes initially appear
at 0,0,0 as the Y=0 plane. A graphical depiction of the clipping plane object can be
displayed using the Show Outline button and hidden using the Hide Outline but-
ton. The color of the clipping plane icon is red for the Red Plane, green for the
Green Plane, etc.

In order to cause an object to be clipped by the Geometry Viewer, you should first
make sure that the appropriate clip plane is selected in the clip plane choice menu
(e.g. Red Plane), then select the object whose clipping state you wish to modify using
the Geometry Viewer. Now you can modify the clipping state of the object by choos-
ing one of the four functions. The Inside function causes the clip plane to clip the
current object to one side of the plane. Outside causes the clip plane to clip the
current object to the other side of the plane. (At the clip plane’s initial Y=0 position,
Inside means that only the parts of objects with positive Y components are drawn
while Outside draws only the parts of objects with negative Y components.) The
Don’t Clip function says that the clip plane should not clip the object at all. The
Inherit function causes the clip plane to inherit the clip state for this clip plane from
its parent object.

For example, if the top-level object is the current object and you pick the Inside but-
ton, all objects will be clipped to the inside of the current clip plane. You might then
choose a child of top and select Don’t Clip. Now all objects will be clipped (because
they inherit the clip state of top) except for the child you chose, which will not be
clipped by the object.

33333333333333333333333333
AVS Module Reference Manual 85

clip geom3333333333333333333
Additionally, the current clip plane can be reparented to the current object by select-
ing the Reparent oneshot. This has the affect of concatenating the clip plane’s
transformation after the new parent’s transformation. This makes it possible to
manipulate the orientation of the clip plane either by transforming the parent object
(in which case the clip plane will move with the parent object) or by selecting the clip
plane directly (in which case it will move independently of the parent object).

The scale of the clipping plane object affects the size of the graphical representation
of the clipping plane only. It does not affect the way in which objects are clipped.

AVAILABILITY
clip geom requires that the underlying graphics renderer support arbitrary clipping
planes. Not all hardware renderers support arbitrary clipping planes (see the release
note information that accompanies AVS on your platform). The AVS software
renderer does support arbitrary clipping planes. If a renderer does not support arbi-
trary clipping planes, then the clipping planes will appear, and you can manipulate
them as described above, but the geometry objects will not actually be clipped. To
get the clipped objects on multi-renderer platforms, you can turn on the Software
Renderer button under the Geometry Viewer’s Cameras submenu.

PARAMETERS
clip plane The clip plane parameter specifies the current clip plane. All other func-

tions affect how the current clip plane interacts with the currently
selected geometric object. Available choices for this parameter are: Red
Plane, Green Plane, Blue Plane, Cyan Plane.

Inside This parameter causes the current clip plane to clip the current object to
the inside. At the clip plane’s initial Y=0 position, this draws only the
parts of the object(s) with positive Y components.

Outside This parameter causes the current clip plane to clip the current object to
the outside. At the clip plane’s initial Y=0 position, this drawns only the
parts of object(s) with negative Y components.

Inherit This parameter causes the current object to inherit the clip state for this
object from its parent object rather than assigning the clip state to itself.
The default clip state for each object is Don’t Clip.

Don’t Clip This parameter causes the current object not to be clipped by the current
clip plane.

Reparent This causes the current clip plane object to be reparented to the currently
selected object in the Geometry Viewer.

Show Outline
This button causes a graphical depiction of the current clip plane to be
displayed in the Geometry Viewer.

Hide Outline
This button causes the graphical display of the current clip plane to be
removed from the Geometry Viewer.

OUTPUTS
Geometry (geometry)

The output contains the clip plane specification information.

EXAMPLE 1
The following example will clip an object read into the Geometry Viewer through its
Read Object function.

33333333333333333333333333
86 AVS Module Reference Manual

clip geom3333333333333333333
CLIP GEOM

|

|

GEOMETRY VIEWER

EXAMPLE 2
The following example will clip a geometry entering the Geometry Viewer from an
upstream module.

any module that outputs a geometry

|

CLIP GEOM |

| |

|-------------|

|

|

GEOMETRY VIEWER

RELATED MODULES
geometry viewer

LIMITATIONS
The current clipping state is not displayed on the menu panel when a clip object is
selected.

Clip plane state is not saved/restored when a network is saved and restored.

33333333333333333333333333
AVS Module Reference Manual 87

color legend3333333333333333333
NAME

color legend – display color-to-data value mappings in geometry viewer window

SUMMARY
Name color legend

Availability Imaging, Volume, FiniteDiff module libraries

Type mapper

Inputs colormap

Outputs geometry

Parameters Name Type Default Min Max
Legend Control
position choice vertical
Reverse Colors boolean off
Legend Outline boolean off
Outline Gray

Scale int slider 255 0 255
Label Controls
Labels boolean on
Ticks boolean off
Number of

Ticks int slider 2 2 20
Label Height float slider 0.05 0.01 1.0
Decimal

Precision int slider 1 0 10
Label Gray

Scale int slider 255 0 255
Label Font int slider 0 0 20
Legend Position
X Position float slider -.78 -1.0 1.0
Y Position float slider -.45 -1.0 1.0
Z Position float slider .99 -1.0 1.0
Thickness float slider .05 .01 2.0
Length float slider 1.0 .01 2.0

DESCRIPTION
color legend shows the colormap-to-data value mapping in the geometry viewer
display window. It makes it easy to quickly identify which colors correspond to
which numeric values.

color legend creates a colored bar in the geometry viewer output window. The
colored bar shows the current composite colormap. The color legend can be overlaid
with tick marks and labels that show the data values that correspond to the colors.
The color legend can be vertical or horizontal, positioned within the geometry win-
dow, and made wider and/or longer.

INPUTS
position A pair of radio buttons that select the vertical or horizontal orientation

of the color legend. vertical is the default.

Reverse Colors
A boolean switch. If off, lower numbers are to the left/bottom of the
scale. If on, lower numbers are to the right/top of the scale. The default
is off.

33333333333333333333333333
88 AVS Module Reference Manual

color legend3333333333333333333
Legend Outline

A boolean switch that surrounds the color legend with a grayscale box
for appearance purposes. The default is off.

Outline Gray Scale
An integer slider that establishes the grayscale color of the color legend
outline, and the grayscale color of tick marks, if present. The range is 0
to 255. The default is 255 (white).

Labels A boolean switch. If on, the color legend is labeled with data values.
The labels are taken from the lower and upper bound values found in
the input colormap. These lower and upper bound values are esta-
blished by the hi value and lo value dials in the generate colormap
module (default 255 and 0), or—more typically—with the color range
module. (color range copies the field’s minimum and maximum data
values to the colormap, if present, or calculates the minimum and max-
imum. Thus, it scales the colormap to the data range.) The default is on.

Ticks A boolean switch. If on, tick marks are placed on the color legend above
each label. off is the default.

Number of Ticks
An integer slider that establishes how many labels and tick marks will
appear on the color legend. The color legend is divided into n-1 inter-
vals. The default is 2. The range is 2 to 20.

Label Height
A float slider that controls the size of the labels. Note that most systems
support a limited number of font sizes. Label Height selects the closest
actual font size available. The default is 0.05. The range is 0.01 to 1.0.

Decimal Precision
An integer slider. n is the number of places to right of the decimal point
to display in labels. The default is 1. The range is 0 (whole numbers
only) to 10.

Label Gray Scale
An integer slider that sets the grayscale color of the labels. The default is
255 (white). The range is 0 to 255.

Label Font An integer slider that picks the label font. The number to actual font
correspondence varies from platform to platform. The default is 0. The
hypothetical range is 0 to 20.

X Position
Y Position
Z Position Floating sliders that control the position of the color legend within the

geometry window in screen coordinates. X,Y=0 is the center of the win-
dow. X Position and Y Position define the left edge (if vertical) or bot-
tom (if horizontal) of the color legend. X Position defaults to -.78. Y
Position defaults to -.45. Their range is -1.0 to 1.0.

Z Position defines whether the color legend is in front of or behind
objects in screen coordinates. The default is .99 (in front). The range is
-1.0 to 1.0.

Thickness Floating slider to set the width of the color legend. The range is 0.01 to
2.0. The default is 0.05.

33333333333333333333333333
AVS Module Reference Manual 89

color legend3333333333333333333
Length Sets the length of the color legend. The default 1.0 is half the size of the

geometry window. The range is .01 to 2.0.

OUTPUTS
geometry (geometry)

The output is a geometry representing the color legend. This geometry
cannot be transformed using the geometry viewer.

EXAMPLE
This network places a color legend in the geometry viewer’s display window. Note
the use of color range to establish the correct data value range in the colormap.

READ FIELD

|

GENERATE COLORMAP EXTRACT SCALAR

| |

| |-----------|----------------|

COLOR RANGE | |

| | VOLUME BOUNDS

|-----|-------| | |

| ARBITRARY SLICER |

| | |

COLOR LEGEND | |

| | |

|---------------|----------------|

|

GEOMETRY VIEWER

RELATED MODULES
generate colormap
color range
field legend

SEE ALSO
The example script COLOR LEGEND demonstrates this module.

LIMITATIONS
color legend can only be automatically used with field data. The UCD module color-
izing apparatus does not store into the colormap’s upper and lower bound areas.
(They default to 0 to 255.) You can still use color legend to annotate UCD data if you
manually set the lo value and hi value dials on generate colormap’s control panel.

33333333333333333333333333
90 AVS Module Reference Manual

color range3333333333333333333
NAME

color range – scale AVS colormap to the range of data in a field

SUMMARY
Name color range

Availability Imaging, Volume, FiniteDiff module libraries

Type data

Inputs field any-dimension scalar any-data any-coordinates
colormap MODIFIES INPUT

Outputs colormap

Parameters none

DESCRIPTION
color range adjusts the minimum and maximum values of a colormap to those of an
AVS field, thus normalizing the colormap to the range of the data in the field. To do
this, color range examines a scalar AVS field to see if the minimum and maximum
data values are specified in the field’s data structure. If they are not, it calculates the
minimum and maximum values and stores them in the field’s data structure. In both
cases, color range also stores the minimum and maximum data values into its output
AVS colormap data structure.

Use color range whenever you have data that you want represented as colors, but
that data’s range of values is either not evenly distributed between 0 and 255, or
much of the data values lie outside the 0 to 255 range.

For example, your input field contains floating point values between the range 0 and
1. If you were to give this range of data values to one of the modules that produces
colors from numbers (e.g., arbitrary slicer or field to mesh) all of the numbers would
map to the same color. Because data coloring is done by using a byte value 0-255 to
index into the AVS colormap, all of these floating point values would map to the
number 1, and hence to the same color. In the default colormap this is the same blue.

Similarly, if you have data that lies in the range -55 to +500, all values outside the
range 0-255 will be "clamped" to the two boundary values and visual information
about the data’s true character will be lost.

Applying color range between the output of the generate colormap module and a
scalar version of your data field stores the range of your data values into the color-
map data structure. Modules downstream can use these minimum and maximum
values to scale their index into the colormap intelligently. A narrow range of data
values will be made to "fan out" across the whole colormap. A wide range of data
values will be scaled to fit within the 0-255 range without clipping outlying values.
Note, however, that this desirable effect does not occur just because color range is in
the network; it occurs because the downstream modules that receive the modified
colormap data structure have been written to make intelligent use of the new
minimum/maximum values color range generates.

INPUTS
Data Field (required; field any-dimension scalar any-data any-coordinates)

This is the AVS field whose field data structure will be scanned to see if it
already contains minimum and maximum data values. If it does, these
data values will be stored into the output colormap data structure. If it
does not, color range calculates the minimum and maximum values and
stores them into both the original AVS field’s data structure and the out-
put colormap. Because color range can modify the original AVS field,
data passing through this module is not shared.

33333333333333333333333333
AVS Module Reference Manual 91

color range3333333333333333333
Color Map (required; colormap)

This is the original AVS colormap. Any minimum or maximum values
that may have been set in the input colormap are ignored.

OUTPUTS
Color Map (colormap)

The output from color range is a new colormap containing the calculated
(or transferred from the input field data structure) minimum/maximum
data values.

EXAMPLE
The following network reads in a 3-vector field, i.e. every field location has 3 values
associated with it. The extract scalar module selects one of the fields values. color
range stores the field’s min and max values so that the colormap can be scaled to the
range of data in the field:

READ FIELD

|

GENERATE COLORMAP |

| |

| EXTRACT SCALAR

| |

| |-------------|

|---------| | |

| | |

COLOR RANGE ORTHOGONAL SLICE

| |

| |--------|

| |

FIELD TO MESH

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read field
extract scalar (for fields with vectors)

Modules that could provide the Color Map input:
generate colormap

Modules that can process color range output:
arbitrary slicer
bubbleviz
colorize
field legend
field to mesh
isosurface
probe

Modules that can be used instead of color range:
minmax

SEE ALSO
The example script COLOR RANGE demonstrates the color range module.

33333333333333333333333333
92 AVS Module Reference Manual

colorize geom3333333333333333333
NAME

colorize geom – assign vertex colors, vertex transparency and vertex UVW’s (for 3D
texture mapping) to vertices of a geometric object using a field and colormap.

SUMMARY
Name colorize geom

Availability Volume, FiniteDiff module libraries
requires vertex transparency and/or 3D texture mapping support

Type filter

Inputs geometry
field 3D scalar any-coordinates any-data
colormap (optional)
upstream transform (optional, invisible, autoconnect)

Outputs geometry
upstream transform (optional, invisible, autoconnect)

Parameters Name Type Default
Vertex Colors boolean on
Vertex Trans boolean off
Vertex UVW boolean off

DESCRIPTION
The colorize geom module assigns vertex colors and/or transparency and/or UVW
information to the vertices of a geometry that is passed as an input using an input
field and a colormap.

For vertex colors and transparency, the exact method for doing this is as follows: 1)
find where in the field the vertex lies (the points array in the field determines the
coordinate system of the field), 2) interpolate adjacent field values to determine the
value of the field at the vertex, 3) use that value as an index into the colormap to
obtain the color/transparency of the vertex. This method works for uniform, rectil-
inear and irregular data.

For the UVW’s required for 3D texture mapping, the module finds the location of the
vertex in the field and uses this to determine a value of between 0 and 1 for each of
U, V and W. If the vertex lies at the 0,0,0 corner of the field, it will be assigned a UVW
value of 0,0,0. If it is at the maximum of the three dimensions, it gets a UVW value of
1,1,1. All other values are interpolated inbetween. Note: this technique only pro-
duces correct values with uniform fields; the values and colors generated for rectil-
inear or irregular fields will not be accurate. Once UVW’s have been associated with
a geometric object, it can be used with 3D texture mapping. The generation of
UVW’s does not require a colormap connected to the colormap input port.

If the Vertex Colors parameter is on, the vertex colors are used for the object. If the
object already has vertex colors, the new vertex colors replace them.

If the Vertex Trans parameter is on, the "opacity" channel of the colormap is used to
determine the transparency of each vertex in the object. This can be adjusted using
the generate colormap module’s colormap editor opacity controls.

If the Vertex UVW parameter is on, the extent of the field is used to determine UVW
values at each vertex.

One notable use of this module is to combine viewing of multiple related scalar
values in the same view. For example, streamlines of velocity can be assigned vertex
colors based on pressure. Another example is a slice plane of temperature that is
displayed with vertex transparency based on pressure.

33333333333333333333333333
AVS Module Reference Manual 93

colorize geom3333333333333333333
Another use of vertex transparency is to cull out the rendering of data that is not
interesting to the visualization. With this module you could remove all parts of a
slice plane that have temperature less than a threshold value. In this way, this
module has a role similar to the thresholded slicer module but that it can apply to
any mapping technique and a continuous drop-off can be achieved rather than a sim-
ple binary classification (which will tend to introduce artifacts).

Vertex UVW’s can be used to map a 3D texture map onto a geometric object. 3D tex-
ture mapping is an alternative to using vertex colors for sampling within a 3D uni-
form volume. The main advantage of using 3D texture mapping over vertex colors
for this application is that texture mapping does not require a high-resolution mesh
to represent a high-resolution data set. As each polygon is drawn, the 3D texture
mapping algorithm chooses the closest color in the field for that pixel. Very high-
resolution data sets can be represented with low-resolution polygonal objects.

AVAILABILITY
There are two techniques in this module that require underlying graphics renderer
support: vertex transparency and 3D texture mapping. Vertex transparency and 3D
texture mapping are supported on only a few hardware renderers (see the release
note information that accompanies AVS on your platform). The software renderer
does support 3D texture mapping; it does not support vertex transparency. Where a
rendering function is not present, you can still use the other visualization options the
colorize geom module provides.

On renderers without vertex transparency, the opacity channel on the colormap edi-
tor will have no effect on the transparency/opacity of verticies when Vertex Trans is
selected—all will be opaque. On platforms without 3D texture mapping, the object
will appear white rather than colored if Vertex UVW is selected.

Where there are multiple renderers available, you can select Software Renderer on
the Geometry Viewer’s Cameras submenu to switch renderers. Otherwise, the
software renderer is the only renderer present.

INPUTS
Geometry (required; geom)

The geometry input provides the geometry on which the colorization
process operates. All attributes contained in the geometry structure are
passed through unmodified.

Data Field (required; 3D scalar field any-data any-coordinates)
The field data for the colorize geom module is used to determine the
value to index into the colormap to obtain the color/opacity to color the
vertex by. The points array in the field is used to determine the physical
coordinate system in which to correlate the vertices. This is true regard-
less of which type of field is used (uniform, rectilinear and curvilinear).

Color Map (optional; colormap)
The colormap may be of any size, but any entries beyond the 256th are
unused. If the colormap port is left empty a default grey-scale ramp is
used to generate vertex colors, and a default 0-1 opacity ramp is used to
generate vertex transparency.

upstream transform (optional, invisible; struct upstream_transform)
If any data changes on this input port, it will be passed on to the produc-
ing module. This port is generally invisible and is connected automati-
cally when a compatible module is connected to the geometry output
port. Through this port, the module receives the information from the
geometry viewer module necessary for direct mouse manipulation

33333333333333333333333333
94 AVS Module Reference Manual

colorize geom3333333333333333333
control of sampling objects. It will "forward" this information back up
the network to a mapper module that produces the sampling object
through its upstream transform output port (below).

OUTPUTS
Geometry (geom)

The geometry output port contains the geometry that has been colorized
and/or given vertex transparency.

upstream transform (invisible, struct upstream_transform)
This port is generally connected automatically when a compatible
module is connected to the geometry input port. It passes along any
upstream transform information that is received on the input port
directly.

EXAMPLE
The following example network can be used to assign vertex transparency to the ver-
tices in the arbitrary slicer. Since arbitrary slicer already assigns vertex colors, it is
redundant to use the Vertex Colors parameter in the colorize geom module so we
turn that parameter off and turn on the Vertex Trans parameter.

READ VOLUME

|

GENERATE COLORMAP |----------|

|-------------------------|------| |

| | ARBITRARY SLICER

| | |

|---------------------| | |-------|

| | |

COLORIZE GEOM

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read volume
read field
any module that produces a 3D scalar field

Modules that could provide the geometry input:
arbitrary slicer
hedgehog
isosurface
streamlines
contour to geom
field to mesh
scatter dots
threshold slicer

Modules that could provide the Color Map input:
generate colormap
color range

Modules that can process colorize geom output:
geometry viewer
render geometry

33333333333333333333333333
AVS Module Reference Manual 95

colorizer3333333333333333333
NAME

colorizer – convert field of data values to color values

SUMMARY
Name colorizer

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension scalar any-data any-coordinates
colormap

Outputs field any-dimension 4-vector byte any-coordinates

Parameters none

DESCRIPTION
The colorizer module converts the data at each point of a scalar field from the input
value (which can be any data type) to a color (4-vector of bytes). The conversion is
accomplished by using the input value as an index into a colormap:

aux
33333333333
33333333333 red value

33333333333
33333333333green value

33333333333
33333333333 blue value

33333333333
333333333331

aux
33333333333
33333333333 red value

33333333333
33333333333green value

33333333333
33333333333 blue value

33333333333
333333333332

aux
33333333333
33333333333 red value

33333333333
33333333333green value

33333333333
33333333333 blue value

33333333333
333333333333

aux
33333333333
33333333333 red value

33333333333
33333333333green value

33333333333
33333333333 blue value

33333333333
33333333333146

aux
33333333333
33333333333 red value

33333333333
33333333333green value

33333333333
33333333333 blue value

33333333333
33333333333147

aux
33333333333
33333333333 red value

33333333333
33333333333green value

33333333333
33333333333 blue value

33333333333
33333333333148

e.g. 147

11
1
1
13333333333311

1
1
133333333333

colormap

input value

output value333333333333333

colorizer accepts field of any type (byte, integer, real, double). However, the field of
colors output by colorizer contains only byte data.

INPUTS
Data Field (required; field any-dimension scalar any-coordinates)

The principal input data for the colorizer module is a field, which can be
of any dimensionality. The data at each point of the field may be of any
data type.

Color Map (optional; colormap)
The optional colormap may be of any size, but any entries beyond the
256th are unused. Default: If this input is omitted, a gray-scale color-
map is used (lo-value = black; hi-value = white).

OUTPUTS
Field of Colors (field any-dimension 4-vector byte any-coordinates)

Each input value is transformed into a color value, which is structured as
four bytes, as illustrated above. The red, green, and blue bytes specify a
true-color pixel value. The auxiliary byte is typically used to specify an
opacity value (lo-value = completely transparent; hi-value = completely
opaque).

The dimensionality of the output field is the same as that of the input
field. For byte input, the output field is four times as large as the input
field, since each byte (8 bits) is converted to a color value (32 bits).

The min_val and max_val attributes of the output field are invalidated.
The dimensions of the 4-vector output data are assigned the labels

33333333333333333333333333
96 AVS Module Reference Manual

colorizer3333333333333333333
"Alpha", "Red", "Green", and "Blue".

EXAMPLE
The following network reads in an AVS image, which is a 2D field of 4-vector bytes.
extract scalar takes one of the bytes, generating a 2D field with a single byte at each
location. These bytes are then translated back into colors by colorizer:

READ IMAGE

|

|

GENERATE COLORMAP EXTRACT SCALAR

| |

|---------------------| |

| |

COLORIZER

|

|

DISPLAY IMAGE

RELATED MODULES
Modules that could provide the Data Field input:

read volume
field to byte

Modules that could provide the Color Map input:
generate colormap

Modules that could be used in place of colorizer:
arbitrary slicer

Modules that can process colorizer output:
alpha blend
gradient shade
display image
tracer

SEE ALSO
Many of the AVS example scripts demonstrate the colorizer module.

33333333333333333333333333
AVS Module Reference Manual 97

colormap manager3333333333333333333
NAME

colormap manager – share colormaps among subnetworks

SUMMARY
Name colormap manager

Unsupported this module is in the unsupported library

Type data

Inputs none

Outputs colormap

Parameters Name Type
Colormap Manager colormap
Colormap Choices choice

DESCRIPTION
The colormap manager module produces an AVS colormap data structure, for use by
modules that transform input data into color values. These modules include:

colorizer
arbitrary slicer
bubbleviz
field to mesh
isosurface

colormap manager works exactly like generate colormap, with one exception:
separate active subnetworks, each with its own colormap manager module, share a
single "pool" of colormaps.

A menu of all the active colormaps appears in a choice menu below each colormap
manager’s editing widget. All the menus have the same entries — different maps can
be selected in different managers.

PARAMETERS
Colormap Manager

A colormap generator widget. See the generate colormap manual page
for details on using this widget.

Colormap Choices
A set of choices, listing each of the currently active colormaps.

OUTPUTS
colormap The output is an AVS colormap.

EXAMPLE
Suppose the following two subnetworks are active, created to slice through two dif-
ferent databases:

READ VOLUME READ VOLUME

| |

| |

COLORMAP MANAGER | COLORMAP MANAGER |

| | | |

COLORIZER COLORIZER

| |

ORTHOGONAL SLICER ORTHOGONAL SLICER

| |

DISPLAY IMAGE DISPLAY IMAGE

33333333333333333333333333
98 AVS Module Reference Manual

colormap manager3333333333333333333
Each colormap manager module has its own colormap editor control widget. Below
the two colormap editors are two choice menus:

+--------------------------+ +--------------------------+

| Active Colormaps | | Active Colormaps |

+--------------------------+ +--------------------------+

| ∗ colormap 0 | | colormap 0 |

+--------------------------+ +--------------------------+

| colormap 1 | | ∗ colormap 1 |

+--------------------------+ +--------------------------+

The same "pool" of colormaps is shown in each menu, but a different colormap is
currently selected for each subnetwork.

By default, each new colormap manager that is instantiated from the module Palette
has it’s own unique colormap editor. You can click on the colormap 0 button for the
second subnetwork in order to have both subnetworks use the same colormap:

+--------------------------+ +--------------------------+

| Active Colormaps | | Active Colormaps |

+--------------------------+ +--------------------------+

| ∗ colormap 0 | | ∗ colormap 0 |

+--------------------------+ +--------------------------+

| colormap 1 | | colormap 1 |

+--------------------------+ +--------------------------+

Now, editing the colormap in either colormap manager module is reflected in both
subnetworks.

You can extend the sharing of colormaps to any number of currently active subnet-
works. Each must have its own colormap manager module.

NOTE
colormap manager modules are used in both the AVS2 Image Viewer and AVS2
Volume Viewer subsystems. However, these subsystems are no longer a supported
part of the AVS release.

33333333333333333333333333
AVS Module Reference Manual 99

combine scalars3333333333333333333
NAME

combine scalars – combine scalar fields into a vector field

SUMMARY
Name combine scalars

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension scalar any-data any-coordinates (channel 0 — optional)
field any-dimension scalar any-data any-coordinates (channel 1 — optional)
field any-dimension scalar any-data any-coordinates (channel 2 — optional)
field any-dimension scalar any-data any-coordinates (channel 3 — optional)

Outputs field same-dimension 1D–4D same-data

Parameters Name Type Default Min Max
Vector Len Dial 4 1 4

DESCRIPTION
The combine scalars module combines up to four fields with scalar data values into a
field whose data values are vectors. The input field must be of like dimension and
the scalar values must be of the same type.

This module is generally most useful for constructing images or gradient fields from
separately computed components.

The inputs ports on this module’s Network Editor icon are processed right-to-left:
the rightmost port contributes a value to the first element (lowest memory location)
of each output vector; the leftmost port contributes a value to the last element
(highest memory location) of each output vector.

If the selected scalars have labels and/or units associated with them, those labels will
be carried over to the newly constructed vector.

INPUTS
None of the input fields is absolutely required, but at least one of them must be pro-
vided. If an input field is omitted, zero values may be output in the corresponding
element of each output vector, depending on the vector dimension set by Vector
Length.

Channel 0 (optional; field any-dimension scalar any-data any-coordinates)
The rightmost input port. A set of values to be output in the first dimen-
sion of the output vectors.

Channel 1 (optional; field any-dimension scalar any-data any-coordinates)
A set of values to be output in the second dimension of the output vec-
tors.

Channel 2 (optional; field any-dimension scalar any-data any-coordinates)
A set of values to be output in the third dimension of the output vectors.

Channel 3 (optional; field any-dimension scalar any-data any-coordinates)
The leftmost input port. A set of values to be output in the fourth dimen-
sion of the output vectors.

PARAMETERS
Vector Length

Specifies the dimension of the output vectors—1 – 4.

33333333333333333333333333
100 AVS Module Reference Manual

combine scalars3333333333333333333
OUTPUTS

Field (field same-dimension 1D–4D same-data)
The scalar input streams are assembled into a single output stream con-
sisting of vectors, whose dimension is specified by Vector Length. The
coordinate type (e.g. uniform, rectilinear, or irregular) of the output field
is the same as the leftmost, nonempty input field. The field’s min_val,
max_val, veclen, label, and unit are updated.

EXAMPLE 1
The following network performs contrast stretching on only the red band of an
image.

READ IMAGE

|

____________________|____________________

| | |

EXTRACT SCALAR[red] EXTRACT SCALAR[green] EXTRACT SCALAR[blue]

| | |

CONTRAST | |

|________________ | ________________|

| | |

COMBINE SCALARS (channel 0 not used)

|

DISPLAY IMAGE

EXAMPLE 2
The following network swaps the green and blue bands of an image:

READ IMAGE

|

____________________|____________________

| | |

EXTRACT SCALAR[red] EXTRACT SCALAR[green] EXTRACT SCALAR[blue]

|______________ |______ _________|

| | |

| /---- | ----’

| | |

COMBINE SCALARS

|

DISPLAY IMAGE

RELATED MODULES
extract scalar

SEE ALSO
The example script CONTRAST demonstrates the combine scalars module.

33333333333333333333333333
AVS Module Reference Manual 101

compare field3333333333333333333
NAME

compare field – compare two AVS fields, display and write data difference

SUMMARY
Name compare field

Availability Imaging, Volume, FiniteDiff module libraries

Type data output

Inputs field any-dimension n-vector any-data any-coordinates
field same-dimension same-vector same-data same-coordinates

Outputs none

Parameters Name Type Default Min Max
Do Compare oneshot off
Max Elements integer 100 1 1000
Output File typein /tmp/cfield_...

DESCRIPTION
The compare field module compares any two identically-structured AVS fields. It
will print out differences between the headers if they are different. If the headers are
the same, it will proceed to do a comparison of the data contents of the two fields. If
the fields are not identical in their data components, compare field will print the
message, "fields are DIFFERENT", to standard output.

The output of the compare is a list of up to Max Elements data differences. The
results of the compare are both displayed in an Output Browser widget in the con-
trol panel and written to a file.

The Output Browser in which compare field displays its output can be resized, like
any other widget, using the AVS Layout Editor. For a detailed description of how to
do this, see the section titled "Layout Editor," in the chapter "Advanced Network Edi-
tor" of the AVS User’s Guide.

compare field was originally written to make sure that two identical modules, one
written in C and one written in Fortran, produced the same results. It could also be
useful to compare the contents of a field before and after an operation has been per-
formed on it.

INPUT
Input Field 1 (required; field any-dimension n-vector any-data any-coordinates)

The input AVS field can be 1, 2, 3, or 4 dimensional; it can be vector or
scalar, can contain byte, int, float or double data, and can have uniform,
rectilinear, or irregular coordinates.

Input Field 2 (required; field any-dimension n-vector any-data any-coordinates)
The second AVS input field must match the first in the number of dimen-
sions (Ndim), the size of each dimension (Dims), the number of coordi-
nate dimensions (Nspace), the vector length (Veclen), the data type (byte,
float, double, etc.), and the type of coordinate system (uniform, rectil-
inear, curvilinear), if a comparison of the two fields’ data is to be done.

PARAMETERS
Do Compare

A oneshot "do it now" switch that triggers the actual comparison after
both input fields exist.

Max Elements
An integer dial that controls how many of the data differences to display
in the Output Browser and write to the output file. The allowable range

33333333333333333333333333
102 AVS Module Reference Manual

compare field3333333333333333333
is -1 (none) to 1000. The default is 100. compare field compares the
entire fields, until this limit is reached.

Output File
An ASCII typein for specifying the output file. By default, compare field
writes to a file in the /tmp directory called cfield_nnnn (where nnn is the
process id of the compare field module. The Output File is rewritten
whenever any of the other parameters or input files change. Since the
Output Browser is limited in size, this output file can be useful to exam-
ine directly, using a conventional text editor.

EXAMPLE 1
The following network reads an image into an AVS field. One version of the image
goes directly to compare field, the other is passed through a contrast filter. The
"before" and "after" images are compared and the different alpha, red, green, blue
values at each pixel are listed.

read image

|

|

-------------|

| |

contrast |

| |

--------| |

| |

compare field

RELATED MODULES
ip compare
print field

LIMITATIONS
compare field writes to /tmp by default. This can cause problems if: (1) there is no
/tmp mounted on your system, or (2) the /tmp directory does not have very much
room in it or has inaccessible protections.

SEE ALSO
The example script COMPARE FIELD demonstrates the compare field module.

33333333333333333333333333
AVS Module Reference Manual 103

composite3333333333333333333
NAME

composite – blend two images using alpha transparency

SUMMARY
Name composite

Availability Imaging module library

Type filter

Inputs field 2D uniform 4-vector byte (foreground image)
field 2D uniform 4-vector byte (background image)

Outputs field 2D uniform 4-vector byte (blended image)

Parameters none

DESCRIPTION
The composite module takes the contents of the foreground image’s alpha channel
(the image’s opacity) and uses it to blend the foreground image over the background
image. The equation for this blending is:

red = (Foreground(red) ∗ ALPHA) + (Background(red) ∗ (1.0 - ALPHA))
green = (Foreground(green) ∗ ALPHA) + (Background(green) ∗ (1.0 - ALPHA)
blue = (Foreground(blue) ∗ ALPHA) + (Background(blue) ∗ (1.0 - ALPHA)

where ALPHA is the foreground image’s alpha channel byte value. If the two inputs
are reversed, the alpha of the new foreground image will be used.

INPUTS
Image (required; field 2D uniform 4-vector byte)

The right input port on the module receives the foreground image.

Image (required; field 2D uniform 4-vector byte)
The left input port on the module receives the background image. The
size of the background image must be identical to the size of the input
image.

OUTPUTS
Image (field 2D uniform 4-vector byte)

The blended image of the two input images.

EXAMPLE 1
The following network reads an image, computes its luminance, (gray scale intensi-
ties) uses that to create an alpha mask, generates a shaded background, and compo-
sites the rendered image over the shaded background image.

33333333333333333333333333
104 AVS Module Reference Manual

composite3333333333333333333
READ IMAGE

|

__________________________|

| | |

BACKGROUND LUMINANCE |

| | |

| CONTRAST |

| |------| |

| REPLACE ALPHA

| |

|----------------------| |

COMPOSITE

|

DISPLAY IMAGE

RELATED MODULES
Modules that could provide the foreground Image input:

read image
replace alpha

Modules that could provide the background Image input:
background

Modules that can process composite output:
image viewer
display image

See also background, luminance, replace alpha, contrast, and extract scalar.

SEE ALSO
The two BACKGROUND example scripts demonstrate the composite module.

33333333333333333333333333
AVS Module Reference Manual 105

compute gradient3333333333333333333
NAME

compute gradient – compute gradient vectors for 2D or 3D data set

SUMMARY
Name compute gradient

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field 2D/3D scalar byte any-coordinates

Outputs field same-dimension 3-vector real same-coordinates

Parameters Name Type Default Min Max
2D Height float 0.5 0.0 1.0
Flip toggle on off on

DESCRIPTION
The compute gradient module computes the gradient vector at each point in a 2D or
3D field of data. The gradient is can be used (e.g. by gradient shade) as a "pseudo
surface normal" at each point.

A "nearest neighbor" approach is used to compute the gradient: in each direction, the
component of the gradient vector is the difference of the next data and the previous
data. In two dimensions, this can be pictured as follows:

11
1
13333333311

1
133333333

x,y-1
11
1
13333333311

1
1333333331
1
1
13333333311

1
133333333

x-1,y
11
1
13333333311

1
133333333

x,y
11
1
13333333311

1
133333333

x+1,y
11
1
13333333311

1
133333333

11
1
13333333311

1
133333333

x,y+1
11
1
13333333311

1
1333333331
1
1
13333333311

1
133333333

3333333333333333333333
positive X direction

1
1
1
1
1
1
1
1
1
1
1

positive
Y

direction

∆zx,y = 2D height (<−− for 2D data)

∆zx,y,z = datax,y,z −1 − datax,y,z +1 (<−− for 3D data)

∆yx,y = datax,y −1 − datax,y +1

∆xx,y = datax −1,y − datax +1,y

This is backwards from the standard definition of a gradient which usually subtracts
the previous value from the next. This was done because the standard defintion
yields gradients in which the Z componant will typically point in the negative direc-
tion. While the standard definition is better known, the definition of "gradient" as
used by this module produces more useful images since the Z componant of the gra-
dient now points towards the eye instead of away from it. However, for the purists,
there is a button called Flip (on by default) which lets you disable this "feature" and
produce a typical gradient.

This module is slightly different from the vector grad module in a second respect.
Since the intent of this module is to produce gradients useful to lighting calculations,
the vectors are automatically normalized.

33333333333333333333333333
106 AVS Module Reference Manual

compute gradient3333333333333333333
INPUTS

Data Field (required; field 2D/3D scalar byte any-coordinates)
The input field may be either 2D or 3D. The data at each point of the
field must be a single byte. The byte values will be interpreted as
integers in the range 0..255.

PARAMETERS
2D Height (appears for 2D data only) Supplies the Z-coordinate of the gradient. It

can be used the change the apparent height of the surface. A value of 1.0
is generally a very "rough" or "noisy" surface, whereas values approach-
ing 0.0 will show little effect for shading.

Flip This toggle (on by default) causes the "correct" gradients to be flipped so
that the Z axis generally points towards the eye, making gradients which
are more useful for computing lighting calculations. If the "real" gradient
is desired, then this button can be turned off and the gradients will not
be flipped.

OUTPUTS
Data Field (field same-dimension 3-vector real same-coordinates)

The output field has the same dimensionality as the input field. For each
element, the output data is a 3D vector of reals, representing the 3D gra-
dient.

The min_val and max_val attributes of the output field are invalidated.

EXAMPLE 1
The following network shades a 2D image:

READ IMAGE

|--------------

EXTRACT SCALAR | (choose 1 (= red))

| |

COMPUTE GRADIENT |

| _________|

| |

GRADIENT SHADE

|

DISPLAY IMAGE

EXAMPLE 2
The following network fragment shows how to get the same results as compute gra-
dient using other modules:

READ FIELD

|

FIELD TO FLOAT

|

VECTOR GRAD

|

FIELD TO MATH (multiply by -1.0)

|

VECTOR NORM

EXAMPLE 3
The following network shades a 3D image:

33333333333333333333333333
AVS Module Reference Manual 107

compute gradient3333333333333333333
READ VOLUME GENERATE COLORMAP

|----------------| |

| |--------| |

COMPUTE GRADIENT COLORIZER

| .______________________|

|---------| | |

| GRADIENT SHADE

| |

|--------------| |

| TRACER

| |

| |

| DISPLAY TRACKER

|-----------|

RELATED MODULES
compute shade
gradient shade
display image (for two-dimensional data)
alpha blend (for three-dimensional data)
extract scalar (to get a single scalar height field from an image)
vector grad (to compute non-normalized true gradients)
vector norm (to normalize vector fields)

LIMITATIONS
There may be algorithms better than "nearest-neighbor" for computing the gradient.

This module produces 12 bytes per pixel (voxel). For example, a 128 x 128 x 128 byte
volume is about 2.1 MB before the gradient is computed. The compute gradient
module produces a 25.2 MB internal data set from this data. This will have an
adverse performance effect on systems whose physical memory is limited and may
even exceed the available swap space.

SEE ALSO
The example scripts ANIMATED FLOAT and HEDGEHOG demonstrate the com-
pute gradient module.

33333333333333333333333333
108 AVS Module Reference Manual

compute shade3333333333333333333
NAME

compute shade – combined colorizer/compute gradient/gradient shade module

SUMMMARY
Name compute shade

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field 2D|3D scalar byte any-coordinates
colormap (optional)
field 2D scalar float uniform (optional, transform, autoconnect)

Outputs field same-dims 4-vector byte

Parameters Name Type Default Min Max
ambient float dial 0.10 0.00 1.00
diffuse float dial 0.80 0.00 1.00
specular float dial 0.00 0.00 1.00
gloss float dial 20.00 0.00 50.00
lt theta float dial 0.00 unbounded unbounded
lt off_ctr float dial 0.00 -90.00 90.00
2D height float dial 0.5 0.00 1.00

DESCRIPTION
This module combines the functions of the colorizer, compute gradient, and gra-
dient shade modules into a single, memory efficient module. These modules are
used primarily to make shaded, ray traced images. The problem is that they are
highly inefficient in terms of memory allocation:

d colorizer takes in 1 byte per voxel and outputs 4 bytes per voxel.

d compute gradient takes in 1 byte per voxel and outputs 12 bytes (3 floats).

d gradient shade outputs 4 bytes per voxel.

These three modules together produce 20 bytes for every input data set byte. It is for
this reason that some people have experienced problems trying to render ray cast-
ings of large data sets. The tracing code itself is fairly computationally efficient; most
of the system resources go to swapping data, rather than computing the image.

The compute shade module does gradient computation, colorizing, and shading on a
per slice basis. It takes less time than running the original three modules in
sequence.

compute shade is useful for extremely large data sets (> 100 ∗ 100 ∗ 100 voxels) that
consume a system’s memory.

INPUTS
Data Field (required; field 2D|3D scalar byte any-coordinates)

The input data set to be shaded.

Colormap (optional; colormap)
The colormap input is optional. However, without it the image is grey
scale with a linear opacity map

Data Field (optional; field 2D scalar float uniform)
This is a 4x4 transformation matrix that normally comes from either
display tracker’s upstream data or euler transformation or track ball.
Without this input, the light source is calculated as coming from the
(object’s) positive Z direction. This input port will connect automatically
if the module immediately downstream outputs this same

33333333333333333333333333
AVS Module Reference Manual 109

compute shade3333333333333333333
transformation.

PARAMETERS
ambient The contribution of ambient (uniform background) lighting to the color.

When this is set to 0.0, all surfaces facing away from the light source are
black. When this is set to 1.0, surfaces appear in their own colors, with no
shading information present. The range is 0.0 to 1.0; the default is 0.10.

diffuse The contribution of diffuse (directional) lighting to the color. The range
is 0.0 to 1.00; the default is 0.80.

specular The contribution of specular lighting to the color. The range is 0.0 to 1.0;
the default is 0.0.

gloss The sharpness of the specular highlight. The larger this value, the smaller
and sharper the specular highlights. The range is 0.0 to 50.0; the default
is 20.0.

lt off-ctr The angle between the light source and the positive Z axis. (The positive
Z axis is perpendicular to the plane of the screen.) The range is 0.0 to 1.0;
the default is 0.0.

lt theta The angle between (1) the projection of the light source on the XY plane
and (2) the positive Y axis. This value measures how much an off-center
light source "swings around" the Z-axis. The range is unbounded; the
default is 0.0.

With lt theta = 0.0 and lt off-ctr = 0.0, the light source is coming straight
from the eye perpendicular to the data. A positive lt off-ctr value moves
the light source up (in the positive Y direction); a negative value moves it
down.

2D height (appears for 2D data only). Supplies the Z-coordinate of the gradient. It
can be used to change the apparent height of the surface. A value of 1.0
is generally a very rough or "noisy" surface, whereas values approaching
0.0 will show little effect for shading.

The equation for calculating the intensity of light reflected by a spot of surface is:

(intamb ∗ ambient) + (intdiff ∗ diffuse ∗ cos(phi)) + (intdiff ∗ specular ∗ cosgloss(lt off-ctr))

In performing this computation, compute shade:

d Assumes that intamb and intdiff are both maximal (1.0).

d Uses lt theta and lt off-ctr to compute phi, the angle between the surface normal
(gradient vector) and the light source. The quantity cos(phi) is the attenuation
(reduction) factor for the directional (diffuse) light.

d Computes the quantity cosgloss(lt off-ctr), the attenuation factor for the specular
highlight.

OUTPUTS
Data Field (field same-dims 4-vector byte)

Each voxel becomes a colorized, shaded voxel. The output has the same
dimensions as the input. 2D output can be sent to image viewer. 3D
output can be sent to the tracer or cube modules.

EXAMPLE 1
This is the fastest way to generate a lighted color image from a uniform byte field.
Note the upstream transform connections from display tracker to tracer, relayed up
to compute shade. These connections occur automatically.

33333333333333333333333333
110 AVS Module Reference Manual

compute shade3333333333333333333
GENERATE COLORMAP READ VOLUME

|_______ _______|

| |

|------| | |

| COMPUTE SHADE

| |

|---------| |

| TRACER

| |

| DISPLAY TRACKER

|-------|

EXAMPLE 2
This is a good network for making a ray traced animation where the volume rotates,
and the light source stays fixed relative to the eye. The animated float module con-
trols one of the axis parameters for euler transformation (this gives the rotation).
The image viewer’s Action menu is used to store the frames of the flipbook anima-
tion.

This may take a while for large data sets since, for every angle, the compute shade
module will refire. To avoid this, disconnect the euler transformation module from
compute shade. The disadvantage to this is that the light source stays fixed relative
to the object, not the eye.

GENERATE COLORMAP READ FIELD

ANIMATED FLOAT | |

| | ________________|

EULER TRANSFORMATION | |

|_______________ | |

| | | |

| COMPUTE SHADE

|__________________ |

| |

TRACER

|

IMAGE VIEWER

RELATED MODULES
colorizer
compute gradient
gradient shade

SEE ALSO
The module man pages for colorizer, compute gradient, and gradient shade.

The example scripts COMPUTE SHADE and TRACER demonstrate the compute
shade module.

33333333333333333333333333
AVS Module Reference Manual 111

contour to geom3333333333333333333
NAME

contour to geom – create geometry of 2D or 3D scalar field contour slices

SUMMARY
Name contour to geom

Availability Imaging, Volume, FiniteDiff module libraries

Type mapper

Inputs field 2D/3D scalar any-data any-coordinates

Outputs geometry

Parameters Name Type Default Min Max
threshold float dial 128.0 unbounded unbounded

DESCRIPTION
The contour to geom module finds and creates contour lines of similar value in a
scalar field, then outputs the result as an AVS geometry. The contour lines can be
disjoint. The threshold parameter controls the contour level. contour to geom han-
dles 2D and 3D datasets, and uniform, rectilinear, and irregular grids.

INPUTS
Data Field (required; field 2D/3D scalar any-data any-coordinates)

The input field is 2D or 3D scalar field, containing any data, using any
coordinate system.

PARAMETERS
threshold A floating point dial that controls what value the contour lines are

created for. The default is 128.0. This parameter is unbounded, with no
minimum or maximum.

OUTPUTS
Geometry The contour lines are represented as an AVS geometry.

EXAMPLE 1
The following network finds a contour on the red channel of the mandrill.x image.

READ IMAGE

|

EXTRACT SCALAR

|

CONTOUR TO GEOM

|

GEOMETRY VIEWER

EXAMPLE 2
The following network finds the magnitude of a vector field and contours it.

33333333333333333333333333
112 AVS Module Reference Manual

contour to geom3333333333333333333
READ FIELD

______________|____________

| |

VECTOR MAG |

| |

| VOLUME BOUNDS

| |

CONTOUR TO GEOM |

|-------------|-----------|

|

GEOMETRY VIEWER

RELATED MODULES
ip contour

Modules that can process contour to geom output:
geometry viewer
render geometry

SEE ALSO
Two CONTOUR GEOMETRY example scripts demonstrate the contour to geom
module.

33333333333333333333333333
AVS Module Reference Manual 113

contrast3333333333333333333
NAME

contrast – perform linear transformation on range of field values

SUMMARY
Name contrast

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension n-vector any-data any-coordinates

Outputs field of same type as input

Parameters Name Type Default Min Max
cont_in_min float 0.0 none none
cont_in_max float 255.0 none none
cont_out_min float 0.0 none none
cont_out_max float 255.0 none none

DESCRIPTION
The contrast module transforms all the values in a field. Two different types of
transformation take place:

d Linear transform: All values that fall within the "input range" specified by the
cont_in_min and cont_in_max parameters are transformed linearly to the "out-
put range" cont_out_min .. cont_out_max.

new_value =
cont_in_max − cont_in_min

(cont_out_max − cont_out_min) ∗ (value − cont_in_min)333 + cont_out_min

(More precisely, this is an affine transformation.) In essence, this transformation
"stretches" or "compresses" one specified range of data to fit another specified
range.

d All values that fall outside the specified input range are "clamped" to the limit
values of the output range.

The contrast module typically is used to remove low-level noise from images and
volumes, or to increase the contrast in faded images and volumes.

INPUTS
Data Field (required; field any-dimension n-vector any-data any-coordinates)

The input data may be an AVS field of any dimensionality.

PARAMETERS
cont_in_min

Specifies the bottom of the range of input values that will be transformed
linearly.

cont_in_max
Specifies the top of the range of input values that will be transformed
linearly.

cont_out_min
Specifies the bottom of the range of output values. All values ≤
cont_in_min will be transformed to this value.

cont_out_max
Specifies the top of the range of output values. All values ≥ cont_in_max
will be transformed to this value.

33333333333333333333333333
114 AVS Module Reference Manual

contrast3333333333333333333
OUTPUTS

Data Field The output field has the same dimensionality and type as the input field.

If the input field has byte values, appropriate new min_val and max_val values are
written to the output field.

EXAMPLE 1
The following diagram shows how field values are transformed given these parame-
ters:

cont_in_min = 100
cont_in_max = 500
cont_out_min = 3000
cont_out_max = 6000

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

33

33

33

33333333

333333336000

3000

100 500
Inputs

Outputs

You can use contrast to make a negative out of an image by "flipping" the output
values (e.g. cont_out_min = 255; cont_out_max = 0).

EXAMPLE 2
The following network reads in an image, extracts the red, green and blue channels,
contrast stretches only the red channel, and then uses combine scalars to pack the
seperate channels back into an image.

READ IMAGE

|

|----------------------|----------------------|

| | |

EXTRACT SCALAR EXTRACT SCALAR EXTRACT SCALAR (red)

| | |

| | |

| | CONTRAST

| | |

|----------------------|----------------------|

|

COMBINE SCALARS

|

|

DISPLAY IMAGE

33333333333333333333333333
AVS Module Reference Manual 115

contrast3333333333333333333
RELATED MODULES

ip linremap
Modules that could provide the Data Field input:

read volume

SEE ALSO
The example script CONTRAST demonstrates the contrast module.

33333333333333333333333333
116 AVS Module Reference Manual

convolve3333333333333333333
NAME

convolve - apply a signal processing filter to 2D field

SUMMARY
Name convolve

Availability Imaging module library

Type filter

Inputs field 2D n-vector any-data any-coordinates (image)
field 2D scalar float uniform(convolution filter)

Outputs field of same type as input

Parameters Name Type Default
normalize boolean on

DESCRIPTION
convolve takes a signal processing filter and applies it to a source field to produce a
destination image. Typically, the source and destination fields will be AVS images,
but they might also be 2D slices of 3D fields. Filters can be produced by the module
generate filters or by user-written modules.

Convolution is a frequently used technique in signal and image processing. Apply-
ing a "high pass" filter, such as a Laplacian, to an image will emphasize edges in the
image. On the other hand, a "low pass" filter, such as a Gaussian, will smooth
images. These techniques can be helpful in removing artifacts from images, and in
compensating for the inherently discrete nature of digital data.

The filter must be a 2D array of floating-point values. The source field must also be
2D, but it can hold any size vector of any data-type. The field output by convolve
will be the same type as the source field. The filter must be smaller than the field it is
being applied to. convolve typically normalizes filters to the range 0 to 1 before
applying them to an image.

Filters are applied as follows, taking a typical case in which a small, 10x10 filter is
applied to a larger, 256x256 image: One can imagine the filter sitting on top of the
source image centered on one pixel in the image, say (45,45). Each of the 100 values in
the filter array is multiplied by the value of the pixel beneath it. These 100 products
are then added together, and their sum becomes the value of the pixel at (45,45) in
the destination image. Then the filter is shifted so that it is centered over the next
pixel. This process is repeated to produce each element in the output image.

This approach is known as the "sliding window" method. It is an N x M algorithm,
where N is the number of elements in the convolution filter and M is the number of
elements in the image. As a result, it is recommended that filters be small; larger
filters (i.e. above 12x12) require a great deal of computation.

convolve accepts data of any type. In the case of an image, which is a 2D field of vec-
tors each containing 4 bytes, convolve disregards the alpha bytes and separates the
red, green and blue bytes. Then it applies the filter separately to each color field,
before reassembling the bytes into image format. In the case of non-image data, for
example a 2D field of 5-vector floats, convolve handles one component of the vector
at a time. All data-types are converted to floats during computation and then con-
verted back in convolve’s output.

To avoid edge effects, a border around the perimeter of the source field is not con-
volved. The border’s width is half the width of the filter.

33333333333333333333333333
AVS Module Reference Manual 117

convolve3333333333333333333
INPUTS

Data Field (required; field 2D n-vector any-data any-coordinates)
A 2D AVS field, typically an image, to be convolved. The field is input
through the right input port.

Filter Field (required; field 2D scalar float uniform)
A 2D AVS field of floating-point scalar values. Filters can be created by
using the module generate filters, which produces Gaussian, Laplacian,
and other filters. Alternately, you can write your own modules to gen-
erate filters. Filters are input through the left input port.

PARAMETERS
normalize (toggle)

If normalize is selected, filters are normalized such that the sum over all
the elements in the filter equals 1. In other words, each element in the
filter is divided by the sum.

OUTPUTS
Output Field

The output field is the same type as the input data field.

EXAMPLE
The following network reads in an image and a filter, convolves the two, and
displays the resulting image:

GENERATE FILTERS READ IMAGE

| |

|-------------| |------------|

| |

CONVOLVE

|

|

IMAGE VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read image
pixmap to image
orthogonal slicer
any other module which outputs a 2D field

Modules that could provide the Filter input:
generate filters
any (user written) module which outputs a 2D scalar float field

Modules that can process convolve output:
display image
image viewer
any other module which takes a 2D field as input

Modules that could be used instead of convolve:
ip convolve

SEE ALSO
The example scripts CONTRAST, GENERATE FILTERS, and SOBEL demonstrate the
convolve module.

33333333333333333333333333
118 AVS Module Reference Manual

create geom3333333333333333333
NAME

create geom – generate & manipulate geometry objects such as lines, arcs, surfaces

SUMMARY
Name create geom

Availability UCD, FiniteDiff module libraries

Type data

Inputs upstream geometry (required, invisible, autoconnect)
upstream transform (required, invisible, autoconnect)

Outputs geometry
field 3D irregular float (sampler field)

Parameters Name Type Default
Action Menu choice ADD
SubAction Menu choice DONE
Output Samplers boolean false
Output Object choice none

DESCRIPTION
The create geom module allows the user to interactively create geometry objects such
as Points, Polylines, Arcs, Circles, Surfaces, Revolutions, and Extrusions. It also pro-
vides a set of operations to modify created objects, such as Insert Vertex into Poly-
line, Close Polyline, Move Vertex, Move Object, Flip Normals of the Surface, and
Delete object.

The objects create geom creates can be used for any purpose. One particularly useful
application is to use the objects as samplers for the various vector mapping modules.
The create geom module can output a sampler field that contains verticies of all or
only the current geometry object. This field can be used as an optional input to the
hedghog, streamlines and particle advector modules.

MODES
The create geom module provides three different modes of user interaction with the
Geometry Viewer window: Pick Mode, Select Mode and Normal Mode.

Picking
Some operations, like ADD and MODIFY require "picking" a location in the
Geometry Viewer window. For example, the sequence ADD, Point puts the module
into the Pick Mode. To pick, press (or hold down while moving) the left mouse but-
ton. It is important to notice that picking works only on the existing geometry objects.
This means that to add objects, the user must have some other geometry objects
already drawn in the Geometry Viewer window. For example, the generate grid
module can be used to create coordinate planes.

Selecting
Some operations, like CONSTRUCT, MODIFY, and DELETE require "selecting" an
object that they will be applied to. To select an object, set the Select button in the
SubAction Menu. This puts the module into Select Mode. Next, point to an object in
the Geometry Viewer window and press (or hold down while moving) the left
mouse button. The selected object is colored in red. The selected obect becomes the
Current Object.

There are also operations, like MODIFY, Move Object that require selecting both an
object and a vertex on the object. Pointing to an object while in Select Mode makes
the closest vertex of the Current Object become the Current Vertex. The Current

33333333333333333333333333
AVS Module Reference Manual 119

create geom3333333333333333333
Vertex is marked with the red "+" symbol.

The module mantains the Current Object and Current Vertex when switching
between operations in the Action menu and the SubAction menu.

Normal
To "unselect" Current Object and Current Vertex, set DONE in the SubAction menu.
This puts the module into the Normal Mode. In Normal Mode, you can use Geometry
Viewer operations to control the objects.

ADD
Selecting ADD in the Action Menu brings up the SubAction Menu to create Point,
Polyline, Arc 3 point, or Circle 3 point objects.

For example, selecting Polyline puts the module into Pick Mode. It expects you to
pick a location in the Geometry Viewer window on the existing geometry. The
module will interpret this location as the next vertex of the polyline. A sequence of
picking in the Geometry Viewer window will produce the segments of the polyline.
Note that if the Current Vertex was already selected, the module will use it as the
starting vertex of the polyline.

Switching to Arc 3 point in the SubAction menu causes the module to add an arc to
the current polyline. The first point of the arc will be the end of the current polyline
(Current Vertex), and the user must pick two more points.

CONSTRUCT
The CONSTRUCT option in the Action menu creates surfaces from existing poly-
lines and arcs. By default, it puts the module into Select mode. You have to select an
existing polyline or arc (or combination of both). After selecting an object, you use
the SubAction menu to choose the type of surface to generate:

Surface will create a surface bounded by the selected polyline.

Revolution
will create a surface of revolution from a selected object about a specified
axis.

Extrusion will extrude a selected object in the specified direction with the specified
length. It also can scale the cross section of the extrusion with a given
scale. The number of cross sections is controled by the N segment
parameter.

Cap Surface
creates "caps" for extrusions and revolutions. The Current Object should
be an extrusion or revolution surface. The Current Vertex defines the
location of the cap surface. The cap surface will be made a child object of
the parent extrusion or revolution, which means it will be transformed
with its parent.

MODIFY
The MODIFY option in the Action Menu changes existing objects. By default it puts
the module into Select mode. You must select an existing object.

Insert Vertex
will create a new vertex at the picked location and insert it before or after
the Current Vertex of the Current Object.

Close Polyline
connects the last vertex of the polyline to its first vertex.

33333333333333333333333333
120 AVS Module Reference Manual

create geom3333333333333333333
Move Object

moves the Current Object from the Current Vertex location to the picked
location.

Move Vertex
moves the Current Vertex of the Current Object to the picked location.

Flip Normals
changes the orientation of the Current Object.

DELETE
The DELETE option in the Action Menu deletes objects. By default it puts the
module into Select mode. You must select the object you want to delete. Then,
choose Delete Object in the SubAction menu.

REDRAW
The REDRAW option just redisplays all the existing objects.

INPUTS
Upstream geometry (required, invisible, autoconnect)

A data structure from the geometry viewer module that supplies the left
mouse button picking information create geom needs. Note that this is
required, and that the connection will be made automatically and invisi-
bly with the geometry viewer module. The information may be relayed
through the vector mapping module.

Upstream transform (required, invisible, autoconnect)
A data structure from the geometry viewer module that supplies the
object transformation information create geom needs. Note that this is
required, and that the connection will be made automatically and invisi-
bly with the geometry viewer module. The information may be relayed
through the vector mapping module.

PARAMETERS
Action Menu

The choice of operations: ADD, CONSTRUCT, MODIFY, DELETE, or
REDRAW.

SubAction Menu
This menu is different for each of the Action menu selections. See the
descriptions above.

Output Samplers
A boolean that controls whether or not to output a sampler field. The
default is off.

Output Object
Chooses between Current Object and All Objects for output of a
sampler field.

axis Chooses which axis, X, Y, or Z, that Extrusion will use for direction, or
Revolution will use for rotation.

Tolerance A float dial used by Arc, Circle, and Revolution. Specifies the maximum
deviation of the arc segment from the line segment with which it is
approximated.

Length Specifies the length of an Extrusion.

33333333333333333333333333
AVS Module Reference Manual 121

create geom3333333333333333333
Scale Specifies the scale factor for the last cross section Extrusion.

Nsegement
Specifies the number of the intermediate cross sections of an Extrusion.

OUTPUTS
Geometry (geom)

The output is a geometry containing the created objects.

Sampler Field (field 3D Irregular)
The output is a sampler field containing the locations of the verticies of
the geometry objects. This field can be used as an optional input to the
hedghog, streamlines, and particle advector modules. Output
Samplers must be selected to produce this field.

EXAMPLE 1
The following network is used to draw a simple geometry. The resulting geometries
are saved permanently using the geometry viewer’s Save Object button. The gen-
erate grid module is necessary to create some geometry in the output window (in
this case verticies and lines) that can be picked, so that create geom can position its
objects in space. This person is also using set view to quickly line up their view of
the grid on the X, Y, and Z axis.

CREATE GEOM GENERATE GRID

| |

|----------|-----| SET VIEW

|

GEOMETRY VIEWER

EXAMPLE 2
The following example uses the create geom module to generate sample points that
are located on an isosurface. These sample points are used as input to the stream
lines module. Thus, one generates streamlines upon an isosurface.

CREATE GEOM READ FIELD

| |

| ----------------------

| | |

| EXTRACT VECTOR EXTRACT SCALAR

| | |

|----------| | ISOSURFACE

| | |

STREAM LINES |

| |

|----------------------|

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that can process create geom’s output:

tube
geometry viewer

Modules that can be used with create geom:
generate grid

33333333333333333333333333
122 AVS Module Reference Manual

create geom3333333333333333333
set view
streamlines
particle advector
hedgehog

33333333333333333333333333
AVS Module Reference Manual 123

crop3333333333333333333
NAME

crop – extract subset of elements from a field

SUMMARY
Name crop

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field 2D/3D n-vector any-data any-coordinates

Outputs field of same type as input

Parameters Name Type Default Min Max
min x int 1st indx 1st indx last indx
max x int last indx 1st indx last indx
min y int 1st indx 1st indx last indx
max y int last indx 1st indx last indx
min z int 1st indx 1st indx last indx
max z int last indx 1st indx last indx
size to fit toggle off off on

DESCRIPTION
The crop module changes the size of a field by extracting the data within a specified
range of elements. This process is analogous to "cropping" a photographic image.

This module is useful for subsampling the data without changing it (e.g. by interpo-
lation). It preserves the resolution of the data, but may change its aspect ratio. Typi-
cal uses are to eliminate uninteresting portions of the data and to increase processing
speed by reducing the amount of data.

Once a field is input to crop, the module’s min and max dials are set to the min and
max indices of the field’s data array. From then on the dials cannot be turned lower
than the min index, or higher than the max index (min cannot equal max, and min
must be less that or equal to max-1). If you use the Dial Editor to change these values
they would "snap back" to their original values. This makes sense, because you can
only take a subset from the field within the field’s array indices.

When the minx and max dials are set to the same value, crop first tries to set
max=max+1. If max is already at its maximum index, then crop sets min=min-1.

INPUTS
Data Field (required; field 2D/3D n-vector any-data any-coordinates)

The input data may be any AVS field.

PARAMETERS
Note that the parameters indicate positions of elements in the field — they have noth-
ing to do with the values of field elements.

min x Specifies the lower bound array index in the field’s first dimension.

max x Specifies the upper bound array index in the field’s first dimension.

min y Specifies the lower bound array index in the field’s second dimension.

max y Specifies the upper bound array index in the field’s second dimension.

min z (Does not appear for 2D input data sets) Specifies the lower bound array
index in the field’s third dimension.

max z (Does not appear for 2D input data sets) Specifies the upper bound array
index in the field’s third dimension.

33333333333333333333333333
124 AVS Module Reference Manual

crop3333333333333333333
size to fit In the default mode, crop does not change the extent information in the

output field structure. This is because you may wish to merge cropped
interpretations of a data with interpretations of the original data. By
retaining the original extent information, the cropped version of the data
causes the Geometry Viewer to adjust its extents appropriately. The
points array contains the actual cropping information. With uniform
fields, when the size to fit button is turned on, the points array gets
copied to the extents array which has the effect of causing the Geometry
Viewer to scale the window to exactly fit the cropped data rather than
the extents of the original, uncropped data.

OUTPUTS
Data Field The output field has the same dimensionality as the input field, but the

number of elements in each dimension is reduced.

The min_val and max_val attributes of the output field are invalidated.

EXAMPLE 1
The following network reads a 2D field (image), crops it and displays the result:

READ IMAGE

|

|

CROP

|

|

DISPLAY IMAGE

EXAMPLE 2
Suppose you want to process the middle third of a field that contains an 500x300
pixel image:

11
1
13333333333311

1
13333333333311
1
13333333333311

1
13333333333311
1
13333333333311

1
133333333333

11
1
13333333333311

1
13333333333311
1
13333333333311

1
13333333333311
1
13333333333311

1
133333333333

11
1
13333333333311

1
13333333333311
1
13333333333311

1
13333333333311
1
13333333333311

1
133333333333

(0,0)

(500,300)

min y

max y

min x max x

167 333

100

200

Set the x-axis and y-axis parameters as follows:
min x = 167
max x = 333
min y = 100
max y = 200

RELATED MODULES
Modules that could provide the Data Field input:

read volume
filter modules

Modules that could be used in place of crop:
downsize
interpolate
average down

33333333333333333333333333
AVS Module Reference Manual 125

crop3333333333333333333
Modules that can process crop output:

colorizer
gradient shade
arbitrary slicer
orthogonal slicer
any other filter module

LIMITATIONS
crop works for 2D and 3D data sets only.

SEE ALSO
The example script CROP demonstrates the crop module.

33333333333333333333333333
126 AVS Module Reference Manual

cube3333333333333333333
NAME

cube – perform ray-traced volumetric rendering on volume data

SUMMARY
Name cube

Availability Volume, FiniteDiff module libraries

Type mapper

Inputs field uniform 3D byte scalar
struct substances (substance table, optional)
field 2D scalar float (transformation matrix, optional, autoconnect)
field 2D scalar float (light source transformation matrix, optional)

Outputs field 2D uniform 4-vector byte (image)

Parameters Name Type Default Min Max
Mode choice texture
width int typein 64
height int typein 64
outline toggle on
shaded toggle on
trilinear toggle off
xrot float 0.0 -180.0 180.0
yrot float 0.0 -180.0 180.0
zrot float 0.0 -180.0 180.0
distance float 0.0 0.0 100.0

DESCRIPTION
cube belongs to a family of modules (along with x-ray and tracer) that render volume
data. cube takes a volume, which can be visualized as a block of cubic "voxels"
(volume elements), and generates a 2D image using ray tracing. Each voxel in the
volume has color and opacity values associated with it. This module is an AVS
module version of the SunVoxel tool called ’cube’ found in the SunVision visualiza-
tion package.

There are four modes of rendering with cube: texture, maximum, ray cast, and create
surfaces. texture mode is similar to the AVS module brick in that it shows only the
texture-mapped exterior surfaces of the volume. maximum mode is similar to the
maximum option of the x-ray module except that cube allows for off-axis rotations.
ray cast and create surfaces mode are ray casting algorithms for rendering surfaces at
different density levels. The surfaces are classified as substances by their value. Sub-
stances are specified by using the edit substances module.

The ray casting method is as follows. For each pixel in the output image a ray is
"shot" into the volume. A substance table, supplied by the edit substances module,
is used to define the voxel intensity levels to which the intersecting rays are sensitive.
Each voxel the ray passes through is evaluated to see if the intensity level has left one
substance classification and entered another. If this is determined to have happened,
then a surface is assumed to exist at that point and is rendered according to the sur-
face properties defined in the substance table.

This renderer is most effective when used on data which is readily classified into dis-
tinct material types. In medical imaging, these types might correspond to "skin",
"muscle", and "bone". In non-destructive evaluation, the types might be described for
"air", "engine wall", "engine interior". If the data is more continuous, such as tem-
perature in a room, then the tracer module may be more appropriate since it deals
better with continuous, rather than discrete data.

33333333333333333333333333
AVS Module Reference Manual 127

cube3333333333333333333
Volumetric rendering allows you to penetrate beneath the surface of 3D data, and see
depths surrounded by "translucent" outer layers. The degree of opacity and color for
each substance can be controlled by changing their values in the substance table.

Another feature of cube is an optional oblique slicing plane. The plane’s position can
be controlled with three sliders (one for each cardinal axis) for orientation and one
slider for distance into the volume. All the rendering modes are affected by this slice
plane. Typically, you go into the fast texture mode to set the position of the slice
plane and then switch over to one of the more expensive modes for a clearer picture.

INPUTS
Data field (required; field 3D byte scalar)

The input data must be a scalar 3D uniform byte field. Data from other
formats may be converted using the extract scalar module (for N-vector
data), or the field to byte module (for data which is not initially in byte
format).

Substance Table (optional; struct substance)
This is a user defined data type (specified in
$AVS_PATH/include/substances.h) which contains the substance table infor-
mation necessary for the ray-cast and create_surfaces renderering
modes. Although you can supply your own substance table, it is easier
to use the table provided by the edit substances module.

Transformation matrix (optional; field 2D scalar float, autoconnect)
The center port on cube can receive a 4x4 transformation matrix describ-
ing rotations and translations to apply to the volume data. This matrix
(field 2D scalar float) can come from an appropriate downstream module
such as display tracker, or from the euler transformation or track ball
modules. These mechanisms allow you to rotate the volume in 3-space.

For example, when the cube module is connected to the display tracker
module in a network, display tracker sends a transformation matrix
back to this port on cube. This allows you to directly manipulate the
volume by moving the mouse in display tracker‘s window, using the
"virtual spaceball" paradigm. For a more detailed description of direct
manipulation see the section titled "Transforming Objects" in the
"Geometry Viewer" chapter of the AVS User’s Guide.

Light source transformation matrix (optional; field 2D scalar float)
The leftmost port on cube can receive a 4x4 transformation matrix
describing rotations and translations to apply to the light source. This
matrix (field 2D scalar float) can come from an appropriate downstream
module such as display tracker, or from the euler transformation or
track ball modules. These mechanisms allow you to rotate the light
source around in 3-space. The light source is only used when the shaded
option is selected and is never used when rendering in maximum mode.

PARAMETERS
Rendering Mode (choice: texture, maximum, ray cast, create surfaces)

These are the four rendering modes produced by this module.

texture texture maps the data onto the exterior surfaces of the volume.
This is similar to the AVS brick module.

maximum mode is similar to the maximum option of the x-ray module
except that cube allows for off-axis rotations. It selects the maximum
value encountered for each ray as it passes through the volume.

33333333333333333333333333
128 AVS Module Reference Manual

cube3333333333333333333
ray cast and create surfaces mode are ray casting algorithms for rendering
surfaces at different density levels. The use the Substance Editor to
define what levels, colors, and opacities those surfaces are at.

create surfaces mode takes longer to render initially because it is storing
the list of surfaces encountered by each ray. It can then use this informa-
tion in subsequent renderings to allow you to rapidly change surface
opacities and colors without "re-rendering" the entire scene. If you
change orientation, add new surfaces, or change the intensity level for
any of the existing surfaces, then it does the initial (longer to compute)
set up again.

width (integer typein)
Value which determines the width in pixels of the output image.
Another way of thinking of this is the width determines the number of
rays that will be projected into the volume along the x direction. This
changes the shape of the window through which you view the volume.

Note: Downstream modules such as display tracker have controls that
will enlarge the image in the output window without computing at
higher resolution.

height (integer typein)
Value which determines the height in pixels of the output image.
Another way of thinking of this is the height determines the number of
rays that will be projected into the volume along the y direction. This
changes the shape of the window through which you view the volume.

outline (toggle)
Allows you to draw a white wireframe box around the exterior of the
volume. This is on by default.

shaded (toggle)
Toggles between performing shading computations against the derived
surfaces or just using the assigned surface color. This is on by default.
There is little computational overhead involved with performing these
shading computations.

trilinear (toggle)
Allows you to select between sampling the volume using a fast, nearest
neighbor (point) sampling technique (the default) or choosing a more
accurate trilinear sampling. When on, it takes roughly four times longer
to compute an image. This method produces a more accurate rendering
of the volume.

xrot (float point slider)
This slider controls the rotation of an oblique slice plane through the
data set. In particular, xrot controls the rotation of the slice plane around
the x-axis (the horizontal one).

yrot (float point slider)
This slider controls the rotation of an oblique slice plane through the
data set. In particular, yrot controls the rotation of the slice plane around
the y-axis (the vertical one).

zrot (float point slider)
This slider controls the rotation of an oblique slice plane through the
data set. In particular, zrot controls the rotation of the slice plane around
the z-axis (the clockwise one facing the screen).

33333333333333333333333333
AVS Module Reference Manual 129

cube3333333333333333333
dist (float point slider)

This slider control the distance into the volume that the oblique slice
plane passes. This dial can be used in combination with the xrot, yrot,
and zrot dials.

OUTPUTS
Data Field (field 2D uniform 4-vector byte)

The output field is an AVS image.

EXAMPLE 1
The following network reads a scalar 3D uniform byte field (a volume) and ray traces
it. The module euler transformation allows you to rotate the volume to produce
views from any angle. If the input was not originally byte values, it could be con-
verted with the field to byte module. Note: Because the edit substances module is
not present, the ray-cast and create-surfaces mode cannot be used.

READ VOLUME

EULER TRANSFORMATION |

| |

|----------------------------| |

| |

CUBE

|

DISPLAY IMAGE

EXAMPLE 2
The following network is similar to the previous, except that this network uses the
module display tracker, which allows you to directly manipulate the volume being
viewed by moving the mouse. display tracker feeds information on the mouse’s
movements back to cube through its center input port through an invisible upstream
transformation connection.

Also, the edit substances module is now being used to create a substance table so
that the ray-cast and create-surfaces rendering modes can be used. The output from
edit substances can also be fed into field legend so that the substance table can be
viewed relative to the voxel values they represent.

READ FIELD

|

EDIT SUBSTANCES _______|

|_______|____ |

| ____| | |

| | CUBE

| | |

FIELD LEGEND DISPLAY TRACKER

RELATED MODULES
Modules that could be used in place of cube:

brick
excavate brick
x-ray
tracer

Modules that could provide the Substance Table input:
edit substance

Modules that could provide the Data Field input:
read volume

33333333333333333333333333
130 AVS Module Reference Manual

cube3333333333333333333
read field
any other module which outputs a 3D byte scalar field.

Modules that could provide the Transformation Matrix input:
euler transformation
track ball
display tracker (using upstream data)

Modules that can process cube’s output:
display tracker
display image
image viewer
image to postscript
any other module which takes an AVS image as input.

SEE ALSO
$AVS_PATH/include/substances.h contains the substance table user defined data
definition.

The example script CUBE demonstrates the cube module.

33333333333333333333333333
AVS Module Reference Manual 131

data dictionary3333333333333333333
NAME

data dictionary – read external data file using a form specification

SUMMARY
Name data dictionary

Availability Imaging, UCD, Volume module libraries

Type data

Inputs none

Outputs field

Parameters Name Type Default
Select Data File Browser
read form toggle false
header information oneshot false
send data oneshot false
Browser for File n toggle false

DESCRIPTION
Using a data form specification created with the file descriptor module, the data dic-
tionary module reads in an external format data file and converts it into an AVS
field.

The general order of the operations is:

1. Press the read form button. This attaches the file browser to the read form func-
tion.

2. Use the Select Data File browser to specify a data form file. Upon selecting or
typing in a filename, the data form will be read.

3. Data forms require one or more input files. For example, there may be one input
file containing data, and another input file containing coordinate information.
The number of input files required is shown by the number of Browser for File n
buttons.

For each input file required, press Browser for File n and then use the Select
Data File browser to establish which actual file corresponds to file n. Work
down the list establishing these logical file to real file correspondences. No data
will be read yet.

4. If you wish, examine the contents of the data form with the header information
function. If the data form specifies that part of the input parsing instructions will
come from the input file itself (e.g., the dimensions of the data), then the input
file(s) will be read in at this point according to the correspondences established in
step 3.

5. When all logical file to real file correspondences have been defined, press the
send data button to actually read the input data file(s) and convert it to an AVS
field using the rules in the data form.

PARAMETERS
Select Data File

A file browser widget. This file browser is shared among the read form
and Browser for File n parameters. The correct order to select these
options is: specify which other parameter the file browser will represent
by pressing one of read form or the various Browser for File n parame-
ters. Then, select a file using this file browser widget.

33333333333333333333333333
132 AVS Module Reference Manual

data dictionary3333333333333333333
read form A toggle button that sets the current state of the data file browser. After

this is selected, use the Select Data File browser to specify a form file to
read. It will be read immediately upon specification. You must read in a
form before you can logically specify a Browser for File, because the
data form may contain definitions for multiple input files.

header information
A oneshot button that displays a scrolling list with the field header infor-
mation of the file being read in.

send data A oneshot button that causes the data to be read from the external file(s)
and converted into a field. This field is then output on the module’s out-
put port.

Browser for File n
A set of buttons that set the current state of the data file browser. First
press one of these Browser for File n buttons, then use the Select Data
File browser to define which real file will be used as file n. Specify a log-
ical file to real file correspondence for each required input file.

OUTPUTS
Data Field (field)

The output is the field containing data held by the external data file
being read.

EXAMPLE
There are example forms for the data dictionary module in the directory
$AVS_PATH/data/adia. The example form dat_format can be used to read in AVS .dat
format files. The example form x_format can be used to read in AVS .x format files.

This simple example displays an image.
DATA DICTIONARY

|

DISPLAY IMAGE

RELATED MODULES
file descriptor

SEE ALSO
The "AVS Data Interchange Application" discussion in the AVS Applications Guide
describes using file descriptor and data dictionary to import external format data
files into AVS.

33333333333333333333333333
AVS Module Reference Manual 133

Data Viewer3333333333333333333
NAME

Data Viewer – simplified pulldown menu interface to build AVS networks

SUMMARY
Name Data Viewer

Type data output

Inputs none

Outputs none

Parameters none

DESCRIPTION
The Data Viewer is a simplified user interface to the Application Visualization
System’s most commonly-used scientific visualization techniques.

You normally construct visualization networks with the Network Editor. The indivi-
dual modules required to perform the visualization are selected from the Network
Editor’s Palette, dragged one-by-one into the Workspace, then connected together.

The Data Viewer takes an alternate approach to network construction. Rather than
building networks manually, the Data Viewer provides a pulldown menu interface
from which you select input, filtering, mapping, and data output techniques. Each of
these choices represents a predefined subnetwork. Behind the scenes, the Data
Viewer automatically selects the corresponding modules and constructs the visuali-
zation network.

This approach preserves a large measure of the flexibility and dyanamics of the Net-
work Editor, while eliminating much of the detail knowledge of network structure,
data types, and mouse button mechanics required to use it.

The Data Viewer’s predefined visualization techniques can manipulate uniform and
curvilinear, scalar and vector field data, as well as unstructured cell data (UCD). It is
primarily useful to the new AVS user learning visualization techniques, terminology,
and the AVS interface.

The Data Viewer module does not connect to other modules in a network through
standard data flow connections Rather, it performs its functions by sending CLI
commands to the AVS kernel.

The Data Viewer can also be invoked as an application from the main AVS Applica-
tions menu.

SEE ALSO
The Data Viewer is fully described in the AVS Applications Guide.

RELATED FILES
The Data Viewer uses networks found in $AVS_PATH/networks/dv. The menus are
defined in $AVS_PATH/networks/dv/data_viewer.men.

33333333333333333333333333
134 AVS Module Reference Manual

dialog box3333333333333333333
NAME

dialog box – use a long dialog box to create a long string

SUMMARY
Name dialog box

Type data (coroutine)

Inputs none

Outputs string

Parameters Name Type Default
Edit boolean off

DESCRIPTION
The dialog box module creates long strings that are sent as parameters to down-
stream modules that accept string parameters. These strings are useful as long
expressions, lists of integers, etc., where the normal string typein widget provided by
the downstream module is too short. (Typein widgets do not scroll.)

To connect the string output, you will need to make the downstream module’s string
parameter port visible. The module must be instantiated. Click on the module icon’s
dimple to raise its Module Editor. Click on the string parameter in question to raise
the Parameter Editor. Lastly, click on Port Visible.

PARAMETERS
Edit Press the Edit switch to raise a dialog box on the screen. Place the cursor

in the dialog box and enter the string. Ctrl-U deletes the entire string.
Enter or clicking OK in the dialog box sends the string to the down-
stream module and takes down the dialog box.

OUTPUTS
string The output data is a string.

RELATED MODULES
character string
float
integer
boolean

EXAMPLE
This network creates a long title in the geometry viewer.

READ GEOM

|

DIALOG BOX |

| |

LABEL |

| |

|----------|

|

GEOMETRY VIEWER

SEE ALSO
The example script DIALOG BOX demonstrates this module.

33333333333333333333333333
AVS Module Reference Manual 135

display image3333333333333333333
NAME

display image – show image in a display window

SUMMARY
Name display image

Availability Imaging, Volume, FiniteDiff module libraries

Type data output

Inputs field 2D 4-vector byte uniform

Outputs none

Parameters Name Type Default Min Max
Magnification choice x1 x1 x16
Automag_Size (internal) integer 256 50 1024
Max Image Dimension (internal) integer 1280 100 4096
Dither choice dither

DESCRIPTION
The display image modules takes an input image and displays it in a display win-
dow. This window has a pulldown menu, accessed via the small square in the
window’s title bar. The menu allows you to control image magnification, window
resizing, and other options relating to the display window.

When the image is larger than the display window, you can scroll it with the mouse,
either by "dragging" the image itself or by using horizontal and vertical scrollbars.

You can resize the display window manually, using the X Window System window
manager. You can also have the window resize itself automatically, in response to a
change in the image contents or a magnification selected from the display window’s
pulldown menu.

Note that when running avs as a remote client on a pseudocolor X terminal, display
image has an additional choice parameter for selecting the "dithering" method. For
details about running avs on an X server, and dithering colors on pseudocolor
machines, see the discussion on Color X Servers in the AVS User’s Guide.

Note that the display image window can be reparented to page and stack widgets
using the AVS Layout Editor.

INPUTS
Data Field (required; field 2D 4-vector byte uniform)

The input field must be in the AVS image format.

PARAMETERS
Magnification

A choice to specify a power of 2 (1,2,4,8,16) by which to multiply each
dimension of the image.

Automag_Size
(for internal use only) This is used as a communications port to handle
resizing of the image. Do not change this parameter.

Maximum Image Dimension
(for internal use only) This parameter is no longer used in AVS4. It has
been kept solely for the purpose of backward compatibility. See descrip-
tion below.

Dither (only appears when running avs on pseudocolor X terminals)
A choice of five dithering methods. These improve the appearance of
color graphics displayed on pseudocolor terminals.

33333333333333333333333333
136 AVS Module Reference Manual

display image3333333333333333333
d dither uses an internal dither mask to simulate colors that are "between" the

colors actually available on a pseudocolor terminal.

d floyd steinberg generates better pictures than an ordered dither, but it is slower.

d random uses an randomly generated dither mask to simulate colors that are
"between" the colors actually available on a pseudocolor terminal.

d monochrome computes the luminance of the colors in the input image, by com-
bining the red, green, and blue values for each point, according to a linear rela-
tion. The luminance values are then used to find a greyscale equivalent for each
pixel. Selecting monochrome converts the color image into a monochrome
image, resembling a black and white photograph.

d none each color in the input image is approximated by the closest color in the
spectrum of colors actually available on a pseudocolor terminal.

MAGNIFICATION
You can magnify an image for closer examination, although the magnified image will
provide no new detail. Magnification is implemented by duplicating the pixels in the
original image. The result is "blockier" but provides a closer look at the image. There
are several magnification levels (x1,x2,x4,x8,x16) in the pulldown menu, with the
current magnification marked as (selected).

Since display image now only requests X window resources for the actual displayed
window area, the Maximum Image Dimension parameter is no longer used.

RESIZING
The display window can be resized in several ways. You can use the X window
manager’s resize window operation to enlarge or shrink the display window. An
approximate image magnification is automatically chosen that makes the image at
least as large as the window. (This is now only done if the ImageAutomagnify .avsrc
option is enabled). For a more detailed description of .avsrc options, see the avs man
page.

The ImageAutomagnify parameter reenables the automatic magnification of the
image to at least fill the window when the window is resized, as was the default
behavior in AVS2. By default, this is disabled, because the combination of autofit and
automagnification can produce unexpected window behavior.

Also see the image viewer module, which has continuous scale magnification.

The pulldown menu also provides several ways to resize the window to certain fixed
sizes:

d Zoom Full Screen. Resizes the window to fill the square working area of the
screen (approximately 1024 x 1024), and magnifies the image to fit. If the win-
dow is embedded in a page or stack (see Layout Editor in the Network Editor
chapter), it becomes a top-level window that can be freely resized and moved
using the X window manager.

d Resize to Fit Image. Resizes the window to fit the image exactly at the current
magnification. (The maximum size window is the full screen window described
above.) As with Zoom Full Screen, an embedded display window becomes a
top-level window.

d Unzoom. Resizes and moves the window to return to its location before a Zoom
Full Screen or a Resize to Fit Image. If the window originally was embedded in
a page or stack, it will be re-embedded there.

33333333333333333333333333
AVS Module Reference Manual 137

display image3333333333333333333
d AutoFit - Turn On/Off. This toggle switch controls the automatic fitting of the

display window size to its image. When this feature is enabled (the default),
display image automatically resizes the display window whenever the image
size changes. This can occur when you select a new magnification or when an
entirely new image is input to display image. The new display window size
exactly fits the new image size (unless the window is currently embedded in a
page or stack).

SCROLLING
Whenever the image is larger than the display window, only a portion of the image
is visible. You can "pan" over the entire image in two ways:

d Using the horizontal and vertical scrollbars that automatically appear. These
scrollbars work the same way as those on File Browser windows.

d By dragging the image itself. Place the mouse cursor anywhere in the image,
click and hold down any mouse button, and drag the mouse. The image moves
continuously, and the scrollbars are updated when you release the mouse button.
The image automatically stops scrolling when it hits its borders.

The Scrollbars – Turn On/Off selection on the pulldown menu allows you to disable
or reenable the appearance of scrollbars along the right and bottom edges of the
display window. (The "drag-the-image" method is always enabled.) You may want
to suppress the scrollbars to reduce distraction or to provide additional viewing
space.

The ImageScrollbars parameter in the AVS startup file (see Chapter 2) determines
whether image windows get scrollbars by default when they contain oversize
images. If you do not use this startup parameter, scrollbars are initially enabled.

EXAMPLE
READ IMAGE

|

DOWNSIZE (optional)

|

DISPLAY IMAGE

RELATED MODULES
display pixmap image viewer

SEE ALSO
The example scripts ANIMATED INTEGER, FIELD MATH, and GENERATE
FILTERS as well as others demonstrate the display image module.

33333333333333333333333333
138 AVS Module Reference Manual

display pixmap3333333333333333333
NAME

display pixmap – show pixmap in a display window

SUMMARY
Name display pixmap

Availability this module is in the unsupported library

Type data output

Inputs pixmap

Outputs none

Parameters Name Type Default Choices
Store Frames toggle
Append Frame oneshot
Delete Current oneshot
Replay choice Off Continuous

Bounce
Off

Current Frame integer
Max Frames integer
Replace Speed integer
Save Image string

DESCRIPTION
Note: The geometry viewer module superceded render geometry in AVS 4.
geometry viewer displays directly to the screen. There is thus little need for this
older display pixmap module. It is retained in the unsupported module library for
backward compatibility only.

The display pixmap module displays its input pixmap in a display window. It
automatically sizes the pixmap to fit the window.

display pixmap is most frequently used in conjunction with the render geometry
module to display geometry output.

In addition, you can:

d Save the pixmap as an AVS image in a file.

d Create and play back a "flipbook" of consecutive images.

These capabilities are invoked using the module’s input parameters, as described in
the sections below.

Note that the display pixmap window can be reparented to page and stack widgets
using the AVS Layout Editor.

INPUTS
pixmap The input data must be an AVS pixmap, typically created by the render

geometry module.

PARAMETERS
The following parameters control a pixmap-animation capability. Note that this is
independent of the animation facility in the Geometry Viewer (render geometry
module), and works somewhat differently. See the ANIMATION section below for
more information.

Store Frames
This toggle controls whether all new frames are automatically added to
the animation sequence.

33333333333333333333333333
AVS Module Reference Manual 139

display pixmap3333333333333333333
AppendFrames

Explicitly adds the currently displayed pixmap to the animation
sequence. (Use when Store Frames is off.)

Delete Current
Deletes the currently displayed pixmap from the animation sequence.

Replay This choice widget controls how the animation sequence is to be played
back: The choices are Continuous, Bounce, and Off.

Current Frame
The number of the current frame in the animation sequence (first frame =
0). This field is a typein — change the number to jump directly to
another frame.

Max Frames
A typein field that specifies the ceiling for the number of frames that you
can place in an animation sequence.

Replay Speed
Controls the rate at which an animation is played back. The larger the
value, the greater the delay between frames.

Save Image
This is a typein field. If you type a filename or pathname into this field,
the current pixmap is written to a file when you press Return.

RESIZING
display pixmap’s pulldown menu, which is accessed by clicking on the "dimple" in
the upper lefthand corner of the display window, provides several ways to resize the
window to certain fixed sizes:

d Zoom Full Screen. Resizes the window to fill the square working area of the
screen (approximately 1024 x 1024), and magnifies the image to fit. If the win-
dow is embedded in a page or stack (see Layout Editor in the Network Editor
chapter), it becomes a top-level window that can be freely resized and moved
using the X window manager.

d Unzoom. Resizes and moves the window to return to its location before a Zoom
Full Screen. If the window originally was embedded in a page or stack, it will be
re-embedded there.

SAVING AN IMAGE
To save an image in a file, type the filename as the value of the Save Image parame-
ter. When you press Return, the file is created. To save another image under the
same name, you can move the mouse cursor to the Save Image input area and press
Return again.

ANIMATION
By changing the input data or by adjusting the parameters of upstream modules (e.g.
transform pixmap), you can have the display pixmap window show a sequence of
images. You can create an animation ("flip book") by designating certain images to
be "frames". Then, you can play back the images, adjusting the speed with a control
widget.

Because each of the images in a flip book takes up a significant amount of system
memory, there is a Max Frames parameter. Be sure that its value is low enough so
that your system can comfortably keep all of the images in memory at the same time.
AVS requires roughly 4 bytes of memory per pixel of each your image. The larger the
display window, the greater the memory requirements.

33333333333333333333333333
140 AVS Module Reference Manual

display pixmap3333333333333333333
There are two ways to create a flip book:

d To save all the images that appear in the window (actually, just the last Max
Frames that are produced — see below), turn on the Store Frames toggle. As
each image is drawn, it will be appended to the end of the flip book. If Max
Frames images have already been saved, this new pixmap will replace the oldest
pixmap in the cycle.

d If you want to selectively add images to the flip book, modify the image until it is
as you want it, then select the one-shot Append Frame. This appends the image
to the end of the existing flip book. This method allows you to carefully con-
struct a flipbook animation.

The Replay parameter controls the way in which the flip book is displayed. It has
three selections:

d Continuous plays through all of the frames in the animation, wrapping around
when it reaches the end.

d Bounce plays forward through the last Max Frames or fewer frames. When it
reaches the end, it plays backwards through those frames.

d Off turns off the animation facility

The Replay Speed parameter controls the rate at which flip book frames are
displayed.

The Current Frame parameter allows you to select a particular frame "manually". It is
normally updated to display the current frame, but for cases in which such updating
would impact animation performance, it is not updated. Note that since only the last
Max Frames frames are stored, the animation can begin at a frame other than 0.

After you select a particular frame, you can delete it with the one-shot Delete Frame.

EXAMPLE 1
The following network reads in an image, converts it to a pixmap and then displays
the image using display pixmap:

READ IMAGE

|

IMAGE TO PIXMAP

|

DISPLAY PIXMAP

EXAMPLE 2
The following network reads in a geometry object, renders it and then displays the
rendered object using display pixmap:

READ GEOM

|

|

RENDER GEOMETRY

|

|

DISPLAY PIXMAP

RELATED MODULES
transform pixmap, alpha blend, render geometry

LIMITATIONS
There is no way to store the "first max frames" frames of an animation loop.

33333333333333333333333333
AVS Module Reference Manual 141

display tracker3333333333333333333
NAME

display tracker - display and directly manipulate the tracer module’s output

SUMMARY
Name display tracker

Availability Volume, FiniteDiff module libraries

Type data output

Inputs field 2D 4-vector byte uniform ("image")

Outputs upstream transform (invisible, optional, autoconnect)

Parameters Name Type Default Min Max
scale integer 1 1 16
interpolate toggle off

DESCRIPTION
display tracker is designed specifically to work with the modules tracer, and ucd
tracer. The module tracer takes in volume data and performs volumetric rendering
on it using ray-tracing. tracer outputs a 2D AVS image; display tracker displays this
image in a window.

In addition to displaying tracer’s output, display tracker allows you to directly mani-
pulate an image in its window using the mouse. You can rotate or translate a volume
being rendered by moving the mouse, employing the "virtual spaceball" paradigm.

When you press the middle mouse button a bounding box appears superimposed
around the rendered volume. Moving the mouse causes this bounding box to rotate.
When the desired rotation is achieved, release the mouse button. The volume will be
rendered again to show it rotated to the new position. The bounding box will disap-
pear once the volume is redrawn. Translations are achieved in a similar way, using
the right mouse button. To scale the object, use shift key in combination with the
middle mouse button. To reset the object, press the left mouse button. This will reset
the volume to its original orientation.

Note that display tracker takes AVS images as input. It can receive these images
from any module that outputs an image. However, it will allow direct manipulation
of images only when the module above it is equipped to receive the upstream
transform that display tracker outputs.

INPUTS
Data Field (required; field 2D 4-vector byte uniform)

An AVS image, typically output by the module tracer.

PARAMETERS
scale (integer)

Multiplies size of input image by selected value. Scaling an image by a
large amount will result in slower display times. In combination with the
"width" and "height" parameters of tracer, you can use scale to create
very large images.

interpolate (toggle)
With interpolate off (default) the image is scaled using pixel replication.
In other words, pixels are simply copied to increase the size of the image.

With interpolate selected, bilinear interpolation is performed on the
image when it is scaled. This results in smoother gradations in the color
of pixels in the scaled image.

33333333333333333333333333
142 AVS Module Reference Manual

display tracker3333333333333333333
OUTPUTS

Upstream Transform (optional, invisible, autoconnect)
The output port on the module display tracker, which is usually invisi-
ble, sends out a 4x4 transformation matrix describing rotations and
translations that have been applied to the image through movements of
the mouse. This output port will automatically connect with display
tracker’s invisible lefthand input port. This allows you to directly rotate
and translate an image by moving the mouse in display tracker’s win-
dow.

EXAMPLE
The following network shows how display tracker is used to display the output of
tracer. Note that display tracker also sends data "upstream" to tracer.

GENERATE COLORMAP READ VOLUME

| |

| |----------|

| |

COLORIZER

|--| |

| | |

| TRACER

| |

| |

| DISPLAY TRACKER

|_________|

RELATED MODULES
Modules that could provide the Data Field input:

cube
tracer
any other module which outputs an AVS image

Modules that can receive display tracker’s upstream transform:
cube
tracer
gradient shade

SEE ALSO
The example script ANIMATED FLOAT demonstrates the display tracker module.

33333333333333333333333333
AVS Module Reference Manual 143

dot surface3333333333333333333
NAME

dot surface – generate points that define an isosurface

SUMMARY
Name dot surface

Availability this module is in the unsupported library

Type filter

Inputs field 3D scalar any-data any-coordinates

Outputs field 1D scalar (irregular 3-space)

Parameters Name Type Default Min Max
Stepsize real .01 1.0E–5 1.0
Threshold real .02 0 1

DESCRIPTION
The dot surface module accepts a 3D scalar field as input and generates a list of
points that defines an isosurface. The input field is composed of cells, where each
cell is defined as a subvolume composed of six faces. Each cell is processed checking
for a possible intersection of the surface. If the cell does contribute to the surface it is
then subdivided until the maximum physical dimension of the resulting subcell is ≤
the value of the Stepsize parameter. A smooth surface can be generated in this
manner, given a sufficiently small Stepsize value.

The running time of this module is directly proportional to the number of cells pro-
cessed and the number of cells that contribute to the surface. It is inversely propor-
tional to the Stepsize value.

If the input field is uniform, then a physical grid is generated mapping the data
volume into a canonical size. The largest dimension of the volume is mapped into
the interval: [-1.0, +1.0]. Other dimensions are scaled accordingly, thus if a uniform
volume consisting of 100 nodes in the x direction, 50 in the y direction and 20 in the z
direction will have a bounding volume of: x=[-1.0, +1.0], y=[-0.5,+0.5], z=[-0.2,+2.0].
The distance between each node is then approximately equal to 0.02. The Stepsize
parameter is relative to this length scale.

INPUTS
Data Field (required; field 3D scalar any-data any-coordinates)

This module uses a scalar data value for each field element. If the input
is a vector-valued field, then the first component of the vector is used as
the scalar value.

PARAMETERS
Stepsize A floating-point value that determines the resolution of the isosurface.

The smaller this value, the smoother the surface.

Threshold A floating-point value that specifies the common data value on the iso-
surface: for each point on the isosurface, the field element’s data value
equals the Threshold value.

OUTPUTS
Point List (field 1D scalar irregular 3-space) The scalar data value for each output

field element is unused. The only useful information is the 3D coordinate
data.

33333333333333333333333333
144 AVS Module Reference Manual

dot surface3333333333333333333
EXAMPLE 1

READ VOLUME

|

DOWNSIZE

|

DOT SURFACE

|

SCATTER DOTS

|

GEOMETRY VIEWER

LIMITATIONS
The number of points may be inadequate to represent areas of small surface curva-
ture with respect to the cell’s local coordinate system.

A maximum of 80,000 points will be generated. Once the module calculates this
number of points, it returns leaving all other cells unprocessed. Use downsize to
avoid this if possible.

RELATED MODULES
Modules that could provide the Data Field input:

read volume
combine scalars

Modules that could be used in place of dot surface:
isosurface
tracer

Modules that can process dot surface output:
scatter dots

SEE ALSO
The example script DOT SURFACE demonstrates the dot surface module.

33333333333333333333333333
AVS Module Reference Manual 145

downsize3333333333333333333
NAME

downsize – reduce size of data set by sampling

SUMMARY
Name downsize

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field 2D/3D n-vector any-data any-coordinates

Outputs field of same type as input

Parameters Name Type Default Min Max
downsize integer 8 1 16

DESCRIPTION
The downsize module changes the size of the input data set by subsampling the
data. It extracts every Nth element of the field along each dimension, where N is the
value of the downsize factor parameter. This technique preserves the aspect ratio of
the input data.

This module is useful for operating on a reduced amount of data, in order to adjust
other processing parameters interactively, or save memory. After the parameter
values have been set, you can remove the downsize module, so that the full data set
is used for final processing.

Alternatively, retain the downsize module in the network, so that you can interac-
tively choose between image quality (downsize factor = 1 for highest-resolution
data) and execution speed (downsize factor > 1 for lower-resolution data).

INPUTS
Data Field (required; field 2D/3D n-vector any-data any-coordinates)

The input data may be any AVS field.

PARAMETERS
downsize Determines how data elements from the field are sampled. Increasing

this parameter causes more elements to be skipped over, thus decreasing
the size of the output.

OUTPUTS
Data Field The output field has the same dimensionality as the input field, but the

number of elements in each dimension is reduced by the downsize fac-
tor.

The min_val and max_val attributes of the output field are invalidated.
Note that the extent is unmodified; this module changes the resolution of
the data within the physcial space delimited by the extents. It does not
alter the physical extents of the data.

EXAMPLE
The following diagram shows how a downsize factor of 4 reduces a 2D field. Each
element of the field is represented by a dot. Only the larger dots are included in the
output field.

33333333333333333333333333
146 AVS Module Reference Manual

downsize3333333333333333333
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

LIMITATIONS
downsize works for 2D, and 3D data sets only.

RELATED MODULES
Modules that could provide the Data Field input:

read volume
read field
filter modules

Modules that could be used in place of downsize:
interpolate (arbitrary sampling)
crop (subset at high resolution)
average down (average in X, Y, and/or Z, independently)

SEE ALSO
The example scripts FIELD MATH, and GRAPH VIEWER demonstrate the downsize
module.

33333333333333333333333333
AVS Module Reference Manual 147

draw grid3333333333333333333
NAME

draw grid – draw a grid on top of an image

SUMMARY
Name draw grid

Availability Imaging module library

Type filter

Inputs field 2D|3D uniform byte|short|float n-vector

Outputs field same-dims same-vector same-data

Parameters Name Type Default Min Max
N Grids int dial 10 2 max dim/2
Square boolean off
red int dial 255 0 255
green int dial 255 0 255
blue int dial 255 0 255

DESCRIPTION
draw grid draws a grid of lines superimposed upon an image.

INPUTS
Data Field (required; field 2D|3D uniform byte|short|float n-vector)

The input is a 2D or 3D uniform field with n vectors of either byte, short,
or float data. If the field is 3D, lines are created over Z successive XY
slices.

PARAMETERS
N Grids An integer dial that specifies how many full-size horizontal and vertical

areas to create. The range is 2 to max dim/2, where max dim is the larger
of the X or Y dimension. The default is 10. To create the grid lines, draw
grid calculates xskip = max x-dim/N Grids and yskip = max y-dim/N Grids
using integer arithmetic, then places a grid line every xskip and yskip pix-
els.

square A switch that forces the grid marks to be squares. To produce the square
grid, draw grid employs the grid spacing used by the largest dimension
(X width or Y height), and replicates this spacing across the other dimen-
sion. For example, if the image is wider than it is tall (X>Y), then the
vertical grid line spacing will also be used for the horizontal grid line
spacing. The default is off.

red
green
blue Three integer dials that together set the RGB color of the grid lines. The

default is 0 (alpha), 255, 255, 255 (white). The lines are created by setting
the data values at the line positions equal to these values. Note that if
the input is scalar, these dials are ignored and the data value at the line
position is set to 0. Similarly, a 2-vector will be set to 0,255, and a 5-
vector’s last vector element will not be reset at all.

OUTPUTS
Data Field (field same-dims same-vector same-data)

The output is a field with the same dimensions, vector length, and data
type as the input field.

33333333333333333333333333
148 AVS Module Reference Manual

draw grid3333333333333333333
EXAMPLE 1

READ IMAGE

|

|

DRAW GRID

|

|

IMAGE VIEWER

EXAMPLE 2
READ VOLUME

|

|

DRAW GRID

|

|

ORTHOGONAL SLICER

|

|

COLORIZER

|

|

IMAGE VIEWER

RELATED MODULES
image viewer

SEE ALSO
The Imaging/DRAW GRID sample script demonstrates the draw grid module.

LIMITATIONS
If the image is rescaled in a module such as image viewer, some of the grid lines may
disappear or become wider due to the rescaling algorithm used.

33333333333333333333333333
AVS Module Reference Manual 149

edit substances3333333333333333333
NAME

edit substances – create a substance table for the cube module

SUMMARY
Name edit substances

Availability Supported, Volume, Finite Differences module libraries

Type data input

Inputs None

Outputs struct substances (substance table)
colormap

Parameters Name Type Default Min Max
filename file browser .sub suffix
read file onehot
write file oneshot
write colormap oneshot
current

substance islider 1 1 32
name string "Unused"
lo threshold float 0.0 0.0 256.0
hi threshold float 128.0 0.0 256.0
opacity float 0.0 0.0 1.0
red float 0.0 0.0 1.0
green float 0.0 0.0 1.0
blue float 0.0 0.0 1.0
skip layers int 0 0 100

DESCRIPTION
edit substances creates the substance table required by the cube module’s ray-cast
and create-surfaces rendering modes. It communicates to cube via a user defined data
structure called substances. The definition of this structure is found in
$AVS_PATH/include/substances.h.

The substance table is a list of 32 substances with seven parameters per substance: a
name, the starting intensity of the substance, the substance opacity, the substance
color (red, green, and blue), and the number of layers to skip when rendering in
cube’s create-surfaces mode.

In addition, edit substances also outputs a conventional AVS colormap (and option-
ally writes that colormap to disk). This colormap can be used by other volume
rendering tools such as tracer and volume render.

cube is most effective when used on data which is readily classified into distinct
material types. In medical imaging, these types might correspond to "skin", "muscle",
and "bone". In non-destructive evaluation, the types might be described for "air",
"engine wall", "engine interior". edit substances creates the substance table which lets
you specify the levels at which new substances are defined, the colors and opacities
of those substances, and names for each of the substances which make sense for a
particular application.

edit substances also can read and write ASCII substance files which contain the sub-
stance table information. The substance file typically has a .sub suffix to differentiate
it from other files. Each substance file must contain 32 lines with eight entries per
line:

33333333333333333333333333
150 AVS Module Reference Manual

edit substances3333333333333333333
number name threshold opacity red green blue skip_layers

(int) (string) (float) (float) (float) (float) (float) (int)

Here is the substance file for the default substance table:
0 Unused 0.000000 0.000000 0.000000 0.000000 0.000000 0 (black)

1 Unused 128.000000 1.000000 1.000000 1.000000 1.000000 0 (white)

2 Unused 256.000000 1.000000 1.000000 0.000000 0.000000 0 (red)

3 Unused 256.000000 1.000000 1.000000 1.000000 0.000000 0 (yellow)

4 Unused 256.000000 1.000000 0.000000 1.000000 0.000000 0 (green)

5 Unused 256.000000 1.000000 0.000000 1.000000 1.000000 0 (cyan)

6 Unused 256.000000 1.000000 0.000000 0.000000 1.000000 0 (blue)

7 Unused 256.000000 1.000000 1.000000 0.000000 1.000000 0 (magenta)

8 Unused 256.000000 1.000000 0.800000 1.000000 0.000000 0 (yellow-green)

9 Unused 256.000000 1.000000 0.600000 1.000000 0.200000 0

10 Unused 256.000000 1.000000 0.400000 1.000000 0.400000 0

...

31 Unused 256.000000 1.000000 0.000000 0.200000 0.500000 0

This default substance table has several interesting features: there is only one visible
substance and it is white, opaque, and starts at value 128.0. The other substances
(which are assigned default colors that follow the spectrum) are "turned off" by hav-
ing them start at value 256.0 which is beyond the possible range of byte data. To turn
on other substances, you need to set their thresholds to be in the 0-255 range.

Substances are defined sequentially—in order for substance 5 to be used, substances
1-4 must be valid. Furthermore, their starting thresholds must be in increasing order.
For instance:

Substance starts at ends at

1 0 64

2 64 128

3 128 255

is a valid collection of substances while:
Substance starts at ends at

1 0 64

2 32 128

3 255 2

is not and will result in an error.

PARAMETERS
filename (file browser: sensitive to .sub suffixes)

This is a multi-purpose file browser which lets you specify the names of
the ASCII substance files that can be read or written as well as the name
of an AVS colormap file to write. Note: you cannot read colormap files
because they can contain more than 32 entries and the substance table is
limited to 32 substances. The number of substances available is a limita-
tion of the cube module.

read file (oneshot)
When you have a valid filename, hitting this button causes the ASCII
substance file to be read in, replacing the internal substance table with
that contained in the file.

write file (oneshot)
When you have a valid filename, hitting this button causes the internal
substance table to be written (in ASCII) to the specified file.

33333333333333333333333333
AVS Module Reference Manual 151

edit substances3333333333333333333
write colormap (oneshot)

When you have a valid filename, hitting this button causes the internal
substance table to be translated into AVS colormp format and an AVS
colormap file to be written. Note: you should follow the convention of
naming colormap files with a .cmap suffix.

current substance (islider)
Although there are 32 substances in the table, you can only change one at
a time. This slider lets you select which substance you are editing.

name (string)
Each substance can be assigned a name of up to 80 characters. Typical
names may include entries like: "air", "skin", "bone", "engine wall". These
are used for identification purposes only and have no effect on render-
ing.

lo threshold (float, typein)
hi threshold (float, typein)

Each substance is defined as being those voxels whose value is greater
than lo threshold and less than or equal to hi threshold. Internally, only
the lo threshold is stored (and transmitted) per substance—the hi thres-
hold is derived as being the lo threshold of the next substance. This is
reflected in the user interface for this module; when you edit substance
N’s hi threshold, you are also changing substance N+1’s lo threshold
parameter. This is a convenience which makes it easier to adjust the
range of a particular substance without bouncing around between sub-
stances.

opacity (float, typein)
The opacity of the current substance ranging from 0.0 (transparent) to 1.0
(fully opaque). Each substance can have a different opacity.

red (float, typein)
green (float, typein)
blue (float, typein)

The color of the current substance ranging from 0.0 (black) to 1.0 (fully
on). Each substance can have a different color.

skip layers (int, typein)
This is only valid in the create surfaces mode of cube. When in the create
surfaces mode, each pixel in the image is stored with the surface intersec-
tions for the pixel’s ray. It is possible to ignore a given number of these
intersections using the skip layers feature. For instance, a perfect sphere
would usually have two ray intersections per pixel; one entering the
sphere and the other leaving it. Normally, you would only see the front
side of the sphere, and if it were opaque, nothing else. With the skip
layers feature, you can instruct the ray caster to ignore the first intersec-
tion (the front of the sphere) but to render all the rest of them.

One practical application of this feature is in medical imaging. Say the
skin and the brain of a MRI head scan are the same value. To image the
brain requires looking "through" the skin, yet you don’t want to make all
voxels in the "skin-brain" range transparent because this would hide the
brain as well! Using the skip layers feature, it is possible to ignore the
first several intersections but to render the rest.

33333333333333333333333333
152 AVS Module Reference Manual

edit substances3333333333333333333
OUTPUTS

Substance Table (struct substances)
This is a user defined data structure described in avs/include/substances.h
which is used to transmit the substance table between edit substances
and cube.

Colormap (AVS colormap)
This is a standard AVS colormap version of the substance table. This can
be used by other volume rendering tools such as tracer or volume
render. It can also be fed into field legend for real-time viewing of the
colors and ranges of the substances being defined.

EXAMPLE
The following network shows one way to use edit substances with the cube module.
The output from edit substances is also fed into field legend so that the substance
table can be viewed relative to the voxel values they represent.

READ FIELD

|

EDIT SUBSTANCES _______|

|_______|____ |

| ____| | |

| | CUBE

| | |

FIELD LEGEND DISPLAY TRACKER

RELATED MODULES
Modules that can process edit substances’s substance table output:

cube
Modules that can process edit substances’s colormap output:

field legend
tracer
volume render
colorizer
generate colormap
any other module which takes an AVS colormap as input.

SEE ALSO
The example script CUBE demonstrates the edit substances module.

LIMITATIONS
edit substances cannot currently read in SunVision .subs files.

33333333333333333333333333
AVS Module Reference Manual 153

euler transformation3333333333333333333
NAME

euler transformation - send object transformation matrix to other modules

SUMMARY
Name euler transformation

Availability Volume, FiniteDiff module libraries

Type data

Inputs none

Outputs field uniform 2D scalar float (transformation matrix)

Parameters Name Type Default Min Max
theta float 0 0 360
phi float 0 0 360
rho float 0 0 360
scale float 1 0 10

DESCRIPTION
euler transformation allows you to generate a 4x4 transformation matrix specifying
scaling and rotations in x, y and z.

euler transformation is designed to be used with modules that can transform data in
object space. This means that rotations and scaling operations are applied to a 3D
data "object" before it is rendered and turned into a 2D image. euler transform does
not supply the full "upstream transform" accepted by such modules as brick and
thresholded slicer. Currently euler transform will work only with the modules gra-
dient shade and tracer.

Using euler transformation’s dials you can select a transformation matrix that will
scale and/or rotate an object. The order in which rotations are applied is x-y-z. If you
rotate an object through a number of angles, it is always the original data that is
transformed, i.e., transformations are not remembered and accumulated.

PARAMETERS
theta A floating point dial widget which controls rotation of the object’s x axis.

The x axis initially runs horizontally from negative on the left to positive
on the right.

phi A floating point dial widget which controls rotation of the object’s y axis.
The y axis initially runs vertically from negative at the bottom to positve
at the top.

rho A floating point dial widget which controls rotation of the object’s z axis.
The z axis initially runs perpendicular to the screen, with the positive z
axis coming "out" of the screen, and the negative z axis "behind" the
screen.

scale A floating point dial widget which controls the scaling coefficient of the
transformation matrix. This makes the data "object" look larger or
smaller.

OUTPUTS
Transformation Matrix (field 2D uniform scalar float)

The output is a 4x4 array of floating point values which specifies rota-
tions and scaling operations that can be applied to transform an object
around the origin of its own coordinate system.

33333333333333333333333333
154 AVS Module Reference Manual

euler transformation3333333333333333333
EXAMPLE 1

The following network performs volumetric ray-tracing using tracer. By setting
parameters in the module euler transformation you can rotate or scale the volume
being rendered, so you can see all sides of the volume:

GENERATE COLORMAP READ VOLUME

| |

| |

COLORIZER

EULER TRANSFORMATION |

|------| |

TRACER

|

|

DISPLAY IMAGE

RELATED MODULES
Modules that accept euler transformation’s output:

cube
tracer
gradient shade

SEE ALSO
The example script EULER TRANSFORMATION demonstrates the euler transfor-
mation module.

33333333333333333333333333
AVS Module Reference Manual 155

excavate3333333333333333333
NAME

excavate – remove an octant from a 3D uniform field, revealing interior features

SUMMARY
Name excavate

Availability Volume, FiniteDiff module libraries

Type filter

Inputs field 3D scalar byte

Outputs field 3D scalar byte

Parameters Name Type Default Min Max
X integer dial x res/2 0 x res
Y integer dial y res/2 0 y res
Z integer dial z res/2 0 z res
flip X boolean off
flip Y boolean off
flip Z boolean off

DESCRIPTION
The excavate module excavates the selected octant from a 3D scalar byte field, reveal-
ing the interior data. It does this by setting the data values to 0 within the specified
region. Regions are selected with a combination of dials that specify the location of
the slice plane and toggle switches that specify which side of the slice planes’ data
should be zeroed out.

excavate is especially useful for "looking inside" volumetric data that may be hard to
segment—for example, medical imaging data.

INPUTS
Data Field (required; field 3D scalar byte uniform)

The input is a field 3D scalar byte. It can be of any uniform type.

PARAMETERS
X An integer dial indicating on which X location the YZ cutting plane is to

be placed. This dial ranges from zero to the X-dimension of the data set.
The default value is the middle of the data set.

Y An integer dial indicating on which Y location the XZ cutting plane is to
be placed. This dial ranges from zero to the Y-dimension of the data set.
The default value is the middle of the data set.

Z An integer dial indicating on which Z location the XY cutting plane is to
be placed. This dial ranges from zero to the Z-dimension of the data set.
The default value is the middle of the data set.

flip X A toggle that indicates on which side of the YZ cutting plane the data
will be zeroed. When off, the data from the cutting plane location to the
maximum dimension of the data is zeroed. When on, the data from the
cutting plane to the minimum dimension of the data is zeroed.

flip Y A toggle that indicates on which side of the XZ cutting plane the data
will be zeroed. When off, the data from the cutting plane location to the
maximum dimension of the data is zeroed. When on, the data from the
cutting plane to the minimum dimension of the data is zeroed.

flip Z A toggle that indicates on which side of the XY cutting plane the data
will be zeroed. When off, the data from the cutting plane location to the
maximum dimension of the data is zeroed. When on, the data from the

33333333333333333333333333
156 AVS Module Reference Manual

excavate3333333333333333333
cutting plane to the minimum dimension of the data is zeroed.

OUTPUTS
Data Field The output field is a field 3D scalar byte field that is the same shape and

size as the input field. The only difference is that some of the data in the
output field has been zeroed out.

EXAMPLE 1
The following example shows how excavate is used in a network with the tracer
module:

READ VOLUME

|

EXCAVATE

|

COLORIZER

|

TRACER

|

DISPLAY TRACKER

EXAMPLE 2
The following example shows how excavate is used in a network with the isosurface
module. In this example, the surface will be cropped at the excavated boundaries
and the slice planes along the cropping will be colored by the interior of the data set

GENERATE COLORMAP READ VOLUME

| _______|

| | |

|_________ | EXCAVATE

| | ____|

| | |

ISOSURFACE

|

GEOMETRY VIEWER

RELATED MODULES
SEE ALSO

The example script EXCAVATE demonstrates EXAMPLE 2 above.

33333333333333333333333333
AVS Module Reference Manual 157

excavate brick3333333333333333333
NAME

excavate brick – show uniform volume with orthogonal slices

SUMMARY
Name excavate brick

Availability Volume, FiniteDiff module libraries
requires 3D texture mapping support

Type mapper

Inputs field 3D uniform n-vector any-data

Outputs geometry

Parameters Name Type Default Min Max
X integer dial 0 0 x res
Y integer dial 0 0 y res
Z integer dial 0 0 z res
Flip_X boolean off
Flip_Y boolean off
Flip_Z boolean off
Draw_Sides boolean on

DESCRIPTION
The excavate brick module is another way of visualizing 3D uniform volume data.
The volume is displayed using multiple orthogonal slice texture mapped slice planes.
The slice planes are in the form of a cube with a cubical shaped "chunk" removed on
one corner. The size of the chunk can be controlled using the X, Y, and Z parameter
controls. The selected corner that is to be removed is specified Flip_X, Flip_Y and
Flip_Z controls. The sides of the cube will be draw only if the Draw_Sides parame-
ter is set.

excavate brick creates its picture of the volume data using 3D texture mapping (arbi-
trary slicer uses sampling). In this method, the boundary of the volume has three
values, u, v, w, associated with each of its vertices. When excavate brick’s slice plane
intersects this volume, u, v, w values are computed for the vertices of the resulting
solid. These values are attached to the vertices of the geometry object which excavate
brick produces, and are used by geometry viewer to perform 3D texture mapping.

Texture mapping is much faster than the sampling technique used by arbitrary slicer,
particularly for large datasets. The point sampling done by the texture mapping
technique is always done at the resolution of the data; thus differences in data values
within a small area are not obscured as they can be with arbitrary slicer.

The 3D texture map is created with a combination of the generate colormap, color-
izer, and possibly color range modules. Their output is connected to the geometry
viewer module’s center texture map port (see example below).

AVAILABILITY
excavate brick requires that the underlying graphics renderer support 3D texture
mapping. Not all hardware renderers support 3D texture mapping (see the release
note information that accompanies AVS on your platform). The AVS software
renderer does support 3D texture mapping. If a renderer does not support 3D tex-
ture mapping, then the volume will appear, and you can manipulate the excavating
cube, but the geometry object will appear as a featureless white solid. To get the 3D
texture mapping on multi-renderer platforms, you can turn on the Software
Renderer button under the Geometry Viewer’s Cameras submenu.

33333333333333333333333333
158 AVS Module Reference Manual

excavate brick3333333333333333333
INPUTS

Data Field (required; field 3D uniform n-vector any-data)
The input field is a 3D uniform volume. The data can be of any type.

PARAMETERS
X, Y, and Z These three parameters control the position of the excavating cube. The

values are specified in terms of the resolution of the data. A value of 0
indicates that the excavate cube has zero dimensions along the X, Y, or Z
dimension.

Flip_X, Flip_Y, Flip_Z
These three parameters indicate whether the excavate cube should be
positioned on the positive or negative axis for each of the X, Y, and Z
dimensions. If the parameter is true, the excavate cube is positioned on
the negative axis.

Draw_Sides
A boolean switch that controls whether the sides of the "main" cube are
to be drawn. If this boolean is false, only the faces of the excavate cube
are drawn.

OUTPUTS
Geometry (geometry)

The output geometry is the solid version of the volume.

EXAMPLE 1
The following network reads a byte volume. The volume is fed to colorizer to paint
the byte values as colors by producing a 3D 4-vector field of color values from the
original data. The volume is sent to excavate brick to map the surfaces, and to
volume bounds to draw a box around the limits of the volume. The generate color-
map and colorizer parts of the network are vital; they create the 3D texture map that
feeds into the geometry viewer module’s left input port. Without the 3D texture
map, the volume would appear as a featureless white solid. The geometries from
volume bounds and excavate brick feed into geometry viewer’s right input port.

READ VOLUME

|

GENERATE COLORMAP |

| |

| |--------------|---------------|

| | | |

COLORIZER EXCAVATE BRICK VOLUME BOUNDS

| | |

| | |

|----------| |---------------|

GEOMETRY VIEWER

EXAMPLE 2
The following network is the same as the previous example in basic structure. The
difference is that the uniform volume data is a 3D field of real values, not bytes. The
vector mag module is used to convert the vector field into a scalar float field. The
addition of the color range module scales the color values in the colormap to match
the range of the data. It should be included whenever the data is not of type byte.

33333333333333333333333333
AVS Module Reference Manual 159

excavate brick3333333333333333333
READ FIELD

|

|

VECTOR MAG

GENERATE COLORMAP |

| |

| |--|-----------|---------------|

| | | | |

COLOR RANGE | EXCAVATE BRICK VOLUME BOUNDS

| | | |

| | | |

COLORIZER | |

|-------------| |---------------|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read volume
read field
Any module that outputs a 3D uniform field

Modules that could be used in place of excavate brick:
arbitrary slicer
brick
orthogonal slicer
field to mesh
thresholded slicer

Modules that can process excavate brick output:
geometry viewer

SEE ALSO
The EXCAVATE BRICK example script demonstrates the excavate brick module.

33333333333333333333333333
160 AVS Module Reference Manual

extract graph3333333333333333333
NAME

extract graph – extract and display a 1D slice from a 2D data set

SUMMARY
Name extract graph

Availability Imaging, Volume, FiniteDiff module libraries

Type Filter

Inputs field 2D scalar any-data any-coordinates (required)

Outputs field 2D scalar float
geometry

Parameters Name Type Default Choices
Graph Select integer dial 0
axis choice I I,J
Abscissa
Mapping choice Dist Dist,Index,X,Y,Z

DESCRIPTION
The extract graph module is similar to the orthogonal slice module in that it takes a
one-dimensional slice out of a two-dimensional data set for the purposes of sending
the slice to the graph viewer module for display. The differences between these
modules is that extract graph allows different X-axis mappings and it also creates a
3D geometry showing which slice is being extracted. The Abscissa Mapping choices
only work for irregular data sets. They have no effect for uniform and rectilinear
data.

INPUTS
Data Field (required; field 2D scalar any-data any-coordinates)

This field is typically derived by taking an othogonal slice through a
volumetric (3D) data set. The volume can be of any type (uniform, rectil-
inear, or irregular), and data size (byte, float, int, double).

PARAMETERS
Graph Select

This is an integer dial indicating which 1D slice from the 2D input field is
to be taken. This is similar to the "slice plane" parameter in the orthogo-
nal slicer module. This dial starts off going from 0 to 1, but readjusts
itself dynamically according to the dimensions of the currently selected
slice axis (see below).

axis In a flat two-dimensional image, you can take one-dimensional slices in
constant X or constant Y. Since this module works for irregular datasets
as well as uniform ones, we rename these directions to include off-axis
slices and call them constant I and constant J. The default is J which can
be interpreted as constant Y for uniform images.

Abscissa Mapping
Since slices from irregular data sets may not correspond to Cartesian
axes, there are several ways to graph the data coming from a one-
dimensional slice. The Dist option plots the distance along the slice as
the X-axis. the Index option shows the array index (this is equivalent to
what you get when you cascade two orthogonal slicer modules). The X,
Y, and Z options project the 1D slice to those axes and display those pro-
jections as the X-axis of the plot. These choices have no effect on uni-
form and rectilinear data.

33333333333333333333333333
AVS Module Reference Manual 161

extract graph3333333333333333333
OUTPUTS

Data Field (field 2D scalar)
This is the 1D slice represented in AVS field format. This is the field
which is sent to the graph viewer’s rightmost port. This is a 2D field
whose dimensions are 2 by the dimensions of the chosen axis. Each pair
contains the X value (as described by the Abscissa Mapping) and the Y
value (which is the actual data value). The Graph Viewer knows to treat
this as "Plot as XY Data".

Geometry (geometry)
The extract graph module also outputs two geometric lines (one on each
side of the slice) which show the location of the extracted slice. This is
critical, because otherwise you have no visual indication of where the
slice came from.

EXAMPLE
The following network is a typical application using the extract graph module:

READ FIELD

|

ORTHOGONAL SLICE

_____________|______________

| |

FIELD TO MESH EXTRACT GRAPH

| ________________________|

| | |

GEOMETRY VIEWER GRAPH VIEWER

RELATED MODULES
orthogonal slicer
ip read line
graph viewer

SEE ALSO
The example script EXTRACT GRAPH demonstrates the extract graph module.

33333333333333333333333333
162 AVS Module Reference Manual

extract scalar3333333333333333333
NAME

extract scalar – extract a scalar field from a vector field

SUMMARY
Name extract scalar

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension n-vector any-data any-coordinates
(n = 1..25)

Outputs field same-dimension scalar same-data same-coordinates

Parameters Name Type Default
Channel n radio buttons Channel 0

DESCRIPTION
The extract scalar module inputs a field whose data values are vectors (1D to 25D),
and outputs one of the dimensions ("channels") as a scalar-valued field. The output
field has the same structure as the input field, except that its data values are scalars
(vector length of 1).

This module is useful for performing operations on individual channels of vector
fields. It is frequently used with the combine scalars module, which composes vector
fields from individual scalar fields.

INPUTS
Data Field (required; field any-dimension n-vector any data any-coordinates)

The input data may be any field whose data values are vectors with 25 or
fewer dimensions. Even scalar fields may be used, since their data values
are considered to be 1D vectors.

PARAMETERS
Channel n Selects the dimension of the input data values to be output. A set of

radio buttons appears, showing the labels that are attached to the dimen-
sions of the n-vector data.

OUTPUTS
field (same-dimension scalar same-data same-coordinates)

The output field has the same dimensionality as the input field. The data
for each element is reduced from a vector to a scalar. The veclen, min_val,
max_val, label, and unit values in the field are updated.

EXAMPLE 1
This examples displays a slice of the Y-component of the gradient field of a volume:

33333333333333333333333333
AVS Module Reference Manual 163

extract scalar3333333333333333333
READ VOLUME

|

COMPUTE GRADIENT

|

EXTRACT SCALAR [1] (0=X, 1=Y, 2=Z)

|

ORTHOGONAL SLICER

|

GENERATE COLORMAP FIELD TO BYTE

|________________ |

| |

COLORIZER

|

DISPLAY IMAGE

For additional examples, see the combine scalars manual page.

RELATED MODULES
extract vector
combine scalars

SEE ALSO
The example scripts CONTOUR GEOMETRY, CONTRAST, as well as others demon-
strate the extract scalar module.

33333333333333333333333333
164 AVS Module Reference Manual

extract vector3333333333333333333
NAME

extract vector – subset of field vector elements as new field

SUMMARY
Name extract vector

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension n-vector any-data any-coordinates
(n = 1..25)

Outputs field same-dimension n-vector same-data same-coordinates

Parameters Name Type Default Min Max
Vector Length integer dial 3 1 25
Channel 0 boolean off
Channel 1 boolean off
Channel 2 boolean off

.

.

.
Channel 24 boolean off

DESCRIPTION
The extract vector module takes a vector field of any dimension, coordinate system,
or data type, and extracts a subset of the vector elements at each node. The output
field is identical to the input field, but with only the selected vector elements at each
node. This is useful, for example, with PLOT3D format data. PLOT3D data normally
has seven vector elements at each node. However, only three of these, X-
Momentum, Y-Momentum, and Z-Momentum, are useful if you are trying to visual-
ize momentum vectors with the hedgehog module. extract vector is a convenient
way to segregate just the vector elements needed. It is more convenient (and
equivalent to) using extract scalar modules to extract individual vector elements and
then pasting them together again with combine scalar.

extract vector can handle up to 25 vector elements. You can extract any subset of the
25 elements.

INPUTS
Data Field (required; field any-dimension n-vector any-data any-coordinates)

An AVS field with a vector of data elements at each node. The field can
be any dimension, using any type of coordinate information, and any
kind of data.

PARAMETERS
Vector Length

An integer dial that specifies the vector length of the output field. The
default is 3, the minimum is 1, and the maximum is 25. This must be set
to the number of channels selected below.

Channel 0
Channel 1
Channel 2 ...

A series of on/off switches that specify which of the input vector ele-
ments to extract into the output field. If the input vector elements have
been labelled, then their labels will appear instead of the default "Chan-
nel n". Only as many switches will appear as there are input vector ele-
ments. By default, all of the switches are "off". There is no way to

33333333333333333333333333
AVS Module Reference Manual 165

extract vector3333333333333333333
change the order of vector elements; if X preceded Y in the input field, it
will do so in the output field (you can change the order of vector ele-
ments by using multiple instances of the extract scalar module, feeding
into one combine scalars).

OUTPUTS
Data Field (field same-dimension n-vector same-data same-coordinates)

The output field has the same form as the Data Field input, except that
its vectors are shorter. The veclen, min_val, max_val, label and unit of the
field are updated.

EXAMPLE 1
The following network extracts the x, y and z momentum vector elements from a
field dataset, then plots their sum vector using hedgehog. The dataset operated on is
bluntfin.fld, which contains PLOT3D data in field format.

READ FIELD

|

EXTRACT VECTOR

|

HEDGEHOG

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

Any module that produces a vector field output
Modules that could be used in place of extract vector:

extract scalar
combine scalar

Modules that can process extract vector output:
Any module that can process vector fields

NOTE
This extract vector module is not the same as the extract vector module formerly
available in the AVS user-contributed module library.

SEE ALSO
The example script STREAMLINES demonstrates the extract vector module.

33333333333333333333333333
166 AVS Module Reference Manual

field legend3333333333333333333
NAME

field legend - select value from scalar field using color legend

SUMMARY
Name field legend

Availability Imaging, Volume, FiniteDiff module libraries

Type mapper

Inputs field n-dimensions n-vector any-data any-coordinates

Outputs real

Parameters Name Type Default
node data choice <data 1>
value float

DESCRIPTION
field legend takes a n-vector input field and a colormap and produces a "color
legend" widget. The widget displays the range of values associated with one of the
field’s vector elements, and allows you to pick specific values of interest based on the
colors associated with those values. Thus, the colors in the legend will match the
colors used to display the field.

field legend displays the current colormap as a horizontal color legend. Beneath this
table field legend prints a scale representing the range of values of one vector ele-
ment of the input field. Values along this scale are displayed in scientific notation.
The colormap is normalized to map to the range of values present in the input field.
field legend behaves, in this respect, like the module color range. If the selected
scalar has some label or unit associated with it (i.e. momentum, m/sec) field legend
will print these as the title of the color legend.

By moving a "radio tuner" type dial along the color legend you can select specific
data values. field legend outputs the value selected as a single floating point number.

field legend is designed to work with modules that take fields and allow you to visu-
alize subsets of the data. Such modules include: isosurface, thresholded slicer, and
contour to geom. Typically, subsets of data are selected by choosing specific values
with a dial widget. For example, using isosurface you can select what "level" of data
values to display as a surface. Manipulating colored data using field legend’s color
legend is often more intuitive than using a floating-point parameter widget.

The module field legend accepts n-dimensional n-vector fields. Use the node data
radio buttons to select one scalar element of the field to use for the color legend’s
range of values. If the input field is scalar to begin with field legend provides no but-
tons.

field legend outputs a single floating-point value. As a result it connects to the
floating-point parameter port of another module. Before you can connect field
legend to the receiving module, you must make that receiving module’s parameter
port visible. To make a parameter port visible, call up the module’s Editor Window
panel by pressing the middle or right mouse button on the module icon dimple.
Next, look under the "Parameters" list to find the parameter you want to plug into.
Position the mouse cursor over that parameter’s button and press any mouse button.
When the Parameter’s Editor Window appears, click any mouse button over its "Port
Visible" switch. A purple parameter port should appear on the module icon. Con-
nect this parameter port to the field legend module icon in the usual way one con-
nects modules.

33333333333333333333333333
AVS Module Reference Manual 167

field legend3333333333333333333
INPUTS

Data Field (required; field n-dimensions n-vector any-data any-coordinates)
An AVS field which supplies the range of values displayed by field
legend.

Colormap (required; colormap)
An AVS colormap which is used as the legend for selecting values from
the data field.

PARAMETERS
node data Selects the scalar element of the input data values to be used as the color

legend’s range. A set of radio buttons appears, showing the labels that
are attached to the dimensions of the n-vector data.

value Dial to select the value that is placed on the field legend module’s out-
put port.

OUTPUTS
Real A single floating-point value selected from the range of values in the

field.

EXAMPLE 1
The following network displays isosurfaces of a 3D scalar field. field legend allows
you to select what "level" of values should be displayed as a surface. Note that field
legend performs the equivalent of extract scalar and color range, but these two
modules still need to filter the field that isosurface receives.

The extract scalar module is particularly important when the input field is a 3-vector
field. Without the extract scalar module, the field legend module will display one
blank radio button.

Also note that generate colormap sends the same colormap to both field legend and
color range

GENERATE COLORMAP READ FIELD

| |---|------|--------------|

| |-----------| | | |

| | | EXTRACT SCALAR EXTRACT SCALAR

| | | | |

|----|------------| | | |

| | | | | |

| | COLOR RANGE | |

| | | | |

FIELD LEGEND | | |---------------|

|-------------| | | |

| | | |

ISOSURFACE

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read field
any other module which outputs a 3D field

Modules that could provide the Colormap input:
generate colormap
color range

33333333333333333333333333
168 AVS Module Reference Manual

field legend3333333333333333333
Modules that can process field legend’s output:

isosurface
thresholded slicer
contour to geom

Modules with similar function:
color legend

SEE ALSO
The example script FIELD LEGEND demonstrates the field legend module.

33333333333333333333333333
AVS Module Reference Manual 169

field math3333333333333333333
NAME

field math – perform math operations between fields

SUMMARY
Name field math

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension n-vector any-data any-coordinates
field same-dimension same-vector any-data same-coordinates (OPTIONAL)

Outputs field same-dimension same-vector any-data same-coordinates

Parameters Name Type Default Min Max
choice choice +
Normalize boolean off
Constant float typein 0.0 unbounded unbounded

DESCRIPTION
The field math module performs unary and binary operations upon fields.

The unary operations are Not, Square, and Sqrt. The binary operations are +, -, ∗, /,
And, Or, Xor, Left-Shift, Right-Shift, and RMS (Root Mean Square). Unary opera-
tions are performed against the right port field only. The field that is connected to
the left port is ignored. If only one field is provided as an operand for a binary
operations, the field must be attached to the right port and the binary operations are
performed on the right port field and the Constant input parameter.

When two fields are connected to the module, the Constant parameter is not
displayed and the fields are evaluated against each other.

The input fields must be of the same dimensionality, size, and vector length. When
the fields contain different data types, the output field will have the more elaborate
data type.

When the fields have different coordinate types, the output field will have the same
coordinate type as the right input port field.

Byte data is converted to integer, while short, integer, and float data are converted to
double during computation. The result is then converted back to the appropriate
output data type and "clamped" to the range:

[0...255] byte
[-32767...32767] short
[-2147483647...2147483647] integer

if Normalize is turned off.

With Normalize turned on, the result is normalized to between:
[0...255] byte
[0...32767] short
[0...2147483647] integer
[0...1] float, double

INPUTS
Data Field (required; field any-dimension n-vector any-data any-coordinates)

The rightmost input field is used as the input to unary operations, or the
first operand for binary operations.

33333333333333333333333333
170 AVS Module Reference Manual

field math3333333333333333333
Data Field (optional; field same-dimension same-vector any-data same-coordinates)

The left field is the second operand in binary operations. It must have
the same dimension, size, and vector length as the first input field.

PARAMETERS
+
-
∗
/
And (bitwise)
Or (bitwise)
Xor (bitwise)
Not (bitwise)
Left-Shift (bitwise)
Right-Shift (bitwise)
Square
Sqrt
RMS (Root Mean Square)

A choice of operations. For binary operations, if the left port field
(field2) is not provided, the Constant parameter is used as the second
operand. I.e., field2 is replaced by Constant.
+ field1 + field2

- field1 - field2

∗ field1 ∗ field2

/ field1 / field2 (result is 0 if field2 is 0)

And field1 AND field2 |

Or field1 OR field2 |

Xor field1 XOR field2 | not applicable for

Not NOT field1 | floats and doubles

Left-Shift field1 << field2 |

Right-Shift field1 >> field2 |

Square field1 ∗ field1

Sqrt sqrt(field1)

RMS sqrt (field1∗∗2 + field2∗∗2)

Normalize Selecting Normalize causes the results of the operation to be normalized
to between 0 and 1 for floats and doubles, 0 and 255 for bytes, 0 and
32767 for shorts, and 0 and 2147483647 for integers. Normalize is off by
default.

Constant A floating point typein to specify the constant value to be used as the
second operand in binary operations. If two fields are connected to the
module, Constant is ignored, and disappears from the control panel.
The default is 0.0. There is no upper or lower limit.

OUTPUTS
Data Field (field same-dimension same-vector any-data same-coordinates)

The output field has the same form as the input fields. If the input fields
differed in the data type, the output field will have the more elaborate
data type. If the input fields had different coordinate types, the output
field will have the same coordinate type as the right input port field.

The min_val and max_val attributes of the output field are updated and
validated.

33333333333333333333333333
AVS Module Reference Manual 171

field math3333333333333333333
EXAMPLE 1

The following network inverts (flips the look-up table) an image using the Not func-
tion, with Normalize on. The same effect can be achieved by multiplying the image
by -1.

READ IMAGE

|

FIELD MATH

|

DISPLAY IMAGE

EXAMPLE 2
This network does a logical AND on a volume against the constant 128 (0x80) which
produces a volume with only 0s and 255s based on whether the source voxel was
greater or less than 128.

READ VOLUME

|

FIELD MATH

|

ORTHOGONAL SLICER

|

COLORIZER

|

DISPLAY IMAGE

RELATED MODULES
Modules that could provide the Data Field inputs:

Any module that outputs a field
Modules that can process field math output:

Any module that inputs a field
Modules that can be used instead of field math:

ip fmath
ip arithmetic
ip logical

SEE ALSO
Two FIELD MATH example scripts demonstrate the field math module.

33333333333333333333333333
172 AVS Module Reference Manual

field to byte3333333333333333333
NAME

field to byte – transform any field to an byte-valued field

SUMMARY
Name field_to_byte

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension n-vector any-data any-coordinates

Outputs field same-dimension same-vector byte any-coordinates

Parameters Name Type Default Choices
byte normalize toggle on on,off

DESCRIPTION
The field_to_byte module takes a field of data (integer, real, double, or byte) and con-
verts it to an byte field. It can be used in conjunction with volume visualization
modules that have a bias towards byte fields (i.e., compute gradient).

By default, the input data is normalized to the range 0..255 If the toggle parameter
byte_normalize is turned off, the data is "clamped" to that range instead. (See below
for details.)

INPUTS
Data Field (required; field any-dimension n-vector any-data any-coordinates)

The input data may be any AVS field.

PARAMETERS
byte_normalize

This is a toggle parameter:

d If on: The data is transformed linearly into the range 0..255:
(value - min) ∗ 255

new_value = ---------------------

max - min

d If off: The data is "clamped" so that no value falls outside the range 0..255:
If value < 0 new_value = 0
If 0 ≤ value ≤ 255 new_value = value
If value > 255 new_value = 255

OUTPUTS
Data Field (field same-dimension same-vector byte same-coordinates

The output field has the same dimensionality as the input field, but each
scalar value is forced to be a byte.

Appropriate new values of the min_val and max_val attributes are writ-
ten to the output field.

RELATED MODULES
Modules that could provide the Data Field input:

read volume
Modules that could be used in place of field_to_byte:

field to short
field to int
field to float
field to double

33333333333333333333333333
AVS Module Reference Manual 173

field to byte3333333333333333333
Modules that can process field_to_byte output:

read volume

SEE ALSO
The example scripts FIELD TO BYTE and FIELD TO INTEGER demonstrate the field
to byte module.

33333333333333333333333333
174 AVS Module Reference Manual

field to double3333333333333333333
NAME

field to double – transform any field to a field of double-precision floating point
values

SUMMARY
Name field_to_double

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension n-vector any-data any-coordinates

Outputs field same-dimension same-vector double same-coordinates

Parameters Name Type Default Choices
double normalize toggle off on,off

DESCRIPTION
The field_to_double module takes a field of data (byte, real, double, or integer) and
converts it to an double field. This may be useful for computing fields at greater data
resolutions.

By default, the input data is simply cast (re-typed) to be double-precision floating
point. If the toggle parameter double_normalize is turned on, the data is also nor-
malized to the range 0..1. (See below for details.)

INPUTS
Data Field (required; field any-dimension n-vector any-data any-coordinates)

The input data may be any AVS field.

PARAMETERS
double_normalize

This is a toggle parameter:

d If on: The data is transformed linearly into the range 0..1:
(value - min)

new_value = ---------------------

max - min

d If off: The data is converted to double-precision floating point format.

OUTPUTS
Data Field (field field same-dimension same-vector double same-coordinates

The output field has the same dimensionality as the input field, but each
scalar value is forced to be a double-precision number.

Appropriate new values of the min_val and max_val attributes are writ-
ten to the output field.

RELATED MODULES
read volume
field to byte
field to int
field to float

SEE ALSO
The example script FIELD TO INTEGER demonstrates the field to double module.

33333333333333333333333333
AVS Module Reference Manual 175

field to float3333333333333333333
NAME

field to float – transform any field to a field of single-precision floating point values

SUMMARY
Name field to float

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field field any-dimension n-vector any-data any-coordinates

Outputs field same-dimension same-vector float same-coordinates

Parameters Name Type Default Choices
float normalize toggle off on,off

DESCRIPTION
The field to float module takes a field of data (byte, short, real, double, or integer) and
converts it to an float field. It can be used in conjunction with modules that have a
bias towards float fields (particle advector, samplers).

By default, the input data is simply cast (re-typed) to be single-precision floating
point. If the toggle parameter float normalize is turned on, the data is also normal-
ized to the range 0..1. (See below for details.)

INPUTS
Data Field (required; any-dimension n-vector any-data any-coordinates)

The input data may be any AVS field.

PARAMETERS
float normalize

This is a toggle parameter:

If ON, the data is transformed linearly into the range 0..1:
(value - min)

new_value = ---------------------

max - min

If OFF, the data is converted to single-precision floating point format.

OUTPUTS
Data Field (field same-dimension same-vector float same-coordinates

The output field has the same dimensionality as the input field, but each
scalar value is forced to be a single-precision number.

Appropriate new values of the min_val and max_val attributes are writ-
ten to the output field.

RELATED MODULES
read volume
particle advector
samplers
field to byte
field to short
field to int
field to double

SEE ALSO
The example script FIELD TO INTEGER demonstrates the field to float module.

33333333333333333333333333
176 AVS Module Reference Manual

field to float3333333333333333333
LIMITATIONS

Overflow or underflow may occur when converting a double field to a float field
with float normalize turned off.

33333333333333333333333333
AVS Module Reference Manual 177

field to int3333333333333333333
NAME

field to int – transform any field to an integer-valued field

SUMMARY
Name field to int

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension n-vector any-data any-coordinates

Outputs field same-dimension same-vector integer same-coordinates

Parameters Name Type Default Choices
int normalize toggle off on,off

DESCRIPTION
The field to int module takes a field of data (byte, short, real, double, or int) and con-
verts it to an int field. This may be useful for performing integer math with greater
precision (−231−1 to 231−1, -2147483647...2147483647) than that offered by byte fields
(0..255).

By default, the input data is "clamped" to the range −231−1...231−1. If the toggle
parameter int normalize is turned on, the data is normalized to 0..231−1 instead. (See
below for details.)

INPUTS
Data Field (required; field any-dimension n-vector any-data any-coordinates)

The input data may be any AVS field.

PARAMETERS
int normalize

This is a toggle parameter:

If ON, the data is transformed linearly into the range 0..231−1:
(value - min) ∗ 2147483647

new_value = -----------------------------

max - min

If OFF, the data is "clamped" so that no value falls outside the range
-2147483647...2147483647. Values greater than 2147483647 are set to
2147483647. Values less than -2147483647 are set to -2147483647.

OUTPUTS
Data Field (field same-dimension same-vector integer same-coordinat)

The output field has the same dimensionality as the input field, but each
scalar value is forced to be an integer.

Appropriate new values of the min_val and max_val attributes are writ-
ten to the output field.

RELATED MODULES
field to byte
field to short
field to float
field to double

SEE ALSO
The example script FIELD TO INTEGER demonstrates the field to int module.

33333333333333333333333333
178 AVS Module Reference Manual

field to mesh3333333333333333333
NAME

field to mesh – transform a 2D scalar field to a surface in 3D space

SUMMARY
Name field_to_mesh

Availability Imaging, Volume, FiniteDiff module libraries

Type mapper

Inputs field 2D scalar any-data any-coordinates
colormap (optional)

Outputs geometry

Parameters Name Type Default Min Max
Z scale float 1.0 unbounded unbounded

DESCRIPTION
The field to mesh module converts a two-dimensional field into a surface in 3D
space, represented as a GEOM-format mesh. Each element of the field is mapped to a
point in a base plane. The height of the mesh above each point in this plane is pro-
portional to the scalar value of the field.

For irregular fields, the "base plane" need not actually be planar. The 2D grid of field
elements is mapped into 3D space using the coordinate array included in the field
description.

INPUTS
Data Field (required; field 2D scalar any-data any-coordinates)

The input data must be a 2D field with a scalar data value at each ele-
ment. The data value may be of any primitive type: byte, integer, float,
or double, and have uniform, rectilinear, or irregular coordinates.

Colormap (optional)
Colors each vertex of the mesh, according to the data value at that point.
If no colormap is supplied, the vertices are colored white.

PARAMETERS
Z scale Determines the height of the mesh.

OUTPUTS
Geometry The output is an AVS geometry.

EXAMPLE 1
This example uses the "red band" (red component of the RGB color) of an image as a
2D field. It then converts this field to a mesh, using a colormap, and displays the
mesh.

READ IMAGE

|

EXTRACT SCALAR (set dial to ’1’ for red band)

|

| GENERATE COLORMAP

| +----------|

| |

FIELD TO MESH

|

GEOMETRY VIEWER

33333333333333333333333333
AVS Module Reference Manual 179

field to mesh3333333333333333333
EXAMPLE 2

This example shows how to take orthographic slices through a curvilinear data set,
showing them as <XYZ> meshes:

READ FIELD (read curv.fld)

|

ORTHOGONAL SLICER

|

| GENERATE COLORMAP

| +----------|

| |

FIELD TO MESH

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read volume
read field
color range
generate colormap
extract scalar
orthogonal slicer

Modules that could be used in place of field to mesh:
arbitrary slicer

Modules that can process field to mesh output:
geometry viewer

LIMITATIONS
This module can output meshes that are too big for the geometry viewer module to
handle, causing AVS to crash. Use the downsize filter module to reduce the size of
the input data.

SEE ALSO
The example script COLOR RANGE demonstrates the field mesh module.

33333333333333333333333333
180 AVS Module Reference Manual

field to short3333333333333333333
NAME

field to short – transform any field to a short--valued field

SUMMARY
Name field to short

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension n-vector any-data any-coordinates

Outputs field same-dimension same-vector short same-coordinates

Parameters Name Type Default Choices
short normalize toggle off on,off

DESCRIPTION
The field to short module takes a field of data (byte, short, real, double, or int) and con-
verts it to a short field. This may be useful for performing integer math with greater
precision (−215−1 to 215−1, –32767 to 32767) than that offered by byte fields (0..255).

By default, the input data is "clamped" to the range -32767...32767. If the toggle
parameter short normalize is turned on, the data is normalized to 0..32767 instead.
(See below for details.)

INPUTS
Data Field (required; field any-dimension n-vector any-data any-coordinates)

The input data may be any AVS field.

PARAMETERS
short normalize

This is a toggle parameter:

If ON, the data is transformed linearly into the range 0..32767:
(value - min) ∗ 32767

new_value = ---------------------

max - min

If OFF, the data is "clamped" so that no value falls outside the range
-32767...32767. Values greater than 32767 are set to 32767; values less
than -32767 are set to -32767.

OUTPUTS
Data Field (field same-dimension same-vector short same-coordinates)

The output field has the same dimensionality as the input field, but each
scalar value is forced to be a short.

Appropriate new values of the min_val and max_val attributes are writ-
ten to the output field.

RELATED MODULES
read volume
field to byte
field to int
field to float
field to double

SEE ALSO
The example script FIELD TO INTEGER demonstrates the field to short module.

33333333333333333333333333
AVS Module Reference Manual 181

field to ucd3333333333333333333
NAME

field to ucd – convert AVS field to unstructured cell data format

SUMMARY
Name field to ucd

Availability UCD module library

Type filter

Inputs field 3D n-vector any-data any-coordinates

Outputs ucd structure

Parameters none

DESCRIPTION
field to ucd converts a 3D AVS field into a UCD structure. The cell connectivity list is
generated automatically.

If the input field is scalar, field to ucd converts the scalar value at each location in the
input field into the value of a node in the UCD structure. If the input field is an n-
vector, field to ucd converts each element of the vector into a scalar component at
each node in the output UCD structure. Note that the cells of the output structure
will be hexahedra.

An AVS field is an array with a vector of values at each location. On the other hand
unstructured cell data (UCD) has a hierarchical structure, consisting of structure
data, cell data, and node data. Both structure data and cell data are optional, i.e.,
UCD structures may often contain only node data.

Structure data refers to data that holds for the entire structure. For example, in a
simulation of forces on an object, the location of loads could be stored as structure
data. Cell based data is particular to each cell in the structure.

At the lowest level are the nodes, which are the vertices of the cells. Each node can
have several data components associated with it. Furthermore, each of these com-
ponents may itself be either a vector or a scalar.

field to ucd computes the min and max extents of the structure.

Thus, if the input field has dimensions width ∗ height ∗ depth, there will be width ∗
height ∗ depth nodes in the output structure. The number of cells in the structure out-
put by field to ucd would be (width - 1) ∗ (height - 1) ∗ (depth -1).

If the type of the input field is irregular, the coordinates associated with each field
data element become the coordinates of the UCD structure’s nodes. If the input field
is rectilinear, node coordinates are computed using the field’s "points" information. If
the input field is uniform, node coordinates are computed based on the implicit
organization of the field array.

INPUTS
Data Field (required; field 3D n-vector any-data any-coordinates)

The input data must be a 3D field, with an n-vector of values at each loca-
tion in the field. The field can be uniform, rectilinear, or irregular.

OUTPUTS
UCD Structure

The output structure is in AVS unstructured cell data (UCD) format.

EXAMPLE
The following network reads in an AVS field, converts it into a UCD structure, then
into a geometry, and renders it:

33333333333333333333333333
182 AVS Module Reference Manual

field to ucd3333333333333333333
GENERATE COLORMAP READ FIELD

| |

| FIELD TO UCD

| |

| |--------------|

| | |

UCD CONTOUR |

| |

|--------------| |

UCD TO GEOM

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read field
Any module that outputs a 3D field.

Modules that can process field to ucd’s output:
ucd to geom, ucd crop, ucd threshold, ucd extract, ucd hex to tet, ucd anno,
ucd contour, ucd hog, ucd iso, ucd offset, ucd rslice, ucd slice2d,
ucd legend, ucd probe, ucd streamline, write ucd.

Modules that can be used instead of field to ucd:
scatter to ucd

SEE ALSO
The example script FIELD TO UCD demonstrates the field to ucd module.

33333333333333333333333333
AVS Module Reference Manual 183

file browser3333333333333333333
NAME

file browser – send a filename to one or more module(s) filename parameter port(s)

SUMMARY
Name file browser

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data

Inputs none

Outputs string

Parameters Name Type Default
File Browser browser NULL

DESCRIPTION
The file browser module sends a single user-specified filename string to one or more
string parameter ports on one or more receiving modules. Its purpose is to allow
you to simultaneously control filename parameter input to more than one module
using only a single File Browser input widget.

Before you can connect file browser to the receiving module, you must make that
receiving module’s parameter port visible. To make a parameter port visible, call up
the module’s Editor Window panel by pressing the middle or right mouse button on
the module icon dimple. Next, look under the "Parameters" list to find the parameter
you want to plug into. Position the mouse cursor over that parameter’s button and
press any mouse button. When the Parameter Editor window appears, click any
mouse button on its "Port Visible" switch. A light blue parameter port should appear
on the module icon. Connect this parameter port to the file browser module icon in
the usual way.

PARAMETERS
File Browser (string)

The single filename string, specified through a File Browser widget, to be
sent to the receiving module(s) filename string parameter port(s). The
default value is NULL.

OUTPUTS
filename (string)

The filename string value is sent to all modules with filename string-type
parameter ports that are connected to the file browser module.

EXAMPLE 1
The following network inputs the same data file simultaneously to two user-written
modules.

FILE BROWSER

|

|

| |

| |

| |

USER MODULE 1 USER MODULE 2

RELATED MODULES
Modules that can process file browser output:

all modules with filename string parameter ports

33333333333333333333333333
184 AVS Module Reference Manual

file browser3333333333333333333
SEE ALSO

The example script FILE BROWSER demonstrates the file browser module.

33333333333333333333333333
AVS Module Reference Manual 185

file descriptor3333333333333333333
NAME

file descriptor – create a data form to read external format data files

SUMMARY
Name file descriptor

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data

Inputs none

Outputs field

Parameters Name Type Default Min Max
Select Data File Browser
read form toggle false
write form toggle false
header

information oneshot false
variable list oneshot false
send data oneshot false
Number of

Data Files typein 1 1 5
Logical Name

for File n typein infile n
Browser for

File n toggle false

DESCRIPTION
The file descriptor module is used to create a data form that specifies how to read an
external format data file and convert it into an AVS field. This data form can be used
either by the file descriptor module or the data dictionary module to read data into
AVS.

To construct the data form, file descriptor presents an AVS Field Description Form
panel. This panel allows the user to describe where in their external data file format
the necessary information is located. Once a form has been filled in, the file descrip-
tor module can use it to read in and convert the external file(s). The converted data is
output as a field on the module’s output port.

Alternately, the data form can be written to disk to be used by the data dictionary
module to repeatedly read in other external data files with the same format.

This man page will not provide sufficient information for the new user to effectively
use file descriptor. See the reference under "SEE ALSO" below for complete docu-
mentation.

PARAMETERS
Select Data File

A file browser widget. This file browser is shared among the read form,
write form, and Browser for File n parameters. The correct order to
select these options is: specify which other parameter the file browser
will represent by pressing one of the read form, write form, or the vari-
ous Browser for File n parameters. Then, select a file using this file
browser widget.

read form A toggle button that sets the current state of the Select Data File
browser. After this is selected, use the Select Data File browser to
specify a form file to read. It will be read immediately upon
specification.

33333333333333333333333333
186 AVS Module Reference Manual

file descriptor3333333333333333333
write form A toggle button that sets the current state of the Select Data File

browser. After this is selected, use the Select Data File browser to
specify a form file to write. It will be written immediately upon
specification.

header information
A oneshot button that displays a scrolling list with the field header infor-
mation of the file being read in.

variable list
A oneshot button that displays a scrolling list with the list of variables
that can be used in value typeins.

send data A oneshot button that causes the data to be read from the external file(s)
and converted into a field. This field is then output on the module’s out-
put port.

Number of Data Files
A typein that determines the number of external data files that need to
be read in order to create a field. Maximum value is 5. The value here
determines the number of Logical Name for File n typeins and Browser
for File n buttons that will be created.

Logical Name for File n
A set of typeins that determines a logical name for each of the external
input data files. These controls only appear after a Number of Data
Files greater than 1 has been specified.

Browser for File n
A set of buttons that set the current state of the Select Data File browser.
First press one of these Browser for File buttons, then use the Select
Data File browser to define which real file will be used as file n. Specify
a real file for each Browser button, working down the list. No data will
actually be read until either send data or header information is pressed.

OUTPUTS
Data Field (field)

The output is the field containing data held by the external data file
being read.

EXAMPLE
This simple example displays an image.

FILE DESCRIPTOR

|

DISPLAY IMAGE

RELATED MODULES
data dictionary

SEE ALSO
The "AVS Data Interchange Application" section of the AVS Application Guide
describes importing data into AVS using file descriptor.

33333333333333333333333333
AVS Module Reference Manual 187

flip normal3333333333333333333
NAME

flip normal – change direction of each vertex normal for a geometry object

SUMMARY
Name flip normal

Availability UCD, Volume, FiniteDiff module libraries

Type filter

Inputs geometry

Outputs geometry

Parameters none

DESCRIPTION
The flip normal module transforms an AVS geometry so that all the vertex normals
point in the opposite direction. This is most often used to correct normals that have
been calculated incorrectly.

When its normals are backwards, a 3D object appears unaffected by light sources; it
frequently appears as a grey silhouette.

INPUTS
Geometry The input can be any AVS geometry.

OUTPUTS
geometry The output is an AVS geometry that represents the same object.

EXAMPLE
READ GEOM

|

FLIP NORMAL

|

GEOMETRY VIEWER

RELATED MODULES
read geom, offset, shrink, tube, render geometry, geometry viewer, ucd reverse cell

NOTES
Some filter modules (e.g. offset) sometimes produce bad normals, which can be
corrected with flip normal.

SEE ALSO
The example script FLIP NORMALS demonstrates the flip normal module.

33333333333333333333333333
188 AVS Module Reference Manual

float3333333333333333333
NAME

float – send a floating point number to one or more module(s) floating point parame-
ter port(s)

SUMMARY
Name float

Type data

Inputs none

Outputs float

Parameters Name Type Default Min Max
Float Value dial 0.0 unbounded unbounded

DESCRIPTION
The float module sends a single user-specified floating point value to one or more
float-type parameter ports on one or more receiving modules. Its purpose is to make
it possible for a user to simultaneously control floating point parameter input to
more than one module using only a single input widget (whether the default dial, or
a typein).

Before you can connect float to the receiving module, you must make that receiving
module’s parameter port visible. To make a parameter port visible, call up the
module’s Editor Window panel by pressing the middle or right mouse button on the
module icon dimple. Next, look under the "Parameters" list to find the parameter
you want to plug into. Position the mouse cursor over that parameter’s button and
press any mouse button. When the Parameter Editor window appears, click any
mouse button on its "Port Visible" switch. A purple parameter port should appear on
the module icon. Connect this parameter port to the float module icon in the usual
way.

PARAMETERS
Float Value (float)

The single user-supplied floating point value to be sent to the module(s)
floating point parameter port(s). The default value is 0.0. There is no
minimum or maximum restriction on the value. You should be aware of
the range of numbers that it is reasonable to send to the receiving
modules. The default widget type is a dial. If you change this to a
typein widget, then you should type the value as a real number, e.g., .55
or -100.25.

OUTPUTS
Float Output (float)

The floating point value is sent to all modules with floating point-type
parameter ports connected to the float module.

EXAMPLE 1
The following network reads a field, then produces both a contour and an isosurface
for the same floating point value, with both outputs composited in the geometry
viewer display window.

33333333333333333333333333
AVS Module Reference Manual 189

float3333333333333333333
READ FIELD

|

|--------------------|

| |

| |

FLOAT | |

| | |

|-------|--------------| |

| | | |

CONTOUR TO GEOM ISOSURFACE

| |

| |

| |

|---------|---------|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that can process float output:

all modules with float-type parameter ports

33333333333333333333333333
190 AVS Module Reference Manual

generate axes3333333333333333333
NAME

generate axes – generate 3D geometric axes

SUMMARY
Name generate axes

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data

Outputs geometry

Parameters Name Type Default Min Max
Regenerate oneshot
Colored Axes boolean on

center typein 0 0 0
min typein -10 -10 -10
max typein 10 10 10

axes choice All

All | X | Y | Z ...
Tick Marks boolean off
Tick Labels boolean off

Tick Length float dial 0.5 0.0 unbounded
Label Spacing float dial 1.0 0.0 unbounded
Tick Spacing float dial 1.0 0.0 unbounded

Tick Decimal
Precision int slider 0 0 10

Label Font int slider 0 0 20
Label Height float slider 0.08 0.01 .40
Tick Label Font int slider 0 0 20
Tick Label

Height float slider 0.05 0.01 .40

DESCRIPTION
generate axes produces X, Y, and Z axes. Axes can have tick marks and/or tick mark
labels. You can set attributes such as label font, tick spacing, tick length, tick label
precision, tick label font, etc., for All axes, or you can control them for each indivi-
dual X, Y, and Z axes.

The range of the axes is the geometric extent of the top level object when either the
module is instanced or whenever the Regenerate button is pressed. This range can
be manually reset with the axes center, min, and max typeins.

PARAMETERS
Regenerate

A oneshot that recalculates the range of the axes to be the geometric
extents of the top level object. Where no specific object extent informa-
tion is available, the axes extend from -10 to +10.

Colored Axes
Controls whether the axes are drawn in color (X is red, Y is green, Z is
blue) or in a contrasting single color. This boolean is on by default.

33333333333333333333333333
AVS Module Reference Manual 191

generate axes3333333333333333333
center A floating point typein that sets the origin of the axes within the top level

object. The default is 0 0 0.

min A floating point typein that sets the minimum extent of the axes. When
no object is present, the default is -10 -10 -10. When an object is present,
the default is the object’s minimum X, Y, and Z extents.

Note that an object’s minimum extents may not always produce axes
that intersect at the 0 0 0 origin.

max A floating point typein that sets the maximum extent of the axes. When
no object is present, the default is 10 10 10. When an object is present, the
default is the object’s maximum X, Y, and Z extents.

axes A set of radio buttons that switches among four sets of parameter widg-
ets. The choices are All, X, Y, and Z. This gives you control over the
appearance of the entire axes, or of an individual X, Y, or Z axis.

When All is selected, a set of parameter widget dials, sliders, and but-
tons is presented that will set values that will be applied to all (X, Y, and
Z) axes.

When X is pressed, a set of parameter widget dials, sliders, and buttons
is presentd that will set values that will be applied to just the X axis, etc.

The default is All.

Tick Marks
X Tick Marks
Y Tick Marks
Z Tick Marks

This is a boolean switch. If it is on, generate axes will produces hash
marks along the axes. The hash marks are spaced according to the Tick
Spacing parameter.

There are actually four different boolean switches that control All or
individual axes. The axes radio buttons select which widget is
displayed.

All default to off (no tick marks).

Tick Labels
X Tick Labels
Y Tick Labels
Z Tick Labels

This is a boolean switch. If it is on, generate axes produces numeric
labels along the axes. The labels are spaced according to the Label Spac-
ing parameter.

There are actually four different boolean switches that control All or
individual axes. The axes radio buttons select which widget is
displayed.

All default to off (no tick labels).

Tick Length
X Tick Length
Y Tick Length
Z Tick Length

A float dial that controls the length of the tick marks. The default is 0.5;
the range is 0.0 to unbounded.

33333333333333333333333333
192 AVS Module Reference Manual

generate axes3333333333333333333
There are actually four different dials that control All or individual axes.
The axes radio buttons select which widget is displayed.

Label Spacing
X Label Spacing
Y Label Spacing
Z Label Spacing

A float dial that controls the interval at which tick labels are drawn.
Beginning at the center, this value is successively added and subtracted
until max and min are reached. The default is 1.0; the range is 0.0 to
unbounded.

There are actually four different dials that control All or individual axes.
The axes radio buttons select which widget is displayed.

Tick Spacing
X Tick Spacing
Y Tick Spacing
Z Tick Spacing

A float dial that controls the interval at which tick marks are drawn.
Beginning at the center this value is successively added and subtracted
until max and min are reached. The default is 1.0; the range is 0.0 to
unbounded.

When this parameter is set to less than 0.0, it snaps back to 0.1.

There are actually four different dials that control All or individual axes.
The axes radio buttons select which widget is displayed.

Tick Decimal Precision
X Tick Decimal Precision
Y Tick Decimal Precision
Z Tick Decimal Precision

An integer slider that sets how many values to the right of the decimal
point the tick labels will display. The default is 0; the range is 0 to 10.

There are actually four different sliders that control All or individual
axes. The axes radio buttons select which widget is displayed.

Label Font
X Label Font
Y Label Font
Z Label Font

An integer slider that sets the font of the axes labels (the "X", "Y", and
"Z"). The number-to-actual font correspondence varies from platform to
platform. The default is 0. The hypothetical range is 0 to 20.

There are actually four different sliders that control All or individual
axes. The axes radio buttons select which widget is displayed.

Label Height
X Label Height
Y Label Height
Z Label Height

A float slider that controls the size of the axes labels. Note that most sys-
tems support a limited number of font sizes. Label Height selects the
closest actual font size. The default is 0.08; the range is 0.01 to .40.

There are actually four different sliders that control All or individual
axes. The axes radio buttons select which widget is displayed.

33333333333333333333333333
AVS Module Reference Manual 193

generate axes3333333333333333333
Tick Label Font
X Tick Label Font
Y Tick Label Font
Z Tick Label Font

An integer slider that sets the font of the tick mark labels. The number-
to-actual font correspondence varies from platform to platform. The
default is 0. The hypothetical range is 0 to 20.

There are actually four different sliders that control All or individual
axes. The axes radio buttons select which widget is displayed.

Tick Label Height
X Tick Label Height
Y Tick Label Height
Z Tick Label Height

A float slider that controls the size of the tick mark labels. Note that
most systems support a limited number of font sizes. Tick Label Height
selects the closest actual font size. The default is 0.05; the range is 0.01 to
.40.

There are actually four different sliders that control All or individual
axes. The axes radio buttons select which widget is displayed.

OUTPUTS
Geometry (geom)

The output is a geom containing lines and sometimes labels.

EXAMPLE
The following network generates a set of axes corresponding to a data set read in.

GENERATE AXES READ GEOM

| |

|----------------------|

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that can process generate axes’s output:

tube
geometry viewer

SEE ALSO
The example script GENERATE AXES demonstrates the generate axes module.

33333333333333333333333333
194 AVS Module Reference Manual

generate colormap3333333333333333333
NAME

generate colormap – output AVS colormap

SUMMARY
Name generate colormap

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data

Inputs none

Outputs colormap

Parameters Name Type Default Min Max
lo value float 0 none none
hi value float 255 none none
hue
saturation
brightness
opacity
composite
edit popup window
read
write

DESCRIPTION
The generate colormap module produces an AVS colormap data structure, for use by
modules that transform input data into color values. These modules include:

colorizer
arbitrary slicer
bubbleviz
field to mesh
isosurface

Note that when the range of values in the input field is not evenly distributed
between 0 and 255, or if much of the data lie outside the 0 to 255 range, you can use
the color range module to effectively scale the output colormap to the range of your
data. For a more detailed description, see the man page for color range.

This module bases its output colormap on the state of the colormap editor control
widget, which is invoked by clicking the edit button in the control panel. The color-
map editor uses a hue-saturation-brightness (HSB) color space model:

hue 0.00 = red
0.16 = yellow
0.33 = green
0.50 = cyan
0.66 = blue
0.83 = magenta

saturation 0.00 = white
1.00 = hue

brightness 0.00 = black
1.00 = hue

The HSB color space can be thought of as an inverted cone:

d The hue axis runs circularly around the cone.

33333333333333333333333333
AVS Module Reference Manual 195

generate colormap3333333333333333333
d The saturation axis runs from the center of the cone (white) to its perimeter (fully

saturated color).

d The brightness axis runs from the tip of the cone (black) to the base (white).

You can change an editing panel from its current setting by scribing a curve with the
mouse. Place the mouse cursor anywhere within the editing panel, hold down any
mouse button, and drag upward or downward.

Each editing panel is organized as follows:

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
33333333333333333333333333333333

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
133333333333333333333333333333333

lo value

hi value

33333333

33333333

output values: 0-1

input values

PARAMETERS
The state of the colormap editor control widget specifies the colormap to be gen-
erated. This widget is a popup window that includes four editing panels and eight
buttons. The editing panels are:

hue Raises the hue editing panel. The default panel is a linear ramp:
0=blue through 255=red.

saturation Raises the saturation editing panel. The default panel has all colors
fully saturated: 0–255 = 1.0.

brightness Raises the brightness editing panel. The default panel has all
colors at full brightness: 0–255 = 1.0.

opacity Raises the opacity editing panel. (The opacity value is placed in the
auxiliary field of the colormap.) The default panel is a linear ramp:
0=0.0 through 255=1.0.

The following buttons apply to the editing panel that is currently visible:

composite
This is a toggle — when ON, the editing panel becomes a composite of the
hue, saturation, and brightness panels, showing the actual colors that will
be used. A line through the composite panel display indicates the status of
the currently-selected panel: hue, saturation, brightness, or opacity.

edit
Press this button to pop up an editing window for the current panel. The
editing window includes these settings:

Min
Max In the HSB color model, the hue is represented as a circle. By

default, the colormap produces hues between 0† and 240†
around this circle. This is the hue range from red to blue. The

33333333333333333333333333
196 AVS Module Reference Manual

generate colormap3333333333333333333
Min and Max parameters allow you to select another hue
range.

From/Value
To/Value
do interpolation

These controls provide precise numeric control over the map-
ping of input values to output colors. This is an alternative to
scribing a freehand mapping with the mouse. For example,
suppose the input values range from 0 to 175, but the values in
the range 160–165 are critical. It would be desirable to have the
values in the critical range be mapped to a contrasting hue (or
range of hues). To accomplish this, set From to 160 and To to
165. Set the two Value settings to numbers that produce a con-
trasting hue, e.g. 0.0 (bright red) as the From Value and 0.1
(semi-bright red) as the To Value. Then press the do interpola-
tion button to redefine the portion of the colormap specified by
the above settings as a linear ramp.

invert Inverts the current editing panel along a horizontal axis. The
hue (or saturation, etc.) assigned to the lo value becomes
assigned to the hi value, and vice-versa.

flip Flips the current editing panel along a vertical axis. Each input
value is mapped to the complementary output value (e.g. an
opacity of 0.667 is becomes 0.333).

cycle Performs a circular shift on the current editing panel. For
example, with a Step value of 10, pressing the cycle button
effectively moves the image in the editing panel down by 10
slots (out of 255). Subsequent presses of cycle move the image
again and again.

ramp Generates a linear ramp on the currently raised editing panel:
lo value =0.0 through hi value=1.0.

smooth Smooths the curves of a hand-scribed editing panel.

read
Reads a colormap from disk storage. Pressing this button pops up a File
Browser widget, allowing you to specify a filename. You can also change
the working directory.

write
Writes the current colormap to a disk file. Pressing this button pops up a
File Browser widget, allowing you to specify a filename. You can also
change the working directory.

lo value
(see LIMITATIONS below) a floating point dial which specifies the
minimum data value that can be used as input to the colormap (the value at
the top of the editing panel). The default low value is 0.

hi value
(see LIMITATIONS below) a floating point dial which specifies the max-
imum data value that can be used as input to the colormap (the value at the
bottom of the editing panel). The default high value is 255.

OUTPUTS
colormap The output is an AVS colormap.

33333333333333333333333333
AVS Module Reference Manual 197

generate colormap3333333333333333333
COLORMAP FILE FORMAT

Colormaps are stored on disk as ASCII files, in the following format:
number_of_entries

hue saturation brightness opacity

hue saturation brightness opacity

hue saturation brightness opacity

low_value high_value

The hue, saturation, brightness, and opacity values are normalized to the range 0.0 –
1.0. The default colormap has 255 entries, with the hue, saturation, brightness, and
opacity default values as described above.

EXAMPLE
The following network reads in a 3-vector field, i.e. every field location has 3 values
associated with it. The extract scalar module selects one of the fields values. color
range stores the field’s min and max values so that the colormap can be scaled to the
range of data in the field:

READ FIELD

|

GENERATE COLORMAP |

| |

| EXTRACT SCALAR

| |

| |---------|

|---------------| | |

| | |

COLOR RANGE |

| |

|-----| |

| |

ARBITRARY SLICER

|

|

GEOMETRY VIEWER

RELATED MODULES
color range
minmax

LIMITATIONS
The generate colormap module can only generate colormaps with 255 entries.

SEE ALSO
The example scripts COLOR RANGE, PROBE, as well as others demonstrate the gen-
erate colormap module.

33333333333333333333333333
198 AVS Module Reference Manual

generate filters3333333333333333333
NAME

generate filters - generate 2D filters for image processing

SUMMARY
Name generate filters

Availability Imaging module library

Type data

Outputs field 2D scalar float

Parameters Name Type Default Min Max
selection choice Gaussian
Size integer 3 1 65
focus1 float 0.5 0.0 10.0
focus2 float 0.25 0.0 10.0
power float 1.0 0.0 10.0
angle float 0.0 0.0 360.0
scale float 0.5 0.0 1.0

DESCRIPTION
generate filters produces 2D scalar fields of floating point values. These can be used
as convolution filters in image processing by feeding them into the convolve module.

generate filters outputs the following filters: Gaussian, Laplacian, Power, Ellipse,
Line, Random, dx, and dy. All filters, except Laplacian and Random, are normalized
to the range 0.0 to 1.0.

PARAMETERS
selection Sets the function used to produce the image processing filter. Each func-

tions has a number of parameter dials associated with it. Only the dials
associated with a given function will be visible when you select that
function. There are eight options:

Gaussian
Generates filters using a normal-distribution, bell-shaped, function.
The Gaussian operator is typically used as a low-pass filter to
smooth or blur images.

Laplacian
Generates "mexican hat" shaped function. The Laplacian function
produces a high-pass filter. A Laplacian function is produced as the
difference between two Gaussian functions. This is why there are
two foci for the Laplacian functions: one for each of the two com-
ponent Gaussians. Laplacian filters are not normalized to the range
of 0.0 to 1.0.

Power
Generates an exponential function.

Ellipse
Generates an elliptical function, with two foci.

Line
Generates a filter that has the effect of blurring an image along a
given line.

Random
Generates a uniformlly distributed random filter that is not normal-
ized.

33333333333333333333333333
AVS Module Reference Manual 199

generate filters3333333333333333333
dx Generates the x component of the Sobel operator (see sobel), which

detects changes in the image in the x direction. This can be used to
locate vertical edges in images. The dx filter is 3x3 and cannot be
resized.

dy Generates the y component of the Sobel operator (see sobel), which
detects changes in an image in the y direction. This can be used to
locate horizontal edges in images. The dy filter is 3x3 and cannot be
resized.

Size Determines the length of the filter’s sides. Filters are squares. NOTE: con-
volving a filter with an image is a N x M operation, where N is the
number of elements in the convolution filter and M is the number of ele-
ments in the image. Consequently, filters of sizes over 16 require a great
deal of computation. The size parameter is used by all of the functions.

focus1 Used in Gaussian, Power, and Line filters to control the width and ampli-
tude of the filter function, which are inversely related. In the Laplacian
filter, this controls the width and amplitude of one of the two component
Gaussian functions. In the Ellipse filter, this controls the ellipse’s first
focus.

focus2 In the Laplacian filter, this controls the width and amplitude of the
second component Gaussian function. In the Ellipse filter, this controls
the ellipse’s second focus.

power Value between 0.0 and 10.0, used in the Power filter to set the exponent
of the function.

angle Value between 0.0 and 360.0, used in the Line filter to set the angle of the
line relative to the horizontal.

scale Value between 0.0 and 1.0, used with the Laplacian or random filters to
reduce the range of the function’s values.

OUTPUTS
Filter The output is a 2D field of scalar floats, i.e. a grid where every location

contains one floating point value.

EXAMPLE 1
The following network generates a filter, convolves it with an image, then displays
the result:

GENERATE FILTERS READ IMAGE

| |

|-----| |-----------|

| |

CONVOLVE

|

|

IMAGE VIEWER

EXAMPLE 2
The following network shows what the convolution filters produced by generate
filters look like, both as an image, and as an x-y graph. The module colorizer makes
an AVS image out of the filter and colors it with a colormap output by generate color-
map (NOTE: the colormap’s max value must be changed to some small number, such
as 0.03, using the Dial Editor). At the same time, orthogonal slicer generates a cross
section through the filter, which can then be displayed as a histogram using the
graph viewer module. (NOTE: set orthogonal slicer to slice through the middle of

33333333333333333333333333
200 AVS Module Reference Manual

generate filters3333333333333333333
the filter.)
GENERATE COLORMAP GENERATE FILTERS

| |

|--------| |--------|----------------|

| | |

COLORIZER ORTHOGONAL SLICER

| |

| |

DISPLAY IMAGE GRAPH VIEWER

EXAMPLE 3
The following network shows how you can combine the dx and dy filters into the
equivalent of a "sobel" edge detecting operator:
GENERATE FILTERS(dx) READ IMAGE GENERATE FILTERS(dy)

| | |

| |-------------------|---------------| |

| | | |

CONVOLVE CONVOLVE

| |

|--------------------| |----------------|

| |

FIELD MATH (RMS)

|

|

DISPLAY IMAGE

RELATED MODULES
Modules that can process generate filter’s output:

convolve
colorizer
orthogonal slicer

Modules that can be used instead of generate filters:
ip read kernel
ip convolve

SEE ALSO
The example script GENERATE FILTERS demonstrates the generate filter module.

33333333333333333333333333
AVS Module Reference Manual 201

generate grid3333333333333333333
NAME

generate grid – create grids on XY, XZ and YZ coordinate planes

SUMMARY
Name generate grid

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data

Inputs none

Outputs geometry

Parameters Name Type Default
width float typein 11
height float typein 11
depth float typein 11
NX int typein 11
NY int typein 11
NZ int typein 11
XY boolean true
XZ boolean true
YZ boolean true
x-offset float dial 0
y-offset float dial 0
z-offset float dial 0

DESCRIPTION
The generate grid module creates a geometry representation of the coordinate planes
XY, XZ and YZ in the form of grid. The user can control the size of the grids, number
of grid lines, and initial position for each plane. The size of the grids and their initial
position is determined by the extents of the top level object in the Geometry Viewer
when the module is dragged into the Workspace.

PARAMETERS
width Specifies the size of XY and XZ grid plane in X direction.

height Specifies the size of XY and YZ grid plane in Y direction.

depth Specifies the size of XZ and YZ grid plane in Z direction.

NX Specifies the number of grid lines in X direction. The extents are divided
by NX.

NY Specifies the number of grid lines in Y direction. The extents are divided
by NY.

NZ Specifies the number of grid lines in Z direction. The extents are divided
by NZ.

XY Controls whether the X-Y plane is drawn.

XZ Controls whether the X-Z plane is drawn.

YZ Controls whether the Y-Z plane is drawn.

x-offset Specifies the distance in the X direction from the minimum X extent of
the top level object’s coordinate system to the origin of the grid coordi-
nate system.

y-offset Specifies the distance in the Y direction from the mimimum Y extent of
the top level object’s coordinate system to the origin of the grid coordi-
nate system.

33333333333333333333333333
202 AVS Module Reference Manual

generate grid3333333333333333333
z-offset Specifies the distance in the Z direction from the mimimum Z extent of

the top level object’s coordinate system to the origin of the grid coordi-
nate system.

OUTPUTS
Geometry (geometry)

The output is a geometry of grid lines.

EXAMPLE
The following generates a set of grids corresponding to the data set read in.

GENERATE GRID READ GEOM

| |

|----------------------|

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that can process generate grid’s output:

tube
geometry viewer

Modules that can be used with generate grid:
create geometry
generate axes

33333333333333333333333333
AVS Module Reference Manual 203

generate histogram3333333333333333333
NAME

generate histogram – plot distribution of data values in a scalar field

SUMMARY
Name generate histogram

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension scalar any-data any-coordinates

Outputs field 2D scalar float

Parameters Name Type Default Min Max
Number of Bins integer dial 256 1 1024
Min Bin float dial 0.0 unbounded unbounded
Max Bin float dial 255.0 unbounded unbounded
Choice choice histogram
Normalize boolean on

DESCRIPTION
The generate histogram creates an output field that characterizes the distribution of
data values in a scalar field. This output field is intended to be plugged into the
graph viewer module to be plotted, either as a curve or a bar graph.

Picture an "empty" bar graph. The Min Bin and Max Bin dial settings determine the
range of data values that will be counted. Number of Bins determines how many
discrete chunks ("bins") the whole range of data values in the input field will be
divided into. (Max Bin - Min Bin) / Number of Bins determines the range of each
chunk.

generate histogram reads the input field and examines each value. It decides which
sub-data range bin the value would fit in, and increments the integer count for that
bin by one. If the value is below Min Bin or above Max Bin, it is discarded.

generate histogram produces a 2D output: a 2 by Number of Bins array where each
bin has a data pair: the bin range, and an integer count of the number of original
data values that fell into that range. The graph viewer uses the bin counts to con-
struct the Y-axis, and the range values to construct and label the X-axis with the
value of the bin range. The graph viewer knows to interpret this as "Plot as XY" data.

Alternatively, if cumulative was selected instead of histogram, each bin count
reflects its own count plus the count of all previous bins.

In either case, the output field should be connected to the graph viewer module’s
rightmost "linear plot" port.

INPUTS
Data Field (required; field any-dimension scalar any-data any-coordinates)

A scalar AVS field whose distribution of data values is to be counted.

PARAMETERS
Number of Bins

An integer dial that determines how many chunks the range of data
values is to be divided into. The default is 256. The minimum allowable
is 1, the maximum is 1024.

Min Bin
Max Bin Two floating point dials that set the endpoints of the range of data values

to count. If Normalize (default) has been selected, the Min Bin and Max
Bin dials will be initially set to the actual minimum and maximum data

33333333333333333333333333
204 AVS Module Reference Manual

generate histogram3333333333333333333
values in the input data. Without Normalize Min Bin is initially set to
0.0, and Max Bin to 255.0. This parameter is unbounded.

Normalize The Normalize switch determines whether the Min Bin and Max Bin
dials will be automatically set to the actual minimum and maximum data
values in the field. Without Normalize, you would need to have some
idea of the real data value range in the input field so that you could set
the dials in a way that would not inadvertently discard data. With Nor-
malize on, generate histogram examines the input field’s data structure
to see if minimum and maximum values have been specified. If they are
present, it uses them. If they are not present, it calculates the actual
minimum and maximum in order to set the dials.

When Normalize is on the Min Bin and Max Bin dials can not be used; if
they are moved, they will "snap back" to their original values. Normalize
is on by default.

histogram
cumulative

A choice that decides how the data values are counted. If histogram (the
default) is chosen, each bin contains a count of the number of data values
that fell into its sub-range. If cumulative is selected, each bin contains a
count of the number of data values that fell into its sub-range, plus the
total of all bins preceding it.

OUTPUTS
Data Field (field 2D scalar float)

The output field is a 2D field, Number of Bins long by 2 wide, with each
element pair a count of the number of data values that fell into its range
and the range itself. It is used as "Plot as XY Data" input to the graph
viewer module’s rightmost input port.

EXAMPLE 1
The following network reads in a volume (byte data in the range 0 to 256), calculates
the distribution of values, and graphs the result:

READ VOLUME

|

|

GENERATE HISTOGRAM

|

|

GRAPH VIEWER

RELATED MODULES
Modules that could provide the Data Field inputs:

Any module that outputs a field
Modules that can process generate histogram output:

graph viewer
See also statistics, ucd plot, ip read line

SEE ALSO
The example scripts GENERATE HISTOGRAM and GRAPH VIEWER demonstrate
the generate histogram module.

33333333333333333333333333
AVS Module Reference Manual 205

geometry viewer3333333333333333333
NAME

geometry viewer – render and display geometry

SUMMARY
Name geometry viewer

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data output

Inputs geometry (optional, multiple)
field 2D/3D uniform byte, scalar or 4-vector (texture map, optional)
colormap (optional)

Outputs field 2D 4-vector byte (image)
upstream transform (optional, invisible, autoconnect)
upstream geometry (optional, invisible, autoconnect)
field 2D scalar float
pixmap (invisible)
integer (invisible, for synchronization)

Parameters Name Type Default
Update Always boolean on
Update Image oneshot

DESCRIPTION
The geometry viewer module provides access within an AVS network to the com-
plete Geometry Viewer subsystem. Many different modules can supply input
geometries. That is, many geometry-format outputs can be connected to geometry
viewer’s geometry input port. All the objects will be combined into a single scene.
Each module providing input to geometry viewer can define attributes and
geometries for any number of objects. Each of these modules can also define a
hierarchical relationship among its objects.

You can also invoke geometry viewer with no inputs, so that the "scene" is initially
empty. Objects can be added to a scene either by upstream modules or by the Read
Object selection on the Geometry Viewer control panel. Geometries and descrip-
tions sent by upstream modules can be saved to files using the Save Object and Save
Scene selections. In this way, you can save visualization results and retrieve them
later with Read Scene or Read Object.

INPUTS
Geometry (optional, multiple; geometry)

The input data can be any AVS geometry. More than one geometry can
be input to this port. All the geometries will be combined into the same
"scene".

Texture (optional; field 2D/3D uniform byte, scalar or 4-vector)
The optional input provides one way to perform dynamic texture map-
ping. The AVS 2D or 3D uniform byte field input to this port is available
as a dynamic texture.

An upstream module such as brick can bind this texture with an object.
If no upstream module does this, then you must make the binding
manually by pressing Set Dynamic Texture on the Edit Texture panel
under the Objects submenu.

Modules such as brick, excavate brick, colorize geom, and volume
render use this input port.

Not all hardware renderers support 2D and 3D texture mapping; the

33333333333333333333333333
206 AVS Module Reference Manual

geometry viewer3333333333333333333
Software Renderer supports both.

Colormap (optional, colormap)
This port is used to create colorized texture maps. An upstream module
that wants to produce a colorized, texture mapped geometry has two
choices: it can create a geometry with texture mapping data and color
values specified; or it can create a geometry with texture mapping data,
but no color values specified. If it produces this second kind of
geometry, then the geometry viewer will use the colormap provided on
this input port to colorize the object’s texture map. If no colormap is
provided, geometry viewer uses a grayscale colormap.

Most AVS modules that produce texture mapped objects (brick, excavate
brick, colorize geom, volume render) produce a colorized texture
mapped geometry, and thus do not need this port.

This port is only effective with the Software Renderer, and those
hardware renderers that support 2D and 3D texture mapping.

PARAMETERS
Update Always

This switch can be used to improve performance on hardware renderers.
It is only effective when a module is connected to the geometry viewer’s
image or Z buffer output port. It is invisible by default.

When this switch is on, every time the scene changes the geometry
viewer module translates the contents of the frame buffer into an AVS
image and sends it to the image output port. If this switch is off, the
geometry viewer will only translate the frame buffer when the Update
Image oneshot is pressed. Similarly, Z buffer information is produced or
not produced. The default is on.

To use this parameter, first use the Module Editor’s (middle or right
mouse button on the module dimple) Parameter Editor to make the Port
Visible. Then, you can either connect the boolean module to the new
parameter port, or you can create a module control panel for the
geometry viewer with an Update Always button on it by setting toggle
on the Parameter Editor.

Update Image
A oneshot switch that causes the geometry viewer to translate the con-
tents of the frame buffer into an AVS image and send it to the image out-
put port. Update Image works no matter how Update Always is set.

This parameter is invisible by default. To use it, make it visible in the
same way as described for Update Always. Then, either connect the
oneshot module to the parameter port, or set oneshot with the Parame-
ter Editor to create a module control panel with an Update Image button
on it.

OUTPUTS
Image This output is an image containing a scene that includes all the input

objects. Note that it is not necessary to connect anything to this port for
normal operations. This port gives other modules access to the image
output by the renderer. One use of this port would be to produce a
printable PostScript file with the image to postscript module.

33333333333333333333333333
AVS Module Reference Manual 207

geometry viewer3333333333333333333
Upstream Transform

This port outputs an upstream transformation structure. This structure
contains object transformation information that can be used by a module
that is connected to geometry viewer’s geom input port to create
changes in the geometry it outputs to match direct mouse manipulation
transformations performed by the user in the ometry viewer’s window.
Upstream transformations are discussed in the "Advanced Topics"
chapter of the AVS Developer’s Guide.

This port is normally invisible. It is optional. The upstream connection
will be made automatically if a module immediately upstream of
geometry viewer has a matching upstream transformation input port.

Upstream Geometry
This port outputs an upstream geometry structure. This structure con-
tains object picking information that can be used by a module that is con-
nected to geometry viewer’s geom input port to create changes in the
geometry it outputs to match direct mouse manipulation selections per-
formed by the user in the geometry viewer’s window. Upstream
geometries are discussed in the "Advanced Topics" chapter of the AVS
Developer’s Guide.

This port is normally invisible. It is optional. The upstream connection
will be made automatically if a module immediately upstream of
geometry viewer has a matching upstream geometry input port.

Z Buffer This output is a field containing the depth information in the scene. It is
implemented in support of future functionality. On some systems, con-
necting a module to this port will slow the rendering process.

pixmap This output is an AVS pixmap (see "AVS Data Types" chapter in the AVS
Developer’s Guide). It is invisible by default. It is provided for those peo-
ple who had previously used the pixmap output field of the render
geometry module to obtain the X window id of the window into which
the geometry viewer draws.

integer This port outputs an integer. It is invisible by default. This integer is
merely a signal generated each time the geometry viewer finishes re-
rendering. It is used to synchronize geometry viewer output with a
module that might control a video camera or other device. Use this out-
put port instead of the image output port since acquiring the image for
output can affect the module’s efficiency.

SPECIAL CONSIDERATIONS
This module is special: instead of having a few control widgets organized onto a sin-
gle control panel page, its control panel is the entirely separate multi-level applica-
tion menu of the Geometry Viewer subsystem. Thus, when you add the geometry
viewer icon to a network, no page is added to the Network Control Panel. There are
two ways to access the Geometry Viewer menu:

d Click the small square in geometry viewer icon with the left mouse button.

d Press and hold down the Data Viewers button located at the top of the each
subsystem’s left control panel. This brings up a pulldown menu of subsystems.
Roll down the list and select Geometry Viewer.

Note: If the Update Always and/or Update Image parameters have been made into
toggle and oneshot buttons—thus creating a geometry viewer module control
panel—then the only way to access the main Geometry Viewer control panel is with

33333333333333333333333333
208 AVS Module Reference Manual

geometry viewer3333333333333333333
the Data Viewers button.

In some circumstances, it is useful to be able to access both the Geometry Viewer con-
trol panel and the Network Control Panel simultaneously. They both occupy the
same screen position, along the left edge of the screen. In these cases, use the X Win-
dow System window manager to move the one of these menu windows out of the
way.

The geometry viewer’s control panel also differs from that of other modules in these
ways:

d The Network Editor’s Layout Editor cannot be used to rearrange Geometry
Viewer controls.

d If a network includes more than one instance of geometry viewer, AVS does not
create a separate control panel for each instance. Each geometry viewer sends its
output to a different window, but the same Geometry Viewer application menu
controls all the windows. The module whose output window is highlighted in
red is the one being controlled. (Current windows that are displayed on remote
heads are not highlighted in red.) To switch the focus to another geometry
viewer output window, just click in it with any mouse button.

GEOMETRY VIEWER VS RENDER GEOMETRY MODULES
In AVS4 and later releases, the geometry viewer module takes the place of the older
render geometry/display pixmap module pair. (render geometry and display pix-
map are retained in the Unsupported module library for backward compatibiity, and
still appear in many sample networks.) The geometry viewer module is similar in
function to render geometry/display pixmap, with one major exception: it outputs
an AVS image format field (2D 4-vector uniform byte) rather than a pixmap. This
has the following advantages:

d Various output modules including the image to postscript module and the Ani-
mation Application’s post-processing modules (e.g., write frame sequence) all
use AVS image format field data for their input ports. You will not need to insert
a pixmap to image module between geometry viewer and the output modules to
convert the data format as you need to do with render geometry module.

d Systems that support less than 24-plane true color (such as an 8-plane pseu-
docolor system) use X images to display their output on the screen. These
images are dithered down to the limitations of the X server visual. (For example,
on an 8-plane system, 16,777,216 possible color values must become one of 216
possible color values.) If you generate output files from the output of a render
geometry module (through pixmap to image) on such a system, you never get
back the full 24-bit true color fidelity the visualization possessed before it was
dithered for screen display.

If you use the software renderer option, the geometry viewer module’s image
output port will produce a full 24-plane true color representation of the display
data, even on systems with more limited X server display capabilities.

The geometry viewer module should be used instead of render geometry/display
pixmap in AVS networks.

EXAMPLE 1
This network creates a tube version of an object:

33333333333333333333333333
AVS Module Reference Manual 209

geometry viewer3333333333333333333
READ GEOM

|

WIREFRAME

|

TUBE

|

GEOMETRY VIEWER

EXAMPLE 2
This network shows a configuration that will input an image that can be used as a 2D
texture map on an object into the the geometry viewer’s center port. Once the image
is read, toggle Set Dynamic Texture on the Geometry Viewer’s Edit Texture panel.

READ IMAGE READ GEOM

| |

|-----| |-----|

| |

GEOMETRY VIEWER

EXAMPLE 3
The following network shows how geometry viewer’s center input port is used to
perform 2D/3D texture mapping using the brick module. The network reads a byte
volume which is sent colorizer to paint the byte values as colors, to brick to map the
surfaces, and to volume bounds to draw a box around the limits of the volume. The
generate colormap, and colorizer create the 3D texture map, which is fed to
geometry viewer through the left input port.

READ VOLUME

|

GENERATE COLORMAP |

| |

| |----------|---------------|

| | | |

COLORIZER BRICK VOLUME BOUNDS

| | |

|--------| |---------------|

| |

GEOMETRY VIEWER

EXAMPLE 4
This network shows geometry viewer producing a colorized texture map from a
geometry, a 3D uniform byte field, and a colormap. The 3D uniform byte field is a
vector field, thus one channel must be extracted. The texture map is associated with a
particular geometry by selecting Set Dynamic Texture under Object’s Edit Texture
panel.

READ FIELD READ GEOM

| |

GENERATE COLORMAP | |

| EXTRACT SCALAR |

| | |

| | |

|------| | |-------|

| | |

GEOMETRY VIEWER

33333333333333333333333333
210 AVS Module Reference Manual

geometry viewer3333333333333333333
RELATED MODULES

read geom

SEE ALSO
The Geometry Viewer chapter of the AVS User’s Guide.

The example scripts BRICK, FLIP NORMALS, PDB TO GEOM, as well as others
demostrate the geometry viewer module.

33333333333333333333333333
AVS Module Reference Manual 211

gradient shade3333333333333333333
NAME

gradient shade – apply lighting and shading to colored data set

SUMMARY
Name gradient shade

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field 2D/3D 4-vector byte uniform (colorized data)
field 2D/3D 3-vector real uniform (gradient supplied by compute gradient)
field 2D scalar float (transformation matrix) (optional)

Outputs field same-dimension 4-vector byte uniform (shaded version of colorized data)

Parameters Name Type Default Min Max
ambient 0.1 0.0 1.0
diffuse 0.8 0.0 1.0
specular float 0.0 0.0 1.0
gloss 20.0 0.0 50.0
lt theta float 0.0 none none
lt off-ctr float 0.0 none none

DESCRIPTION
The gradient shade module accepts a colored 2D or 3D data set, along with its gra-
dients (supplied by the compute gradient module). It applies a single light source to
the colored data, then shades it.

The gradient at each location in the data field substitutes for the surface normal, which
is used in traditional algorithms for lighting and shading surfaces. (A surface normal
at a particular point on a surface is a vector perpendicular to the surface.)

Various shading styles are achievable using the lighting controls (see PARAMETERS
below). These include creating shiny and matte surfaces, and controlling the location
of the light source.

INPUTS
Data Field (required; field 2D/3D 4-vector byte uniform)

The input field is an image (2D pixel array) or a block of voxels (3D pixel
array).

Gradient (required; field 3D 3-vector real uniform)
This field is the gradient of the Data Field.

Transformation Matrix (optional, field 2D scalar float)
The transformation matrix is applied to gradient shade’s light source,
and is used to control the location of the light. This input has the same
effect as the lt theta and lt off-ctr parameters.

PARAMETERS
The way in which all the following parameters determine the coloring of an object is
described below.

ambient The contribution of ambient (uniform background) lighting to the color.
When this is set to 0.0, all surfaces facing away from the light source are
black. When this is set to 1.0, surfaces appear in their own colors, with no
shading information present.

diffuse The contribution of diffuse (directional) lighting to the color.

33333333333333333333333333
212 AVS Module Reference Manual

gradient shade3333333333333333333
specular The contribution of specular lighting to the color.

gloss The sharpness of the specular highlight. The larger this value, the smaller
and sharper the specular highlights.

lt off-ctr The angle between the light source and the positive Z axis (which comes
out of the screen at a right angle).

lt theta The angle between (1) the projection of the light source on the X-Y plane
and (2) the positive Y axis. This value measures how much an off-center
light source "swings around" the Z-axis.

With lt theta = 0.0 and lt off-ctr = 0.0, the light source is coming straight
from the eye perpendicular to the data. A positive off-ctr value moves the
light source "up" (in the positive Y direction); a negative value moves it
"down".

The equation for calculating the intensity of light reflected by a spot of surface is:

(intamb ∗ ambient) + (intdiff ∗ diffuse ∗ cos(phi)) + (intdiff ∗ specular ∗ cosgloss(lt off-ctr))

In performing this computation, gradient shade:

d Assumes that intamb and intdiff are both maximal (1.0).

d Uses lt theta and lt off-ctr to compute phi, the angle between the surface normal
(gradient vector) and the light source. The quantity cos(phi) is the attenuation
(reduction) factor for the directional (diffuse) light.

d Computes the quantity cosgloss(α), the attenuation factor for the specular
highlight.

OUTPUTS
Data Field (field same-dimension 4-vector byte uniform)

The output field has the same form as the Data Field input.

The min_val and max_val attributes of the output field are invalidated.

EXAMPLE 1
The following network shades a 2D image:

READ IMAGE

|--------------

EXTRACT SCALAR | (choose 1 (= red))

| |

COMPUTE GRADIENT |

| _________|

| |

GRADIENT SHADE

|

DISPLAY IMAGE

EXAMPLE 2
The following network shades a 3D image:

33333333333333333333333333
AVS Module Reference Manual 213

gradient shade3333333333333333333
READ VOLUME GENERATE COLORMAP

|----------------| |

| |--------| |

COMPUTE GRADIENT COLORIZER

| .______________________|

|---------| | |

| GRADIENT SHADE

| |

|--------------| |

| TRACER

| |

| |

| DISPLAY TRACKER

|-----------|

RELATED MODULES
Modules that could provide the Data Field input:

read volume
Modules that could provide the Gradient input:

compute gradient
Modules that could be used in place of gradient shade:

compute shade
colorizer

Modules that can process gradient shade output:
display image (2D data)

Modules that can supply transformation matrices:
display tracker
euler transformation

See also extract scalar, which gets a single scalar height field from an image.

SEE ALSO
The example script ANIMATED FLOAT demonstrates the gradient shade module.

33333333333333333333333333
214 AVS Module Reference Manual

graph viewer3333333333333333333
NAME

graph viewer – create XY and contour plots of data (Graph Viewer)

SUMMARY
Name graph viewer

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data output

Inputs field any-dimension scalar any-data any-coordinates (linear data, optional)
field any-dimension scalar any-data any-coordinates (contour data, optional)
field 2D 4-vector byte uniform (background image, optional)

Outputs geometry
field 2D 4-vector byte uniform (image)

Parameters none

DESCRIPTION
The graph viewer module provides access within an AVS network to the complete
Graph Viewer subsystem. Many different modules can supply input data. That is,
many field-format outputs can be connected to graph viewer’s input ports. Depend-
ing upon how graph viewer is set up, successive sets of incoming data will either
replace an existing graph, be added to the graph, or be drawn in a new graph win-
dow.

You can also invoke graph viewer with no inputs, so that the graph is initially
empty. Plots can be added to a graph either by upstream modules or by the various
Read Data selections on the graph viewer control panel. Data sent by upstream
modules can be saved to files in a variety of forms using the Write ASCII XY Data,
Write AVS Plot Data, or Write AVS Geometry Data selections. In this way, you can
save data plots and retrieve them later with Read Data selections. In addition, a
grayscale PostScript image of the plot can be saved with the Write PostScript selec-
tion, or a color Postscript image saved by connecting the graph viewer module’s left
output port to the image to postscript module.

Note that the graph viewer window can be reparented to page and stack widgets
using the AVS Layout Editor.

SPECIAL CONSIDERATIONS
This module is the module representation of the Graph Viewer subsystem. Instead
of having a few control widgets organized onto a single control panel page, its con-
trol panel is the entirely separate multi-level menu of the Graph Viewer subsystem.
Thus, when you add the graph viewer icon to a network, no page is added to the
Network Control Panel. There are two ways to access the Graph Viewer menu:

d Click the "dimple" in the graph viewer icon with the left mouse button.

d With the cursor positioned over the Data Viewers button located at the top of
the Network Control Panel, press and hold down any mouse button. When the
AVS Data Viewers pop-up menu appears, roll the mouse down to Graph Viewer
and release the mouse button. This Data Viewers button is always visible, even
when there is no active network.

In some circumstances, it is useful to be able to access both the Graph Viewer control
panel and the Network Control Panel simultaneously. They both occupy the same
screen position, along the left edge of the screen. In these cases, use the X Window
System window manager to move one of these menu windows out of the way.

33333333333333333333333333
AVS Module Reference Manual 215

graph viewer3333333333333333333
The graph viewer’s control panel also differs from that of other modules in these
ways:

d The Network Editor’s Layout Editor cannot be used to rearrange Graph Viewer
controls.

d If a network includes more than one instance of graph viewer, AVS does not
create a separate control panel for each instance. Each graph viewer sends its
output to a different window, but the same Graph Viewer application menu con-
trols all the windows. The module whose output window is currently
highlighted in red is the one being controlled. To switch the focus to another
graph viewer output window, just click in it with any mouse button.

RESIZING
The graph viewer’s pulldown menu, which is accessed by clicking on the "dimple" in
the upper lefthand corner of the display window, provides several ways to resize the
window to certain fixed sizes:

d Zoom Full Screen. Resizes the window to fill the square working area of the
screen (approximately 1024 x 1024), and magnifies the image to fit. If the win-
dow is embedded in a page or stack (see Layout Editor in the Network Editor
chapter), it becomes a top-level window that can be freely resized and moved
using the X window manager.

d Unzoom. Resizes and moves the window to return to its location before a Zoom
Full Screen. If the window originally was embedded in a page or stack, it will be
re-embedded there.

INPUTS
Data Field (optional, field any-dimension scalar any-data any-coordinates)

The rightmost input port is for linear data that is to be made into an XY
plot. If the input field is 1D, the values are taken to be Graph Viewer
"plot as Y" data, meaning that they are interpreted as Y values that will
be graphed against an evenly-spaced set of X values. If the input field is
2D, the values are taken to be Graph Viewer "plot as XY" data, meaning
that they are interpreted as X and Y values. Although the graph viewer
will accept fields of more than 2D, it will only graph the first two dimen-
sions and ignore the rest. Many modules can create 2D subsets of fields
(orthogonal slicer is an example). If such a module is used twice in suc-
cession (Example 2 below) a 1D subset of the field is created. Note that
the values at each point must be scalar. If you have a vector field, you
must use extract scalar or a module with similar effect to produce a
scalar version of the field.

Data Field (optional, field any-dimension scalar any-data any-coordinates)
The center input port is for contour data that is to be made into a contour
plot. If the input field is 2D, the values are taken to be Graph Viewer
"plot as contour" data that is interpreted as X and Y values. There is no
size limit on the input file, but if it is large you will get a warning mes-
sage. The real limit is the size of available memory. Note that the values
at each point must be scalar. If you have a vector field, you must use
extract scalar or a module with similar effect to produce a scalar version
of the field.

Image (optional, field 2D 4-vector byte uniform)
The leftmost input port accepts an AVS image. graph viewer normally
plots its graphs against a black background. If you send an image into
this port, it will be used as the background instead, and the plot window

33333333333333333333333333
216 AVS Module Reference Manual

graph viewer3333333333333333333
will be resized to match the image size.

OUTPUTS
Geometry (optional; geometry)

graph viewer can produce PostScript file versions of plots for hardcopy
printing with its Write Postscript selection. If you want to create output
that will print or display correctly on a different device, this output port
leaves the option open for a module that converts AVS geometry-format
files to the format of another type of device.

The graph viewer normally only creates this output when a new dataset
enters it. At other times, use the Output Geometry button on the Write
Data submenu, or the graph_output_geom CLI command.

Image (optional; field 2D 4-vector byte uniform)
graph viewer can produce PostScript file versions of plots for hardcopy
printing with its Write Postscript selection. These PostScript plots are
monochrome and do not contain the plot’s background image. If you
want to create output that will be in color and/or include the back-
ground image, the output port leaves the option open using the image to
postscript module. Because the conversion of a plot into an image is a
computationally intensive operation, the Graph Viewer does not update
the image output port every time the current plot is changed. In order to
get an image sent out through the graph viewer module’s image output
port, you must select the Output Image button in the Write Data menu.

EXAMPLE 1
This network reads a volume, then uses orthogonal slicer to section out a 2D slice of
the volume for plotting as X and Y data. Note that if graph viewer is set up to add
each additional set of data to an existing plot, one could then manipulate the orthog-
onal slicer’s slice plane dial to get a single graph with multiple plot lines showing
successive slices through the volume.

READ VOLUME

|

|

ORTHOGONAL SLICER

|

|

GRAPH VIEWER

EXAMPLE 2
This network reads a volume, then uses the orthogonal slicer module twice to extract
a 1D slice through the volume data:

READ VOLUME

|

|

ORTHOGONAL SLICER

|

ORTHOGONAL SLICER

|

|

GRAPH VIEWER

EXAMPLE 3
This network reads an image, downsizes the image to a reasonable resolution for
graphing, then extracts the "red" data channel from the 4-vector image

33333333333333333333333333
AVS Module Reference Manual 217

graph viewer3333333333333333333
representation. This data is fed to graph viewer’s middle (contour) input data port,
and a contour plot of the reds in the image is displayed.

READ IMAGE

|

DOWNSIZE

|

EXTRACT SCALAR

|

GRAPH VIEWER

EXAMPLE 4
This network does the same as above, but displays the contour plot on top of the
mandrill.x image it is a contour of. As with the network above, downsize the image to
some reasonable size, and extract either the red, green, or blue bytes from it. (NOTE:
the image of the mandrill will be upside down. This is because 0,0 for an image is
located in the upper left corner, while 0,0 for a graph is located in the lower left
corner.) The contour data is fed to graph viewer’s middle (contour) input data port,
and the image is fed in graph viewer’s leftmost (image) input data port.

READ IMAGE

|

|---------------|

| |

| DOWNSIZE

| |

| EXTRACT SCALAR

| |

----------| |

GRAPH VIEWER

EXAMPLE 5
This network plots a section through the Gaussian image-processing filter produced
by generate filters:

GENERATE FILTERS

|

|------------|------------|

| |

FIELD TO BYTE ORTHOGONAL SLICE

| |

COLORIZER |

| GRAPH VIEWER

DISPLAY IMAGE

RELATED MODULES
generate histogram extract graph

SEE ALSO
The "Graph Viewer" chapter of the AVS User’s Guide.

Two example GRAPH VIEWER scripts demonstrate the graph viewer module.

33333333333333333333333333
218 AVS Module Reference Manual

hedgehog3333333333333333333
NAME

hedgehog – show vectors in a 3D 3-vector field

SUMMARY
Name hedgehog

Availability FiniteDiff module library

Type mapper

Inputs field 3D 3-vector float
field irregular 3-space (optional, from samplers module)
upstream transform (optional, invisible, autoconnect)
field 3D scalar (optional, for coloring arrows)
colormap (optional, for coloring arrow)

Outputs geometry

Parameters Name Type Default Min Max
Vector Scale float dial 1.0 0.0 10.0
N segments integer dial 16 2 64
Method radio point
Sample radio point
arrow heads toggle on off on
Show Bounds toggle on off on

DESCRIPTION
The hedgehog module takes as input a 3D uniform field whose values are 3-vectors
of any primitive data type. That is, the data represents a volume of lattice points,
each point having a 3D vector of float values. This 3D-vector value can be visualized
as a small line segment with a particular length and direction.

The hedgehog module takes an arbitrarily-oriented (user-controlled) sample of loca-
tions within the volume. The sample object can be moved like any other geometry
object. To select it, click on it with the left mouse button, or enter the Geometry
Viewer and make it the current object. You can choose this sample to be:

d A single point

d A set of points on a line segment

d A set of points on a circle

d A set of points on a plane

d A volume of points

d All nodes (sampling object is ignored)

A bounding diagram is generated to show you the region in which the samples are
generated. For the point sample, this bounds is represented as a 3-dimensional
cross-hair. For other representations, it is represented as a line, a circle, a rectangle,
and a retangular prism, depending on which sampling option is chosen. This bound-
ing hull is generated by default, but may be turned off using the Show Bounds but-
ton.

The module outputs the line segment(s) representing the values of the vector field at
the sample location(s). The lines optionally arrows at their ends, showing the direc-
tion of the vectors. Often, this collection of line segments resembles the coat of a
hedgehog — hence the module’s name.

33333333333333333333333333
AVS Module Reference Manual 219

hedgehog3333333333333333333
Since arbitrarily oriented sample locations (all samplings except nodes) do not, in
general, coincide with the lattice points in the data volume, an interpolation method
is used to determine a field value based on the values of one or more nearby lattice
points.

hedgehog can optionally receive input from the samplers module. samplers outputs
a list of points in space, and these points become the starting location for advecting
particles. When hedgehog receive input from the samplers module, the N Segment
dial, and the Sample buttons disappear from the hedgehog’s control panel.

hedgehog generally generates white arrows, but if a second, topologically identical,
scalar field and a corresponding colormap are supplied through the optional input
ports, then the arrows can be colored by the second scalar field. The first (vector)
field is sampled to produce the arrows and the second (scalar) field is sampled to
produce the colors for the arrows. If a either the colormap or the optional scalar field
are supplied, then the other must be supplied as well.

INPUTS
Volume Data (required; field 3D 3-vector float)

The input data must be a 3D field, representing a volume of points. The
data value for each point must be a 3D vector of floats.

Sample Input (field irregular 3-space)
This leftmost input port is meant to connect to the output of the
samplers module. samplers creates a field that is nothing but a series of
locations. hedgehog will take these locations and display the data values
associated with them. This input can be used instead of hedgehog’s
Sample parameter.

Upstream Transform (optional, invisible, autoconnect)
When the hedgehog and geometry viewer modules coexist in a network,
they communicate through a normally-invisible data port. "Hedgehog"
shows up as an object in the Geometry Viewer. When you select the
hedgehog object and move it, geometry viewer informs the hedgehog
module what the sample’s new location is, and the hedgehog module
recalculates the location and data it is displaying accordingly. This
module connection occurs automatically. The effect is to give you direct
mouse manipulation control over the hedgehog module’s sample of
locations.

Scalar Field (optional)
This port works with the Colormap port to color the arrows by a second,
scalar field. This field must be topologically identical to the required vec-
tor field (i.e. it must have the same dimensions, n-space, etc.). If this port
is used, then a colormap must be supplied as well.

Colormap (optional)
If a scalar field is provided to color the arrows with, then a colormap
must also be provided to act as a mapping from data space to color
space. In order for this to happen, it is important that the range of the
colormap be related to the range of the scalar data. This is most easily
accomplished by using the color range module which adjusts the effec-
tive range of the colormap to the field.

PARAMETERS
Vector Scale

The lengths of the line segments output by this module are proportional
to this value.

33333333333333333333333333
220 AVS Module Reference Manual

hedgehog3333333333333333333
N segments

An integer value which determines the number of points sampled by the
line, circle, plane, or space sampling probe. This controls the density of
line segments output by hedgehog.

Method (radio buttons) Controls the way in which the field value is determined
at each sample location. These options are ignored for nodes, which
does not interpolate.

d If point, a nearest-neighbor algorithm is used. Each mesh vertex is
assigned the value of the nearest point in the lattice.

d If trilinear, a trilinear interpolation is performed. The value at each
vertex depends on the values at the eight lattice points that are the
corners of the "enclosing cube". The trilinear interpolation method is
more accurate but takes longer to compute, particularly at higher
resolutions.

Sample (radio buttons) Specifies the type of sample taken from the vector field:
point, line, circle, plane, space, or nodes. The default is point.

nodes produces a vector at each node rather than N Segments along a
sampling space. When it is selected N Segment, Show Bounds, and
Sampling Style are ignored. nodes can be faster than the other tech-
niques. However, it can create so many vector arrows that the resulting
figure is unintelligible and slow to render. It is recommended that you
use the downsize module before hedgehog if you select nodes.

arrow heads
Arrows are typically produced with arrow heads so that you can distin-
guish the source and direction of the vectors. This can be disabled with
the arrow heads toggle. When on (the default mode), this option causes
arrow heads to be generated. When off, no arrow heads are generated.

Show Bounds
A bounding hull for the sample points is typically produced so that you
can easily see the extent of the sample positions. This can be disabled
with the Show Bounds toggle. When on (the default mode), this option
causes the bounding hull to be generated as a wireframe geometry.
When off, no hull is generated.

OUTPUTS
Hedgehog (geometry)

The output geometry is a collection of line segments that represent the
3D-vector values at the sample locations. The line segments have arrows
at their ends, indicating the direction of the vectors.

EXAMPLE 1
The following network visualizes the vector output of the compute gradient module
as a hedgehog.

33333333333333333333333333
AVS Module Reference Manual 221

hedgehog3333333333333333333
READ FIELD

|

|------------------|

| |

COMPUTE GRADIENT VOLUME BOUNDS

| |

HEDGEHOG |

| |--------------|

| |

GEOMETRY VIEWER

EXAMPLE 2
The following network visualizes the output of a PLOT3D data set coloring the
hedgehogs with one of the scalar fields:

GENERATE COLORMAP READ PLOT3D

| |-------------|

| EXTRACT SCALAR |

|_____ ________| |

| | | EXTRACT VECTOR

COLOR RANGE | |

|_______ | ___________|

| | | |

HEDGEHOG VOLUME BOUNDS

|______________|

|

|

GEOMETRY VIEWER

RELATED MODULES
Data input:

read volume, volume manager
Gradient computation:

compute gradient
Vector operations:

vector curl, vector div, vector grad, vector mag, vector norm
Additional geometries:

volume bounds, isosurface
Geometric rendering:

geometry viewer
Sample Input:

samplers

SEE ALSO
The example script HEDGEHOG demonstrates the hedgehog module.

33333333333333333333333333
222 AVS Module Reference Manual

histogram stretch3333333333333333333
NAME

histogram stretch – balance the histogram of a data set

SUMMARY
Name histogram stretch

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension scalar byte any-coordinates

Outputs field of same type as input

Parameters Name Type Default Min Max
histr_min int 0 0 255
histr_max int 255 0 255

DESCRIPTION
histogram stretch is an image/volume processing module that balances the "histo-
gram" of a data set between specified values. This operation combines histogram
balancing (also called "histogram normalization" or "histogram equalization") and
contrast stretching.

Finding the histogram of an image (or volume) consists of tallying the number of pix-
els (voxels) of each value into "bins". Byte data typically generates 256 bins (1 bin for
each possible data value).

The histogram equalization process consists of trying to establish the same number of
pixels (voxels) per bin by translating the pixel (voxel) values, using a well-chosen
lookup table. This has the effect of creating an even distribution of values throughout
the data set. It typically used to enhance low-contrast images (volumes) or images in
which the data is "bunched up" at one end of the spectrum.

Equalization is applied only to values within the range specified by the parameters
histr_min and histr_max. Data outside this range is not included in the histogram
generation, and is eliminated.

INPUTS
Data Field (required; field any-dimension scalar byte any-coordinates)

The input data may be an AVS field of any dimensionality, each of
whose values is a scalar byte.

PARAMETERS
histr_min Specifies the bottom of the range of input values that will be histo-

grammed, then transformed.

histr_max Specifies the top of the range of input values that will be histogrammed,
then transformed.

OUTPUTS
Data Field The output field has the same form as the input field.

Appropriate new min_val and max_val values are written to the output
field.

LIMITATIONS
This module works for byte fields only. (For other data types, there is no general way
to determine the "right" number of bins to generate.) To apply this module to non-
byte data, use the field_to_byte module to pre-process the data.

33333333333333333333333333
AVS Module Reference Manual 223

histogram stretch3333333333333333333
RELATED MODULES

Modules that could provide the Data Field input:
read volume
field to byte

Modules that could be used in place of histogram stretch:
contrast
ip contrast
ip linremap

Modules that can process histogram stretch output:
field to integer
field to float
field to double
any other filter module

SEE ALSO
The example script HISTOGRAM STRETCH demonstrates the histogram stretch
module.

33333333333333333333333333
224 AVS Module Reference Manual

image compare3333333333333333333
NAME

image compare – display two images together

SUMMARY
Name image compare

Availability Imaging module library

Type filter

Inputs field 2D uniform 4-vector byte (image)
field 2D uniform 4-vector byte (image)

Outputs field 2D uniform 4-vector byte (image)

Parameters Name Type Default Min Max
Select choice vert_slice
Switch toggle off
valuator float 0.5 0.0 1.0

DESCRIPTION
The image compare module lets you visually compare two images by displaying
portions of those images together in one rectangular area in eight different ways—
e.g. as two vertical slices, as two horizontal slices, in a checker pattern, etc. The main
intent is to let you see "before" and "after" versions of the same image. One image is
designated the "primary image," the other the "secondary image". You can flip back
and forth between the dominant and secondary image using the switch parameter.
In most cases, the valuator parameter controls the ratio of image 1 to image 2 appear-
ing in the rectangle.

Both input images must have the same dimensions.

INPUTS
Image (required; field 2D uniform 4-vector byte)

One of the two images to compare.

Image (required; field 2D uniform 4-vector byte)
The other of the two images to compare.

PARAMETERS
selection Sets the way the two images are displayed together in the same rectan-

gle.

vert_slice
vertical bands of the two images are displayed side by side.

horiz_slice
horizontal bands of the two images are displayed, one above the
other.

diag_slice
slices from the upper left corner diagonally from one image to the
next.

solid
disables the valuator dial described below.This lets you flicker
between the images using the switch toggle described below.

circle
transforms the valuator dial to control the radius of a circle centered
at the center of the image.

33333333333333333333333333
AVS Module Reference Manual 225

image compare3333333333333333333
checker

creates a checkerboard pattern between the two images. The smaller
the value showing on valuator, the more checks in the checkerboard.

venetian
creates alternating horizontal bands of image 1 and image 2.

random
randomly dithers between one image and the other based on the
probability assigned by the valuator dial.

valuator The valuator dial controls the proportion of the rectangle viewing space
that each image occupies. Allowable values are from 0.0 to 1.0, with the
default 0.5 meaning "show half of one image and half of the other". As
you move the dial, one or the other of the images gets more rectangle
space.

switch A toggle switch that exchanges the proportions of the screen given to
image 1 and image 2.

OUTPUTS
Image (field 2D uniform 4-vector byte)

The output image is the patchwork combination of image 1 and image 2,
with the same dimensions.

EXAMPLE 1
The following network compares an image with a contrasted version of itself:

READ IMAGE

__________|

| |

CONTRAST |

|_____ |

| |

IMAGE COMPARE

|

DISPLAY IMAGE

EXAMPLE 2
The following network compares two images and displays the result through the
image viewer. The images must be the same size.

READ IMAGE READ IMAGE

|_________ _________|

| |

IMAGE COMPARE

|

DISPLAY IMAGE

RELATED MODULES
Modules that could provide the image compare inputs:

read image
Any module that produces an image as output

Modules that can process image compare output:
image viewer

33333333333333333333333333
226 AVS Module Reference Manual

image compare3333333333333333333
display image
Any module that takes image input

See also field math, constant blend, ip compare

SEE ALSO
The example scripts IMAGE COMPARE, and IMAGE II demonstrate the image com-
pare module.

33333333333333333333333333
AVS Module Reference Manual 227

image manager3333333333333333333
NAME

image manager – share images among subnetworks

SUMMARY
Name image manager

Unsupported this module is in the unsupported library

Type data

Inputs none

Outputs field 2D 4-vector byte (image)

Parameters Name Type Choices
IMAGMGR Select choice Select, Replace
Image Manager browser
Image Choices choice

DESCRIPTION
The image manager module reads an image file from disk and outputs the image as
a "field 2D 4-vector byte". It works like the read image module, except that it has
both a cacheing mechanism and a way of sharing data among image manager
modules in separate subnetworks.

See the read image manual page for a description of the image format.

PARAMETERS
IMAGMGR Select

A choice that determines how newly-read images will be placed to the
list of currently active images:

d If Select is chosen, a new image is added to the end of the list.

d If Replace is chosen, a new image replaces the currently selected
member on this list.

In either case, the change is reflected in all the image manager modules in all active
subnetworks.

Image Manager
A file browser that allows you to select an image file to read.

Image Choices
A set of choices, listing each of the currently active images.

OUTPUTS
Data Field (field 2D 4-vector byte)

The output is an AVS image.

EXAMPLE
The following subnetworks might be used to display two images:
IMAGE MANAGER IMAGE MANAGER

| |

| |

| |

DISPLAY IMAGE DISPLAY IMAGE

In this case, both image manager managers would contain "select/replace" choice
buttons, a file browser, and an area below the browser:

33333333333333333333333333
228 AVS Module Reference Manual

image manager3333333333333333333
+--------------------------+ +--------------------------+

| Active Images | | Active Images |

+--------------------------+ +--------------------------+

| (no images) | | (no images) |

+--------------------------+ +--------------------------+

Once a file (e.g. heart_slice_22) is selected with the browser in the image manager on
the left, these buttons would look like this:
+--------------------------+ +--------------------------+

| ∗ heart_slice_22 | | heart_slice_22 |

+--------------------------+ +--------------------------+

If a different file (e.g. heart_slice_10) is chosen from the browser in the image
manager on the right, the buttons would look like this:
+--------------------------+ +--------------------------+

| ∗ heart_slice_22 | | heart_slice_22 |

| heart_slice_10 | | ∗ heart_slice_10 |

+--------------------------+ +--------------------------+

By selecting the same active image, you can have both networks display the same
image:
+--------------------------+ +--------------------------+

| ∗ heart_slice_22 | | ∗ heart_slice_22 |

| heart_slice_10 | | heart_slice_10 |

+--------------------------+ +--------------------------+

Now, if you want to replace this image with a new one, click on the Replace buttons
above the browser, then select a new file (e.g. kidney_slice_04) in just one of the image
manager browsers. The result is that all image manager modules with the old image
(heart_slice_22) selected as their active image will be automatically updated with the
new image (kidney_slice_04):
+--------------------------+ +--------------------------+

| ∗ kidney_slice_04 | | ∗ kidney_slice_04 |

| heart_slice_10 | | heart_slice_10 |

+--------------------------+ +--------------------------+

RELATED MODULES
Same as for read image.

LIMITATIONS
The cached images are not freed until all image manager modules are destroyed. This
is not the case with read image — the old data is freed whenever a new file is read.

33333333333333333333333333
AVS Module Reference Manual 229

image measure3333333333333333333
NAME

image measure – measure distance between two image pixels

SYNOPSIS
Name image measure

Availability Imaging module library

Type mapper

Inputs field 2D uniform [byte|short|float] n-vector
image viewer id structure (invisible, autoconnect)
mouse info structure (invisible, autoconnect)

Outputs image draw structure

Parameters Name Type
Measurements string block
set pick mode oneshot

DESCRIPTION
image measure measures the distance between two pixels of an image. The result is
reported in pixels.

If the field containing the image has extents information in its coordinate data area
that is different from its dimensions (for example, a 512 x 512 image whose coordi-
nate "points" area states that the data is positioned in space from -1000 to 3000 in X
and Y) then image measure reports both the pixel space and world space measure-
ments.

Performing a measurement involves an interaction between image measure and the
image viewer module. image measure’s image draw structure output must be con-
nected to the image viewer module’s leftmost image draw structure input. See the
"Example" below.

You specify the two pixels to measure interactively in the image viewer window as
follows:

1. The image measure module must have control of the left mouse button in the
Image Viewer window. When image measure is first connected and data first
passes through it, it should have control of the left mouse button.

2. Press and hold down the left mouse button to select the starting pixel.

3. Move the cursor over the image. As you move the cursor, a line follows it
anchored at the starting pixel. The distance from the starting pixel is continu-
ously reported in the Measurements text widget on image measure’s module
control panel.

4. To finish the measurement, release the left mouse button. The measurement
line disappears. There is now no starting pixel defined.

If there are multiple images in the Image Viewer window, and/or multiple sketching
modules, then some other module or the Image Viewer itself may have control of the
left mouse button. To get control back to image measure:

1. Make the image the current image (use shift-left mouse button or left mouse
button).

2. Press set pick mode on image measure’s control panel.

This tells the Image Viewer that the left mouse button will be taking image
measurements, not picking a current image.

33333333333333333333333333
230 AVS Module Reference Manual

image measure3333333333333333333
INPUTS

Data Field (required; field 2D uniform [byte|short|float] n-vector)
The input is a 2D uniform field of type byte, short, or float. It can be any
vector length.

Note: Though image measure accepts n-vector and data type byte, short,
or float, the input to image viewer can only be byte, 1-vector or 4-vector.

image viewer id structure (required; invisible, autoconnect)
This input port is invisible by default. It connects automatically to the
image viewer module’s image viewer id structure output. The two
modules communicate the image viewer module’s scene id on this con-
nection. Normally, you can ignore its existance.

mouse info structure (required; invisible, autoconnect)
This input port is invisible by default. It connects automatically to the
image viewer module’s mouse info structure output. The two modules
communicate image name, mouse pointer location and button up/down
information on this connection. Normally, you can ignore its existance.

PARAMETERS
Measurement

This is a string block. It appears as a text widget on image measure’s
module control panel. It continuously reports the distance, in pixels,
from the starting pixel to the cursor position. When the left mouse but-
ton is released, it continues to report the distance of the last cursor posi-
tion.

set pick mode
A oneshot that sets the image viewer’s upstream mouse picking focus to
this module. Use it to regain control of the mouse whenever the left
mouse button doesn’t seem to be working to measure points.

OUTPUTS
image draw structure (required)

The left output port contains the image draw structure that connects to
the image viewer module’s leftmost input port. It is required.

EXAMPLE
This example shows a simple network to measure pixel distances. The invisible
upstream connections coming from image viewer to image measure are not shown.

READ IMAGE

|

|

|---------------|

| |

IMAGE MEASURE |

|-----| |

| |

IMAGE VIEWER

RELATED MODULES
image viewer
image probe
sketch roi

33333333333333333333333333
AVS Module Reference Manual 231

image measure3333333333333333333
SEE ALSO

The example script Imaging/IMAGE MEASURE demonstrates this module.

The upstream feedback mechanism that makes image measure work is described in
the AVS 5 Update document.

33333333333333333333333333
232 AVS Module Reference Manual

image probe3333333333333333333
NAME

image probe – report data values at selected pixel location

SYNOPSIS
Name image probe

Availability Imaging module library

Type mapper

Inputs field 2D uniform [byte|short|float] n-vector
image viewer id structure (invisible, autoconnect)
mouse info structure (invisible, autoconnect)

Outputs image draw structure

Parameters Name Type
Values string block
set pick mode oneshot

DESCRIPTION
image probe reports the data values present at a pixel location selected in the image
viewer module’s window.

If the field containing the image has extents information in its coordinate data area
that is different from its dimensions (for example, a 512 x 512 image whose coordi-
nate "points" area states that the data is positioned in space from -1000 to 3000 in X
and Y) then image probe reports both the pixel space and world space measure-
ments.

Selecting a pixel involves an interaction between image probe and the image viewer
module. image probe’s image draw structure output must be connected to the
image viewer module’s leftmost image draw structure input. See the "Example"
below.

You select a pixel in the image viewer window as follows:

1. The image probe module must have control of the left mouse button in the
Image Viewer window. When image probe is first connected and data first
passes through it, it should have control of the left mouse button.

2. Press and hold down the left mouse button to select the starting pixel.

3. Move the cursor over the image. As you move the cursor, the data values
present at that location are continuously reported in the Values text widget on
image probe’s module control panel.

4. To finish the reporting, release the left mouse button.

If there are multiple images in the Image Viewer window, and/or multiple sketching
modules, then some other module or the Image Viewer itself may have control of the
left mouse button. To get control back to image probe:

1. Make the image the current image (use shift-left mouse button or left mouse
button).

2. Press set pick mode on image probe’s control panel.

This tells the Image Viewer that the left mouse button will be probing pixels,
not picking a current image.

INPUTS
Data Field (required; field 2D uniform [byte|short|float] n-vector)

The input is a 2D uniform field of type byte, short, or float. It can be any
vector length.

33333333333333333333333333
AVS Module Reference Manual 233

image probe3333333333333333333
Note: Though image probe accepts n-vector and data type byte, short, or
float, the input to image viewer can only be byte, 1-vector or 4-vector.

image viewer id structure (required; invisible, autoconnect)
This input port is invisible by default. It connects automatically to the
image viewer module’s image viewer id structure output. The two
modules communicate the image viewer module’s scene id on this con-
nection. Normally, you can ignore its existance.

mouse info structure (required; invisible, autoconnect)
This input port is invisible by default. It connects automatically to the
image viewer module’s mouse info structure output. The two modules
communicate image name, mouse pointer location and button up/down
information on this connection. Normally, you can ignore its existance.

PARAMETERS
Values This is a string block. It appears as a text widget on image probe’s

module control panel. It continuously reports the data values present at
the cursor location as it moves over the image. When the left mouse but-
ton is released, it continues to report the data values at the last cursor
position. All vector elements are reported.

set pick mode
A oneshot that sets the image viewer’s upstream mouse picking focus to
this module. Use it to regain control of the mouse whenever the left
mouse button doesn’t seem to be working to probe points.

OUTPUTS
image draw structure (required)

The left output port contains the image draw structure that connects to
the image viewer module’s leftmost input port. It is required.

EXAMPLE
This example shows a simple network to report pixel data values. The invisible
upstream connections coming from image viewer to image probe are not shown.

READ IMAGE

|

|

|---------------|

| |

IMAGE PROBE |

|-----| |

| |

IMAGE VIEWER

RELATED MODULES
image viewer
image measure
sketch roi

SEE ALSO
The example script Imaging/IMAGE PROBE demonstrates this module.

The upstream feedback mechanism that makes image probe work is described in the
AVS 5 Update document.

33333333333333333333333333
234 AVS Module Reference Manual

image to cgm3333333333333333333
NAME

image to cgm – convert image to CGM and store in file

SUMMARY
Name image to cgm

Availability Imaging, Volume, FiniteDiff module libraries

Type data output

Inputs field 2D 4-vector byte (image,required)

Outputs none

Parameters Name Type Default Min Max
CGM

File Name browser
Encoding choice Binary
Landscape toggle off off on
Page Width float typein 8.50 1.00 25.00
Page Height float typein 11.00 1.00 25.00
Image Width float dial 7.00 0.00 25.00
Image Height float dial 9.00 0.00 25.00
Preserve

Aspect Ratio toggle on

DESCRIPTION
The image to cgm module converts its input image to the Computer Graphics
Metafile (CGM) format and stores it in a file. The geometry viewer module’s right-
most output port outputs an image, thus any scene in a geometry viewer window
can be saved to a CGM file.

After the file is written, the filename is reset to prevent subsequent changes upstream
in the network from automatically triggering the rewriting of the file. A new file is
written only when you enter a filename.

All three types of CGM output are supported:

d Binary which is the most compact.

d Character which contains only printable characters.

d Clear Text which is human readable.

All files are formatted as left-to-right, top-to-bottom scan lines.

By default, the image is centered on the page so that the vertical axis of the image
corresponds to the vertical axis of the page. If the Landscape option is specified, the
vertical axis of the image corresponds to the horizontal axis of the page.

The Page Width and Page Height parameters control the destination page size of the
image. This size is measured in inches.

Because the image to cgm module accepts only image data as an input, it cannot
draw primitives such as lines, text, polygons and spheres at the resolution of the
printer. There is a way to get around this problem: you can increase the resolution
of the input image. Using a combination of the geometry viewer module with the
Software Renderer option, you can generate images that are larger than the resolu-
tion of the screen.

To avoid problems with color approximation and obscured windows that occur with
some devices, it is best to use the Software Renderer option when using the image to
cgm module with the geometry viewer module.

33333333333333333333333333
AVS Module Reference Manual 235

image to cgm3333333333333333333
INPUTS

Image (field 2D 4-vector byte)
Any AVS image.

PARAMETERS
CGM File Name

A file browser that allows you to specify the name of the CGM file to be
created.

Encoding Selects the type of CGM output: Binary, Character, or Clear Text.

Landscape Toggle to rotate image 90 degrees on paper.

Page Width
The horizontal size of the output page in inches.

Page Height
The vertical size of the output page in inches.

Image Width
Width of the printed image in inches.

Image Height
Height of the printed image in inches.

Preserve Aspect Ratio
When selected, the Image Width and Height are coupled to preserve the
aspect ratio of the input image. When not selected, they can be adjusted
independently to stretch the image.

EXAMPLE 1
This example converts an image to a CGM file:

READ IMAGE

|

IMAGE TO CGM

EXAMPLE 2
This example converts the scene in the geometry viewer module into a color CGM
file, by taking the image from the geometry viewer module’s rightmost output port.

READ UCD

|

|

GENERATE COLORMAP UCD CELL TO NODE

| |

| |---------|

UCD CONTOUR |

| |

|-----| |

| |

UCD TO GEOM

|

|

GEOMETRY VIEWER

|

IMAGE TO CGM

33333333333333333333333333
236 AVS Module Reference Manual

image to cgm3333333333333333333
RELATED MODULES

geometry viewer
image to postscript

SEE ALSO
The example script "Convert AVS image to CGM file for printing" demonstrates this
module.

33333333333333333333333333
AVS Module Reference Manual 237

image to pixmap3333333333333333333
NAME

image to pixmap – convert image to pixmap

SUMMARY
Name image to pixmap

Availability this module is in the unsupported library

Type mapper

Inputs field 2D 4-vector byte uniform

Outputs pixmap

Parameters Name Type Default Choices
Approximation Technique choice none none, dithering
(Pseudo-color systems only) random,

monochrome

DESCRIPTION
Note: with AVS 4, the basic internal representation of screen images shifted from a
pixmap to an AVS image. For example, the geometry viewer module outputs an
image, which can be converted to a postscript file with image to postscript. There is
thus little need for this module. It is retained in the unsupported library for back-
ward compatibility only.

The image to pixmap module takes as input an image ("field 2D 4-vector byte") and
outputs the same image as a pixmap. It is useful for converting the output of modules
that produce images into modules that require pixmaps.

The image and pixmap data types differ in these major ways:

d Images are allow for efficient direct manipulation by a module, whereas pixmaps
allow for efficient manipulation by the display device.

d Pixmaps are directly usable by a display device (under control of the X server).
In X terminology, pixmaps contain "pixel values", images contain "colors". This
difference is important only for pseudo-color systems, in which pixmap values
are interpreted as indices into the system’s color lookup table. An image con-
tains 24-bit color values, which cannot be used on such systems, which have only
12 color planes.

d A pixmap is represented by an X Window System resource id (an integer). This
means that transferring a pixmap from one module to another is more efficient
than transferring all the data that defines an image.

See the read image manual page for a description of the AVS image format.

INPUTS
Data Field (required; field 2D 4-vector byte uniform)

The input field must be an AVS image.

PARAMETERS
This module has the following parameter only when running on a pseudo-color sys-
tem.

approximation technique (Pseudo-color systems only)
Controls the conversion of color values to pixel values. There are four
approximation techniques:

d dithering: uses a dither matrix to approximate each color

33333333333333333333333333
238 AVS Module Reference Manual

image to pixmap3333333333333333333
d floyd steinberg: uses an error diffusion dithering technique

d random: uses a random number dither to approximate each color

d monochrome: uses the luminance of the color as an index into a
greyscale ramp

d none: takes the closest approximation for each color

OUTPUTS
pixmap The output is an AVS pixmap.

EXAMPLE
This network allows an image to be displayed in an arbitrary-sized window:

READ IMAGE

|

IMAGE TO PIXMAP

|

DISPLAY PIXMAP

RELATED MODULES
pixmap to image, display pixmap

33333333333333333333333333
AVS Module Reference Manual 239

image to postscript3333333333333333333
NAME

image to postscript – convert image to PostScript and store in file

SUMMARY
Name image to postscript

Availability Imaging, Volume, FiniteDiff module libraries

Type data output

Inputs field 2D 4-vector byte (image,required)

Outputs none

Parameters Name Type Default Choices
filename typein
mode choice greyscale greyscale, color
encapsulate boolean off
landscape boolean off
page size x real 7.5
page size y real 10.5

DESCRIPTION
The image to postscript module converts its input image to the PostScript page
description language and stores it in a file. The geometry viewer module’s rightmost
output port outputs an image, thus any scene in a geometry viewer window can be
saved to a PostScript file.

After the file is written, the filename is reset to prevent subsequent changes upstream
in the network from automatically triggering the rewriting of the file. A new file is
written only when you enter a filename.

Two types of PostScript output are supported:

d An 8-bit gray scale image suitable for sending to a gray-scale PostScript-
compatible laser printer such as a laserwriter.

d A 24-bit true color RGB color image suitable for sending to a PostScript-
compatible laser printer that supports the Level 1 PostScript colorimage operator
color extensions, or any PostScript Level 2 color printer. The actual format is 3-
component (RGB) with 8 bits per component, in multi format, with a line of red
values, then green values, then blue values for each scan line.

All files are formatted as left-to-right, top-to-bottom scan lines.

If the encapsulate boolean is chosen, the PostScript file will be written in EPSF
(Encapsulated Postscript). Encapsulated PostScript files are designed to be imported
by other PostScript processing packages. If you have such a program, you can usu-
ally scale, position and combine the image with text or other annotation. Note that
some printers do not properly print Encapsulated PostScript files. In this case,
deselect encapsulate.

By default, the image is scaled, translated, and centered on the page so that the verti-
cal axis of the image corresponds to the vertical axis of the page. If the landscape
option is specified, the vertical axis of the image corresponds to the horizontal axis of
the page. The largest scale of the image that will fit within the page is chosen. The
aspect ratio of the image is not altered.

The page size x and page size y parameters control the destination page size of the
image. This size is measured in inches. The default size: 7.5x10.5 allows for a 0.5
inch border surrounding the image. Adjust these parameters to scale the image.

33333333333333333333333333
240 AVS Module Reference Manual

image to postscript3333333333333333333
image to postscript’s input is an AVS image. The similar output postscript module’s
input is a pixmap. The output postscript module does not provide some of the flexi-
bility of the image to postscript module.

Because the image to postscript module accepts only image data as an input, it can-
not draw primitives such as lines, text, polygons and spheres at the resolution of the
printer. There are two ways to get around this problem. Firstly, you can increase the
resolution of the input image. Using a combination of the geometry viewer module
with the Software Renderer option, you can generate images that are larger than the
resolution of the screen.

These images can take a signficant time (and memory) to both generate and print.
Another alternative is to use a PostScript output capbility supported by the geometry
viewer CLI that allows direct postscript output of both text and lines. PostScript
does not support primitives that map very well onto shaded surfaces. Images are
still the best way to display these on a PostScript device.

To avoid problems with color approximation and obscurred windows that occur
with some devices, it is best to use the Software Renderer option when using the
image to postscript module with the geometry viewer module.

INPUTS
Image (field 2D 4-vector byte)

Any AVS image.

PARAMETERS
filename A typein that allows you to specify the name of the PostScript file to be

created.

Mode Selects the type of PostScript output: greyscale or color.

encapsulate
Output encapsulated PostScript.

landscape Output image in landscape mode (rotate 90 degrees).

page size x The horizontal size of the output page in inches.

page size y The vertical size of the output page in inches.

EXAMPLE 1
This example converts an image to a PostScript file:

READ IMAGE

|

IMAGE TO POSTSCRIPT

EXAMPLE 2
This example converts the scene in the geometry viewer module into a color
PostScript file, by taking the image from the geometry viewer module’s rightmost
output port.

33333333333333333333333333
AVS Module Reference Manual 241

image to postscript3333333333333333333
READ UCD

|

|

GENERATE COLORMAP UCD CELL TO NODE

| |

| |---------|

UCD CONTOUR |

| |

|-----| |

| |

UCD TO GEOM

|

|

GEOMETRY VIEWER

|

IMAGE TO POSTSCRIPT

RELATED MODULES
geometry viewer
tracer
output postscript
image to cgm

33333333333333333333333333
242 AVS Module Reference Manual

image viewer3333333333333333333
NAME

image viewer – display and manipulate collections of images (Image Viewer)

SUMMARY
Name image viewer

Availability Imaging, Volume, FiniteDiff module libraries

Type data output

Inputs field 2D uniform any-data, 1-vector or 4-vector (image, optional, multiple)
colormap (optional)
image draw structure (optional)

Outputs field 2D 4-vector byte (image)
image picking structure (invisible)
image viewer id structure (optional, invisible, autoconnect)
mouse info structure (optional, invisible, autoconnect)

Parameters Name Type Default
Update Always boolean on
Update Image oneshot

DESCRIPTION
The image viewer module provides access within an AVS network to the complete
Image Viewer subsystem. Many different modules can supply the input images.
That is, many image-format outputs can be connected to the image viewer’s image
input port. All the images will be combined into a single current scene.

image viewer accepts two kinds of images: 4-vector any-data true color images, and
1-vector (scalar) any-data images. Non-byte data is converted to byte and normalized
to the 0-255 range before display. The scalar byte images will be displayed as grays-
cale, or can be colorized using the byte values as an index into the optional input
colormap.

You can also invoke image viewer with no inputs, so that the "scene" is initially
empty. Images can be added to a scene either by upstream modules or by the Read
Image selection on the image viewer control panel. Images sent by upstream
modules can be saved to files using the Write Image and Save Scene selections. In
this way, you can save visualization results and retrieve them later with Read Scene
or Read Image.

The Image Viewer’s Action submenu can create simple "flip book" animations. You
can send a series of images from upstream modules into the image viewer and have
it turn them into a simple animation.

Note that the image viewer window can be reparented to page and stack widgets
using the AVS Layout Editor.

INPUTS
Image (optional, multiple; field 2D uniform any-data, 1-vector or 4-vector)

The input data is a 2D uniform field. It can be any-data. Non-byte data is
converted to byte and normalized to the 0-255 range before it is
displayed. The input data can be a 4-vector true color image, or a scalar
"image". Scalar images are displayed in grayscale unless the optional
Colormap input is used. More than one image can be input to this port.
All the images will be combined into the same "scene".

Colormap (optional; colormap)
This optional colormap will be used to colorize scalar byte images. (All
non-byte fields are converted to byte before display.) The field’s byte

33333333333333333333333333
AVS Module Reference Manual 243

image viewer3333333333333333333
values are used as an index into the 256-element colormap. Colormaps
are generally supplied by the generate colormap module.

image draw structure
User-interaction modules (sketch roi, image measure, image probe, etc.)
connect to the image viewer through this leftmost input port.

The image draw structure is described in the "Image Viewer" section of
the AVS 5 Update document. This port actually exists solely to cause the
AVS flow executive to fire the image viewer module when the upstream
module needs input.

PARAMETERS
Update Always

This switch can be used to slightly improve performance. It is only effec-
tive when a module is connected to the image viewer’s image output
port. It is invisible by default.

When this switch is on, every time the scene changes the image viewer
module translates the contents of the output buffer into an AVS image
and sends it to the image output port. If this switch is off, the image
viewer will only translate the output buffer when the Update Image
oneshot is pressed. The default is on.

To use this parameter, first use the Module Editor’s (middle or right
mouse button on the module dimple) Parameter Editor to make the Port
Visible. Then, you can either connect the boolean module to the new
parameter port, or you can create a module control panel for the image
viewer with an Update Always button on it by setting toggle on the
Parameter Editor.

Update Image
A oneshot switch that causes the image viewer to translate the contents
of the output buffer into an AVS image and send it to the image output
port. Update Image works no matter how Update Always is set.

This parameter is invisible by default. To use it, make it visible in the
same way as described for Update Always. Then, either connect the
oneshot module to the parameter port, or set oneshot with the Parame-
ter Editor to create a module control panel with an Update Image button
on it.

OUTPUTS
Image This rightmost output is an image containing a view that includes all the

images. Note that it is not necessary to connect anything to this port for
normal operations. This port gives other modules access to the image
output by the renderer. One use of this port would be to produce a
printable PostScript file with the image to postscript module. Another
use of this port would be to produce a composite image with the write
image module.

image picking structure (invisible)
The image viewer outputs an optional image picking structure. It is con-
tained on the next-to-rightmost output port. If the user clicks on a posi-
tion in an image in a scene window with the left mouse button, the
image picking structure will report, among other data, the X, Y coordi-
nates of the selected location in the image. Downstream modules can
use this information, for example, to retrieve the original data present at
that location in the field before it was translated into an alpha, red,

33333333333333333333333333
244 AVS Module Reference Manual

image viewer3333333333333333333
green, blue true color image. The image picking structure is described in
the "Advanced Topics" chapter of the AVS Developer’s Guide. This output
port is invisible by default.

image viewer id structure (optional, invisible, autoconnect)
This second-from-left output port is involved in the upstream data pass-
ing that allows user-interaction modules such as sketch roi, image
probe, and image measure to function.

This structure tells the upstream module the scene id of this particular
instance of the image viewer module. This port is invisible by default. It
will autoconnect to the image viewer id structure input port of the
module connected to the image draw structure port.

The structure is described in the "Image Viewer" section of the AVS 5
Update document.

mouse info structure (invisible)
This leftmost output port is involved in the upstream data passing that
allows user-interaction modules such as sketch roi, image probe, and
image measure to function.

This structure passes mouse location and button state information
upstream. It is invisible by default. It will autoconnect to the mouse
info structure input port of the module connected to the image draw
structure input port.

The structure is described in the "Image Viewer" section of the AVS 5
Update document.

RESIZING
The image viewer’s pulldown menu, which is accessed by clicking on the "dimple" in
the upper lefthand corner of the display window, provides several ways to resize the
window to certain fixed sizes:

d Zoom Full Screen. Resizes the window to fill the square working area of the
screen (approximately 1024 x 1024), and magnifies the image to fit. If the win-
dow is embedded in a page or stack (see Layout Editor in the Network Editor
chapter), it becomes a top-level window that can be freely resized and moved
using the X window manager.

d Unzoom. Resizes and moves the window to return to its location before a Zoom
Full Screen. If the window originally was embedded in a page or stack, it will be
re-embedded there.

SPECIAL CONSIDERATIONS
This module is special: instead of having a few control widgets organized onto a sin-
gle control panel page, its control panel is the entirely separate multi-level menu of
the Image Viewer subsystem. Thus, when you add the image viewer icon to a net-
work, no page is added to the Network Control Panel.

There are two ways to access the Image Viewer menu:

d Click the small square in image viewer icon with the left mouse button.

d With the cursor positioned over the Data Viewers button located at the top of
the Network Control Panel, press and hold down any mouse button. When the
"AVS Data Viewers" pop-up menu appears, roll the mouse down to "Image
Viewer" and release the mouse button. This Data Viewers button is always visi-
ble, even when there is no active network.

33333333333333333333333333
AVS Module Reference Manual 245

image viewer3333333333333333333
In some circumstances, it is useful to be able to access both the Image Viewer control
panel and the Network Control Panel simultaneously. They both occupy the same
screen position, along the left edge of the screen. In these cases, use the X Window
System window manager to move the one of these menu windows out of the way.

The image viewer’s control panel also differs from that of other modules in these
ways:

d The Network Editor’s Layout Editor cannot be used to rearrange Image Viewer
controls.

d If a network includes more than one instance of image viewer, AVS does not
create a separate control panel for each instance. Each image viewer sends its
output to a different window, but the same Image Viewer menu controls all the
windows. The module whose output window is currently highlighted in red is
the one being controlled. To switch the focus to another image viewer output
window, just click in it with any mouse button.

EXAMPLE 1
This network receives a series of images of what were originally AVS geometry
objects, composites them over a background image, and creates a simple animation
as the user manipulates the geometry object:

READ GEOM

|

GEOMETRY VIEWER

|-----------------------|

__________________________| DISPLAY IMAGE

| | |

BACKGROUND LUMINANCE |

| | |

| CONTRAST |

| |------| |

| REPLACE ALPHA

| |

|----------------------| |

COMPOSITE

|

IMAGE VIEWER

EXAMPLE 2
The following network reads in an image and then sends it to the image viewer
module. This lets you apply all of the imaging techniques of the image viewer to the
image.

READ IMAGE

|

|

IMAGE VIEWER

EXAMPLE 3
The following network shows the sketch roi module connected to the image viewer.
sketch roi is producing a region of interest to the ip edge module. The user is draw-
ing the region of interest in the image viewer window. Notice how ip edge’s output
is connected to both image viewer and sketch roi.

33333333333333333333333333
246 AVS Module Reference Manual

image viewer3333333333333333333
READ IMAGE

|

|

|-------| |

| |--|---| |

SKETCH ROI | | IP EDGE

| | | |------|

| |----| |

|-----------| |

| |

IMAGE VIEWER

EXAMPLE 4
The following network shows the image viewer displaying a scalar byte image. The
"image" started life as a 3D uniform byte, 3-vector field that is reduced to 2D with
orthogonal slicer, and to scalar with extract scalar. Without generate colormap, the
image would be displayed in grayscale.

READ FIELD

|

|

ORTHOGONAL SLICER

|

GENERATE COLORMAP |

| EXTRACT SCALAR

| |

|----------| |

| |

IMAGE VIEWER

RELATED MODULES
display image
read image
image to postscript

SEE ALSO
The "Image Viewer Subsystem" chapter in the AVS User’s Guide, and the "Image
Viewer" section of the AVS 5 Update document.

33333333333333333333333333
AVS Module Reference Manual 247

integer3333333333333333333
NAME

integer – send a user-entered integer to one or more module(s) integer parameter
port

SUMMARY
Name integer

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data

Inputs none

Outputs integer

Parameters Name Type Default Min Max
Integer Value dial 0 unbounded unbounded

DESCRIPTION
The integer module sends a single user-specified integer value to one or more
integer-type parameter ports on one or more receiving modules. Its purpose is to
make it possible for you to simultaneously control integer parameter input to more
than one module using only a single input widget (whether the default dial, or a
typein).

Before you can connect integer to the receiving module, you must make that receiv-
ing module’s parameter port visible. To make a parameter port visible, call up the
module’s Editor Window panel by pressing the middle or right mouse button on the
module icon dimple. Next, look under the "Parameters" list to find the parameter
you want to plug into. Position the mouse cursor over that parameter’s button and
press any mouse button. When the Parameter Editor window appears, click any
mouse button on its "Port Visible" switch. A white parameter port should appear on
the module icon. Connect this parameter port to the integer module icon in the
usual way.

PARAMETERS
Integer Value (integer)

The single user-supplied integer value to be sent to the module(s) integer
parameter port(s). The default value is 0. There is no minimum or max-
imum restriction on the value. You should be aware of the range of
numbers that it is reasonable to send to the receiving modules. The
default widget type is a dial.

OUTPUTS
Integer (integer)

The integer value is sent to all modules with integer-type parameter
ports connected to the integer module

EXAMPLE 1
The following network reads a field, then creates two orthogonal slices through the
field in different planes (one in I and one in J) using the integer module to specify the
same offset slice plane to both slicers. The resulting planes are converted to meshes
and composited together in the geometry viewer window.

33333333333333333333333333
248 AVS Module Reference Manual

integer3333333333333333333
INTEGER READ FIELD

| |

| |----------|-----|

| | |

|-----|----------| |

| | | |

ORTHO SLICE ORTHO SLICE

| |

GENERATE COLORMAP | |

|-----------------|-----|-----------| |

| | | |

FIELD TO MESH FIELD TO MESH

| |

| |

|

|

GEOMETRY VIEWER

EXAMPLE 2
This example reads two different fields, uses the integer module to specify the same
slice plane in both to the orthogonal slicer modules, then uses field math to produce
a new field that is the difference between them.

READ FIELD READ FIELD

| |

INTEGER | |

| | |

|------|------|------------------------| |

| | | |

ORTHOGONAL SLICE ORTHOGONAL SLICE

| |

| |

|------------| |------------ |

| |

FIELD MATH

|

FIELD TO MESH

|

GEOMETRY VIEWER

RELATED MODULES
Modules that can process integer output:

all modules with integer-type parameter ports

SEE ALSO
The example scripts INTEGER, FIELD TO BYTE, as well as others demonstrate the
integer module.

33333333333333333333333333
AVS Module Reference Manual 249

interpolate3333333333333333333
NAME

interpolate – compute intermediate values to change the size of a field

SUMMARY
Name interpolate

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field 2D/3D scalar any-data any-coordinates

Outputs field same-dimension scalar byte same-coordinates

Parameters Name Type Default Min Max
interp_sx float 1.0 0.0 4.0
interp_sy float 1.0 0.0 4.0
interp_sz float 1.0 0.0 4.0
sampling choice Point

DESCRIPTION
The interpolate module arbitrarily changes the size of its input data, either by sub-
sampling or interpolating it. This module is useful for smoothly scaling the data
arbitrarily up and down.

The interpolation algorithm first selects, for each output point, its real (floating-point)
position in the input data set:
New X = Old X ∗ interp_sx

New Y = Old Y ∗ interp_sy

New Z = Old Z ∗ interp_sz

With the Point sampling method, it then selects the closest pixel (voxel) to the com-
puted one. With bilinear (in 2D) or trilinear (in 3D) sampling, it finds the four pixels
(2D) or eight voxels (3D) around the computed point and does a linear sampling for
in-between pixels.

The point sampling mode is much quicker than the linear sampling and should be
used when interactivity is more important than image quality.

INPUTS
Data Field (field 2D/3D scalar any-data any-coordinates)

The input field may be 2D or 3D, but must be scalar. The data for each
element can be of any type. The field can be uniform, rectilinear, or
irregular.

PARAMETERS
interp_sx
interp_sy
interp_sz (does not appear for 2D input fields)

The interpolation factors for the coordinate dimensions.

sampling This choice determines the sampling method, Point or Bi/Trilinear, as
described above.

OUTPUTS
Data Field The output field has the same form as the input field. Note that the

extent is unmodified; this module changes the resolution of the data
within the physcial space delimited by the extents. It does not alter the
physical extents of the data.

33333333333333333333333333
250 AVS Module Reference Manual

interpolate3333333333333333333
RELATED MODULES

This module is similar to downsize (which does uniform, stride-based point sam-
pling), average down (which averages data in specified chunks sizes, independently
in the X, Y, and Z dimensions, and crop (which selects a subset of the data but
doesn’t change the resolution). Some advantages to using this module are: it can
scale non-uniformly in each dimension; it can do high-quality linear sampling; and it
can scale data up instead of only down.

LIMITATIONS
This module does the wrong thing when down-sampling (going from a large image
to a small one) in the Bi/Trilinear mode. What it should do is "average" appropri-
ately chosen regions down to each pixel. What is does is to choose the four pixels
around the center of that region and interpolate between them. This is not a huge
error, but it is not strictly correct.

SEE ALSO
The example script INTERPOLATE demonstrates the interpolate module.

33333333333333333333333333
AVS Module Reference Manual 251

ip absolute3333333333333333333
NAME

ip absolute – absolute value of a field

SUMMARY
Name ip absolute

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 2D uniform scalar byte (optional, region of interest)

Outputs field uniform same-dims same-type same-vector

Parameters none

DESCRIPTION
ip absolute calculates the absolute value of all the data elements in the input field,
placing the result in the output field.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The input is a 2D or 3D uniform field of type byte, short, or float. The
field can be any vector length. If the field is 3D, the absolute value
operation is applied to Z successive XY slices.

Data Field (optional; field 2D uniform scalar byte)
This field is an optional region of interest. If connected, only the pixels
designated by the ROI are affected in each XY slice. The region of
interest must have the same XY dimensions as the input field.

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output is a field of the same dimensions, data type, and vector
length as the input field. Its header min/max data value has been
marked invalid.

EXAMPLE
READ IMAGE

|

|

IP ARITHMETIC

|

|

IP ABSOLUTE

|

|

IMAGE VIEWER

RELATED MODULES
ip arithmetic
ip float math
ip logical
field math

SEE ALSO
The example script Imaging/IP ABSOLUTE demonstrates this module.

33333333333333333333333333
252 AVS Module Reference Manual

ip arithmetic3333333333333333333
NAME

ip arithmetic – arithmetic operations on fields

SUMMARY
Name ip arithmetic

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field uniform same-dims same-data same-vector (optional)
field 2D scalar byte (optional, region of interest)

Outputs field uniform same-dims same-data same-vector

Parameters Name Type Default Min Max
Operation choice add constant
constant float dial 0 unbounded unbounded

DESCRIPTION
ip arithmetic performs arithmetic between two uniform fields, or between one uni-
form field and a constant value.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

This rightmost input port data field must be present. If it is the only field
present, operations are performed with a constant value.

Data Field (optional; field uniform same-dims same-data same-vector)
If this second, optional input field is present, then operations can be per-
formed between the two input fields. This field will be ignored if one of
the constant operations is selected. This field must have the same dimen-
sions, extents, data type, and vector length as the first input field. One
field can be connected to both input ports.

Data Field (optional; field 2D scalar byte)
This field is an optional region of interest. If connected, only the pixels
designated by the ROI are affected on each XY slice. The ROI must have
the same extents as the input field(s).

PARAMETERS
Operation A series of radio buttons to select the operation.

These functions work with two input fields:
add
subtract
multiply
divide
min
max

These functions work with the rightmost input field and the constant:
add constant
mul constant
min constant
max constant
shift (only valid with byte or short input)

The functions are performed in the data type of the input fields.

33333333333333333333333333
AVS Module Reference Manual 253

ip arithmetic3333333333333333333
d In the case of arithmetic overflow, the result’s high order bits are

clipped.

d If the divide function detects divide-by-zero, it sets the destination
value to the maximum value for that data type. (Floats are set to a
constant HUGE_VAL, which is defined on each platform as the
largest value a float can hold.)

d When adding constants to byte and short input data, the fractional
portion of the constant value is clipped.

constant A floating point dial that specifies the constant value to use against the
rightmost input field. The default is 0; the range is unbounded.

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output field has the same dimensions, data type, and vector length
as the input field(s). Its field header min/max data values are marked
invalid.

EXAMPLE
READ VOLUME

|

|------------|

| |

| IP ARITHMETIC

| |

| |-------|

IP ARITHMETIC

|

GENERATE COLORMAP ORTHOGONAL SLICER

| |

|----------------------| |

COLORIZER

|

IMAGE VIEWER

RELATED MODULES
ip absolute
ip float math
ip logical
field math

SEE ALSO
The Imaging/IP ARITHMETIC examples script demonstrates this module.

33333333333333333333333333
254 AVS Module Reference Manual

ip blend3333333333333333333
NAME

ip blend – alpha or compositing blend of two fields

SYNOPSIS
Name ip blend

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field uniform same-dims same-data same-vector
field 2D [byte|short|float] scalar (alpha mask)

Outputs
field uniform same-dims same-data same-vector

Parameters none

DESCRIPTION
ip blend performs a pixel-by-pixel composition of two fields, using an alpha mask
field for the blending.

The equation used to composite the fields is:
output pixel = (alpha for this pixel) ∗ (field1 pixel)

+ (1.0 - (alpha for this pixel)) ∗ (field2 pixel);

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)
Data Field (required; field uniform same-dims same-data same-vector)

The two fields to be blended. The fields must match in dimensions,
extents, data type, and vector length. If the fields are 3D, the blending
operation is applied to Z successive XY slices.

Data Field (required; field 2D [byte|short|float] scalar)
A 2D field used as the alpha mask. Its extents must match those of the
input fields.

Byte, short, or float fields can be used as the alpha mask blending func-
tion. Byte or short fields will be scaled to vary from 0 to 1; float fields
will be assumed to be in the range 0.0 to 1.0. If they are not, a warning is
printed.

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output field has the same dimensions, data type, and vector length
as the input field. Its header min/max data values are set to invalid.

EXAMPLE

33333333333333333333333333
AVS Module Reference Manual 255

ip blend3333333333333333333
READ IMAGE

|

|-----------|

| |---|

EXTRACT SCALAR | |

| | |

IP ARITHMETIC IP ARITHMETIC |

| | |

|------------| | |

| | |

IP BLEND

|

IMAGE VIEWER

RELATED MODULES
alpha blend

SEE ALSO
The example script Imaging/IP BLEND demonstrates this module.

33333333333333333333333333
256 AVS Module Reference Manual

ip compare3333333333333333333
NAME

ip compare – compares two fields

SUMMARY
Name ip compare

Availability Imaging module library

Type data output

Inputs field 2D uniform [byte|short|float] n-vector
field 2D uniform [byte|short|float] n-vector

Outputs none

Parameters Name Type
Differences string block

DESCRIPTION
ip compare compares two fields (usually images). It compares the sizes (extents) of
the fields, their vector lengths, and data type, in that order. If the fields are otherwise
identical, they are then compared on a pixel-by-pixel basis.

INPUTS
Data Field (required; field 2D uniform [byte|short|float] n-vector)
Data Field (required; field 2D uniform [byte|short|float] n-vector)

These are 2D fields of type byte, short, or float. Generally, these are
images.

PARAMETERS
Differences (string block)

The output is reported in a string block parameter on the module’s con-
trol panel. The comparison occurs in the order listed. ip compare stops
reporting after the first difference is found.

The output reports:
Sizes differ field extents are different
Number of channels differ fields have different vector lengths
Data types differ field data types are different
n pixels differ fields are identical, but pixel values differ
No differences fields are identical

EXAMPLE 1
IP READ VFF IP READ VFF

| |

|------| |---|

| |

IP COMPARE

EXAMPLE 2
The following network could be used to count the number of pixels whose value is
greater than 127, where ip logical is set up to AND the constant 128:

33333333333333333333333333
AVS Module Reference Manual 257

ip compare3333333333333333333
READ IMAGE

|

|-------------|

| |

IP LOGICAL |

| |

|----------| |

| |

IP COMPARE

RELATED MODULES
ip extrema
ip register
ip statistics
print field
compare field

SEE ALSO
The example script Imaging/IP COMPARE demonstrates this module.

33333333333333333333333333
258 AVS Module Reference Manual

ip contour3333333333333333333
NAME

ip contour – draw iso-level contours

SUMMARY
Name ip contour

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector

Outputs field uniform same-dims byte same-vector

Parameters Name Type Default Min Max
Channel selection none|scalar
level type choice N equal levels
N Level Steps int dial 3 1 unbounded
Level Value float dial 0.0 unbounded unbounded

DESCRIPTION
ip contour derives iso-level contours from the source field and draws the contours
into the destination field.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The input field is uniform, 2D or 3D, of data type byte, short, or float. It
can have any number of vector components. If the field is 3D, the con-
touring will be performed on Z successive XY slices, not on the field as a
3D whole (i.e., the input is treated as a series of 2D XY slices).

PARAMETERS
Channel A set of buttons that select which vector elements to contour. There are

as many buttons as vector elements. More than one vector element can
be selected at one time—each will be contoured in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

level type A pair of radio buttons that chooses how to make the contours:

1 level
If 1 level is selected, then a single contour is produced for Level
Value.

N equal levels
If N equal levels is selected, then N Level Steps contours are pro-
duced. The contour interval is: (max - min)/ (N Level Steps + 1).
ip contour uses whatever min/max values are contained in the
input field’s header without validation. If none are present, it cal-
culates them. The contouring always starts from 0. The interval is
calculated as a float.

If the source field has neighboring pixels that cross one of the given
levels, the output pixel is set to the value of MAXBYTE. Otherwise,
the output pixel is not affected.

N Level Steps
An integer dial that specifies the number of iso levels. This is used only
when N equal levels is selected. The minimum is 0, the maximum is
unbounded; and the default is 3.

33333333333333333333333333
AVS Module Reference Manual 259

ip contour3333333333333333333
Level Value

A float dial that specifies a single contour level to map. This is used only
when 1 level is selected. The default is 0.0; the range is unbounded.

OUTPUTS
Data Field (field uniform same-dims byte same-vector)

The output is a field with the same dimensions and vector length as the
input field. It is always data type byte. Those vector elements not
selected by the Channel choice are 0.

The value inserted into the output field to mark the contour levels is 255.
This happens to produce red, green, and blue contour lines for ARGB
input images.

EXAMPLE
READ IMAGE

|

|

IP CONTOUR

|

|

IMAGE VIEWER

SEE ALSO
The example script Imaging/IP CONTOUR demonstrates this module.

33333333333333333333333333
260 AVS Module Reference Manual

ip convolve3333333333333333333
NAME

ip convolve – convolve with image float kernel

SUMMARY
Name ip convolve

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 2D scalar float (kernel)
field 2D uniform scalar byte (optional, region of interest)

Outputs field same-dims same-data same-vector

Parameters Name Type Default
Channel selection none|scalar
clear output boolean off

DESCRIPTION
ip convolve convolves a field with the specified kernel.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, then the convolution is performed on Z successive XY slices.

Data Field (required; field 2D scalar float)
This center port is the convolution kernel. The kernel is usually supplied
either from a file via ip read kernel, or generated interactively with a
module such as generate filters.

Be aware that larger convolution kernels can require geometrically
longer processing times.

Data Field (optional; field 2D uniform scalar byte)
This leftmost input field is an optional region of interest. If connected,
only the pixels designated by the ROI are affected. If the input is a 3D
field, the ROI is applied to Z successive XY slices. The ROI must have
the same XY extents as the input field.

PARAMETERS
Channel A set of buttons that select which vector elements to convolve. There are

as many buttons as vector elements. More than one vector element can
be selected at one time—each will be convolved in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

clear output
A boolean switch. If on, the output field has the new data created by ip
convolve, and the rest of the values are 0. If off, those vector elements
not selected by Channel are copied intact to the output field. clear out-
put is on by default.

OUTPUTS
Data Field (field 2D uniform same-vector same-data)

The output field has the same dimensions, vector, and data type as the
input field. Its edge pixels are set to 0. The header min/max values are

33333333333333333333333333
AVS Module Reference Manual 261

ip convolve3333333333333333333
set to invalid.

EXAMPLE 1
IP READ KERNEL READ IMAGE

| |

|----| |

| |

IP CONVOLVE

|

|

IMAGE VIEWER

EXAMPLE 2
IP READ KERNEL READ VOLUME

| |

|----| |

| |

IP CONVOLVE

|

ORTHOGONAL SLICER

|

IMAGE VIEWER

RELATED MODULES
convolve
generate filters
ip read kernel

SEE ALSO
The example script Imaging/IP CONVOLVE demonstrates this module.

33333333333333333333333333
262 AVS Module Reference Manual

ip dilate3333333333333333333
NAME

ip dilate – dilate a field

SUMMARY
Name ip dilate

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 2D uniform scalar integer (structuring element)
field 2D uniform scalar byte (optional, region of interest)

Outputs field uniform same-dims same-type same-vector

Parameters Name Type Default Min Max
Channel selection none|scalar
iterations int dial 1 1 unbounded
clear output boolean on

DESCRIPTION
ip dilate performs dilation or "region growing" morphological operations on fields
based on an arbitrary structuring element.

The input field can be considered to be of two types:

logical
This is a field whose vector elements are bytes, each of which contains only one
of two values: 0 or 255. Such logical or "binary" fields are produced by ip thres-
hold and ip morph.

In the case of a logical field, the output of ip dilate is the logical "or" of all the
neighborhood pixels selected by the structuring element.

grayscale
Any other input field is said to be a "grayscale", meaning only that each vector
element ("band") contains data of any type that can be interpreted as a set of
grayscale values. For a grayscale field, the output is the maximum of all the
neighborhood pixels selected by the structuring element.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, then the dilation is performed on Z successive XY slices.

Data Field (required; field 2D uniform scalar integer)
The center input is for the 2D structuring element. This is usually
obtained from a file via the ip read sel module. See that man page for a
detailed description of its format.

The logical structuring element describes the neighborhood that will be
used to determine which neighborhood pixels are used as input elements
into the operation.

Data Field (optional; field 2D uniform scalar byte)
This leftmost input field is an optional region of interest. If connected,
only the pixels designated by the ROI are affected. If the input is a 3D
field, the ROI is applied to Z successive XY slices. The ROI must have
the same XY extents as the input field.

33333333333333333333333333
AVS Module Reference Manual 263

ip dilate3333333333333333333
PARAMETERS

Channel A set of buttons that select which vector elements to dilate. There are as
many buttons as vector elements. More than one vector element can be
selected at one time—each will be dilated in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

iterations An integer dial that specifies how many times the structuring element
should be applied to the input. Allows for iterative morphological
operations. The minimum is 1, the maximum is unbounded, and the
default is 1. The Status bar reports the progress of the iterations.

clear output
A boolean switch. If on, the output field has the new data created by ip
dilate, and the rest of the values are 0. If off, those vector elements not
selected by Channel are copied intact to the output field. clear output is
on by default.

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output is a field with the same dimensions, data type, and vector
length as the input field. Edge pixels in the destination field are set to 0.
The header’s min/max data values are set to invalid.

EXAMPLE 1
IP READ SEL READ IMAGE

| |

|-----------| |

| |

IP DILATE

|

IMAGE VIEWER

EXAMPLE 2
IP READ SEL READ VOLUME

| |

|-----------| |

| |

IP DILATE

|

ORTHOGONAL SLICER

|

IMAGE VIEWER

RELATED MODULES
ip erode
ip median
ip morph
ip read sel

SEE ALSO
The example script Imaging/IP DILATE demonstrates this module.

33333333333333333333333333
264 AVS Module Reference Manual

ip edge3333333333333333333
NAME

ip edge – enhance edges in a field

SUMMARY
Name ip edge

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 2D uniform scalar byte (optional, region of interest)

Outputs field uniform same-dims same-data same-vector

Parameters Name Type Default Min Max
Channel selection none|scalar
Method choice Prewitt
hwidth float dial 3.0 0.0 unbounded
vwidth float dial 3.0 0.0 unbounded
clear output boolean on

DESCRIPTION
ip edge performs an edge enhancement operation, using the specified algorithm.

The algorithms use convolution kernels to sharpen a field in the horizontal direction
and then in the vertical direction. The algorithms then perform a quadratic add on
the resulting images. All convolutions for the multiple kernels are performed in a
single pass.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, then the edge enhancement is performed on Z successive XY slices.
It is not performed on a 3D volume as a "whole," i.e., no edges are
enhanced in a ZY plane, etc.

Data Field (optional; field 2D uniform scalar byte)
This leftmost input field is an optional region of interest. If connected,
only the pixels designated by the ROI are affected. If the input is a 3D
field, the ROI is applied to Z successive XY slices. The ROI must have
the same XY extents as the input field.

PARAMETERS
Channel A set of buttons that select which vector elements to edge enhance.

There are as many buttons as vector elements. More than one vector ele-
ment can be selected at one time—each will be edge enhanced in the out-
put field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

Method A series of radio buttons to select the edge-detection algorithm. The
default is Prewitt. The choices are:

Prewitt
Roberts
Compass
Sobel
Frei Chen

33333333333333333333333333
AVS Module Reference Manual 265

ip edge3333333333333333333
Marr Hildreth
Nevatia Babu
Robinson 3
Robinson 5
Macleod
Argyle
Kirsh
Boxcar
Deriv(ative) of Gaussian
Weighted Line
Unweighted Line

hwidth
vwidth

hwidth and vwidth are floating point dial parameters to the algorithms
that use variable width kernels: Argyle, Macleod, Marr Hildreth (just
hwidth), Boxcar, and the Deriv of Gaussian. The variables specify the
functional size of the kernel, not the actual size of a kernel.

A particular algorithm generates the actual kernel size from these values.
A variable width kernel is useful because you can make the width
smaller to detect smaller detail; or larger to ignore noisy edges in an
image.

Be aware that you can supply widths that will produce large kernels,
which will require large amounts of processing time. In these cases, you
may find that you can perform an edge enhancement operation faster if
you first perform a Fourier transform on the image.

clear output
A boolean switch. If on, the output field has the new data created by ip
edge, and the rest of the values are 0. If off, those vector elements not
selected by Channel are copied intact to the output field. clear output is
on by default.

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output is a field with the same dimensions, data type, and vector
length as the input field. Edge pixels in the destination field are set to 0.
The header’s min/max data values are set to invalid.

EXAMPLE
READ IMAGE

|

|

IP EDGE

|

|

IMAGE VIEWER

RELATED MODULES
ip convolve
ip kernel
sobel

SEE ALSO
The example script Imaging/IP EDGE demonstrates this module.

33333333333333333333333333
266 AVS Module Reference Manual

ip erode3333333333333333333
NAME

ip erode – erode a field

SUMMARY
Name ip erode

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 2D uniform scalar integer (structuring element)
field 2D uniform scalar byte (optional, region of interest)

Outputs field uniform same-dims same-type same-vector

Parameters Name Type Default Min Max
Channel selection none|scalar
iterations int dial 1 1 unbounded
clear output boolean on

DESCRIPTION
ip erode performs erosion or "region shrinking" morphological operations on fields
based on an arbitrary structuring element.

The input field can be considered to be of two types:

logical
This is a field whose vector elements are bytes, each of which contains only one
of two values: 0 or 255. Such logical or "binary" fields are produced by ip thres-
hold and ip morph.

In the case of a logical field, the output of ip erode is the logical "and" of all the
neighborhood pixels selected by the structuring element.

grayscale
Any other input field is said to be a "grayscale", meaning only that each vector
element ("band") contains data of any type that can be interpreted as a set of
grayscale values. For a grayscale field, the output is the minimum of all the
neighborhood pixels selected by the structuring element.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, then the erosion is performed on Z successive XY slices.

Data Field (required; field 2D uniform scalar integer)
The center input is for the 2D structuring element. This is usually
obtained from a file via the ip read sel module. See that man page for a
detailed description of its format.

The logical structuring element describes the neighborhood that will be
used to determine which neighborhood pixels are used as input elements
into the operation.

Data Field (optional; field 2D uniform scalar byte)
This leftmost input field is an optional region of interest. If connected,
only the pixels designated by the ROI are affected. If the input is a 3D
field, the ROI is applied to Z successive XY slices. The ROI must have
the same XY extents as the input field.

33333333333333333333333333
AVS Module Reference Manual 267

ip erode3333333333333333333
PARAMETERS

Channel A set of buttons that select which vector elements to erode. There are as
many buttons as vector elements. More than one vector element can be
selected at one time—each will be eroded in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

iterations An integer dial that specifies how many times the structuring element
should be applied to the input. Allows for iterative morphological
operations. The minimum is 1, the maximum is unbounded, and the
default is 1. The Status bar reports the progress of the iterations.

clear output
A boolean switch. If on, the output field has the new data created by ip
erode, and the rest of the values are 0. If off, those vector elements not
selected by Channel are copied intact to the output field. clear output is
on by default.

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output is a field with the same dimensions, data type, and vector
length as the input field. Edge pixels in the destination field are set to 0.
The header’s min/max data values are set to invalid.

EXAMPLE
IP READ SEL READ IMAGE

| |

|---------| |

| |

IP ERODE

|

|

IMAGE VIEWER

RELATED MODULES
ip dilate
ip median
ip morph
ip read sel

SEE ALSO
The example script Imaging/IP ERODE demonstrates this module.

33333333333333333333333333
268 AVS Module Reference Manual

ip extrema3333333333333333333
NAME

ip extrema – find data value extrema

SUMMARY
Name ip extrema

Availability Imaging module library

Type data output

Inputs field 2D uniform [byte|short|float] n-vector
field 2D scalar byte (optional, region of interest)

Outputs none

Parameters Name Type Default
Channel choice <channel 0>
Extrema string block

DESCRIPTION
ip extrema finds the minimum and maximum data values in one channel of a field.

INPUTS
Data Field (required; field 2D uniform [byte|short|float] n-vector)

The right input is a 2D uniform field of type byte, short, or float. It can
be any vector length.

Data Field (optional; field 2D scalar byte)
This left input field is an optional region of interest. If connected, only
the pixels designated by the ROI are affected. The ROI must have the
same XY extents as the input field.

PARAMETERS
Channel A set of radio buttons that choose which vector element to calculate the

extrema for. There are as many buttons as vector elements. One vector
element can be selected at one time.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "channel 0", "channel 1," etc.
The first selection is the default.

Extrema A string block widget that reports the data value extrema. It appears on
the ip extrema module’s control panel. Two floating point values,
Minimum and Maximum, are reported.

EXAMPLE
READ IMAGE

|

|

IP THRESHOLD

|

|---------------|

| |

EXTRACT SCALAR |

|----------| |

| | |

IMAGE VIEWER IP EXTREMA

33333333333333333333333333
AVS Module Reference Manual 269

ip extrema3333333333333333333
RELATED MODULES

ip compare
ip register
ip statistics
print field
statistics

SEE ALSO
The example script Imaging/IP EXTREMA demonstrates this module.

33333333333333333333333333
270 AVS Module Reference Manual

ip fft3333333333333333333
NAME

ip fft – Fourier transform a field

SUMMARY
Name ip fft

Availability Imaging module library

Type filter

Inputs field [1D|2D|3D] uniform [byte|short|float] n-vector

Outputs field uniform float same-dims same-vector (packed complex)

Parameters Name Type Default
Channel selection none|scalar

DESCRIPTION
ip fft Fourier transforms a uniform field (not complex) and places the packed com-
plex result in a uniform float output field. Generally, these fields are images.

The data will have the following format, typical of FFT algorithms, in the output
field:

Re[0][0] Re[0][N/2] Re[1][0] Im[1][0] ... Re[M/2-1][0] Im[M/2-1][0]
Re[0][1] Im[0][1] Re[1][1] Im[1][1] ... Re[M/2-1][1] Im[M/2-1][1]
.
.
Re[0][N/2-1] Im[0][N/2-1] Re[1][N/2-1] Im[1][N/2-1] ... Re[M/2-1][N/2-1]Im[M/2-1][N/2-1]
Re[M/2][0] Re[M/2][N/2] Re[1][N/2] Im[1][N/2] ... Re[M/2-1][N/2]Im[M/2][N/2]
Re[M/2][1] Im[M/2][1] Re[1][N/2+1] Im[1][N/2+1] ... Re[M/2-1][N/2 + 1]Im[M/2-1][N/2+1]
.
.
Re[M/2][N/2-1] Im[M/2][N/2-1] Re[1][N-1] Im[1][N-1] ... Re[M/2-1][N-1] Im[M/2-1][N-1]

The complete MxN transform may be deduced from the fact that for float fields, the
forward 2D FFT produces a field with conjugate symmetry, such that:

Re[M-i][N-j] = Re[i][j] and Im[M-i][N-j] = –Im[i][j]

These packed complex output fields are un-packed for further processing with ip fft
unpack. They can also be viewed as magnitude/phase images by processing with ip
fft display, or turned back into the original image with ip ifft.

INPUTS
Data Field (required; field [1D|2D|3D] uniform [byte|short|float] n-vector)

The input is a 1D, 2D, or 3D uniform field of type byte, short, or float. It
can be any vector length. Generally, this is an image. If the input is not
already in the proper format to perform an FFT, the module converts the
data to float, forces its XY extents to be a power of 2, and centers the ori-
ginal field in this new area before calling the FFT function. 1D input can
be generated by the ip read line module that interactively extracts a 1D
subset from an image using a sampling line. If the field is 3D, then the
FFT is performed on Z successive XY slices.

PARAMETERS

33333333333333333333333333
AVS Module Reference Manual 271

ip fft3333333333333333333
Channel A set of buttons that select which vector elements to FFT. There are as

many buttons as vector elements. More than one vector element can be
selected at one time—each will be FFT’d in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

OUTPUTS
Data Field (field uniform float same-dims same-vector)

The output field contains the packed complex representation of the
Fourier transform result, stored as a float. Its dimensions, extents, and
vector length equal those of the input field. The "excess" created if the
input’s XY extents were forced to be a power of 2 is clipped in this out-
put field. Vector elements that were not selected by Channel are set to 0.
The header’s min/max data values are set to invalid.

This output should be processed with ip fft unpack for viewing. 1D out-
put can be sent to the graph viewer.

EXAMPLE 1
This example displays an FFT in the Image Viewer along with the original image:

READ IMAGE

|----------|

| |

IP FFT |

| |

| |

IP FFT DISPLAY |

| |

|----------|

IMAGE VIEWER

RELATED MODULES
ip fft display
ip fft multiply
ip fft pack
ip fft unpack
ip ifft
ip read line

SEE ALSO
The example scripts Imaging/1D FFT, Imaging/IP FFT, Imaging/filtering data with
FFTs, and Imaging/doing convolutions with FFTs demonstrate this module.

33333333333333333333333333
272 AVS Module Reference Manual

ip fft display3333333333333333333
NAME

ip fft display – calculate magnitude and phase of packed fft field

SUMMARY
Name ip fft display

Availability Imaging module library

Type filter

Inputs field [1D|2D|3D] uniform float (packed complex) n-vector

Outputs field [1D|2D|3D] uniform float same-vector (magnitude)
field [1D|2D|3D] uniform float same-vector (phase)

Parameters Name Type Default
Channel selection none|scalar
calc magnitude boolean on
log magnitude boolean off
calc phase boolean off
normalize

phase boolean on

DESCRIPTION
ip fft display converts the packed conjugate symmetric FFT representation written
by ip fft to a displayable form by calculating the magnitude and/or phase of the
packed input field.

INPUTS
Data Field (required; field [1D|2D|3D] uniform float (packed complex) n-vector)

The input field must be the packed conjugate symmetric array of the
type produced by ip fft. (See that module’s man page.) It can be 1D, 2D,
or 3D, of any vector length. Generally, this is an image. If the field is 3D,
then the unpacking is performed and on Z successive XY slices.

PARAMETERS
Channel A set of buttons that select which vector elements to unpack. There are

as many buttons as vector elements. More than one vector element can
be selected at one time—each will be unpacked in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

calc magnitude
calc phase Two boolean switches. If calc magnitude is on, then the magnitude of

the input will be calculated and sent to the rightmost output field. If calc
phase is on, then the phase of the input will be calculated and sent to the
left output field. calc magnitude is on by default; calc phase is off.

log magnitude
A boolean switch that, if on, causes the module to compute the log (base
10) of the magnitude rather than just the magnitude. It is off by default.

normalize phase
A boolean switch that, if on, normalizes the phase to the range 0.0-255.0.
This switch is on by default. If off, the phase may have a data range that
makes it display as black in the image viewer window.

OUTPUTS

33333333333333333333333333
AVS Module Reference Manual 273

ip fft display3333333333333333333
Data Field (field uniform float same-dims same-vector)

The right output port is a field containing the magnitude of the input
field. It contains data only if calc magnitude is on. If log magnitude
was selected, it contains the log (base 10) of the magnitude of the input
field. It has the same dimensions, extents, data type, and vector length
as the input field. Those vector elements not selected by Channel are set
to 0. 1D output can be sent to the graph viewer for viewing.

The header’s min/max data values are set to invalid.

Data Field (field uniform float same-dims same-vector)
The left output port is a field containing the phase of the input field. It
contains data only if calc phase is on. It has the same dimensions,
extents, data type, and vector length as the input field. Those vector ele-
ments not selected by Channel are set to 0. 1D output can be sent to the
graph viewer for viewing.

The header’s min/max data values are set to invalid.

EXAMPLE
This example displays an FFT in the Image Viewer along with the original image:

READ IMAGE

|----------|

| |

IP FFT |

| |

| |

IP FFT DISPLAY |

| |

|----------|

IMAGE VIEWER

RELATED MODULES
ip fft
ip fft multiply
ip fft pack
ip fft unpack
ip ifft
ip read line

SEE ALSO
The example scripts Imaging/1D FFT, Imaging/IP FFT, and Imaging/doing convo-
lutions with FFTs demonstrate this module.

33333333333333333333333333
274 AVS Module Reference Manual

ip fft multiply3333333333333333333
NAME

ip fft multiply – multiply two packed complex fields

SUMMARY
Name ip fft multiply

Availability Imaging module library

Type filter

Inputs field [1D|2D|3D] uniform float n-vector (packed complex)
field uniform float same-dims same-vector (packed complex)

Outputs field uniform float same-dims same-vector (packed complex)

Parameters Name Type Default
Channel selection none|scalar

DESCRIPTION
ip fft multiply multiplies two packed complex fields. Multiplying in the frequency
domain is the same as convolving in the spatial domain, but faster.

INPUTS
Data Field (required; field [1D|2D|3D] uniform float n-vector)
Data Field (required; field uniform float same-dims same-vector)

The input fields are floats, but in packed complex form as produced by
ip fft. They must have the same dimensions, extents, and vector length.
Generally, these are images. If the fields are 3D, then the multiplication
is performed on Z corresponding, successive XY slices.

PARAMETERS
Channel A set of buttons that select which vector elements to multiply. There are

as many buttons as vector elements. More than one vector element can
be selected at one time—each will be multiplied in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

OUTPUTS
Data Field (field uniform float same-dims same-vector)

The output is a float field of the same dimensions, extents, and vector
length as the input fields. It is in packed complex form. Those vector
elements not selected by Channel are set to zero. The header’s min/max
data values are set to invalid.

EXAMPLE
GENERATE FILTERS READ IMAGE

| |

IP FFT IP FFT

| |

|---------| |-----|

| |

IP FFT MULTIPLY

|

|

IP IFFT

|

|

IMAGE VIEWER

33333333333333333333333333
AVS Module Reference Manual 275

ip fft multiply3333333333333333333
RELATED MODULES

ip fft
ip fft display
ip fft pack
ip fft unpack
ip ifft
ip read line

SEE ALSO
The example script Imaging/doing convolutions with FFTs demonstrates this
module.

33333333333333333333333333
276 AVS Module Reference Manual

ip fft pack3333333333333333333
NAME

ip fft pack – fold conjugate symmetric FFT representation

SUMMARY
Name ip fft pack

Availability Imaging module library

Type filter

Inputs field [1D|2D|3D] uniform float n-vector (real)
field [1D|2D|3D] uniform float n-vector float (imaginary)

Outputs field uniform float same-dims same-vector

Parameters Name Type Default
Channel selection none|scalar
center DC boolean on

DESCRIPTION
ip fft pack folds real and imaginary input fields into a single output field appropriate
for inverse transform using ip ifft.

INPUTS
Data Field (required, field [1D|2D|3D] uniform float n-vector)
Data Field (required, field [1D|2D|3D] uniform float n-vector)

The right input port supplies the real portion of a field. The left input
port supplies the imaginary portion of a field. Both are generally
images. The inputs are 1D, 2D, or 3D uniform float fields. They can be
any vector length. The two fields must have the same dimensions,
extents, and vector length. If the fields are 3D, the packing is performed
on Z successive XY slices.

ip fft pack assumes the input fields exhibit conjugate symmetry. This
means s[i,j] = s[N-i,M-j] for the real field and s[i,j] = - s[N-i,M-j] for the
imaginary field, where N and M are the width and height of the source
fields.

PARAMETERS
Channel A set of buttons that select which vector elements to pack. There are as

many buttons as vector elements. More than one vector element can be
selected at one time—each will be packed in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

center DC A boolean switch that specifies where the DC component of the source
field should be taken from. If center DC is on, the DC value will be
taken from the center of the source fields; if off, the DC value will be
taken from the [0,0] pixel of the source fields. The default is on.

OUTPUTS
Data Field (field uniform float same-dims same-vector)

The output is a field with the same dimensions, extents, data type, and
vector length as the input field. Those vector elements not selected by
Channel are set to 0. The header’s min/max data values are set to
invalid.

EXAMPLE

33333333333333333333333333
AVS Module Reference Manual 277

ip fft pack3333333333333333333
READ IMAGE

|

IP FFT

|

IP FFT UNPACK

| |

| |---------|

| |

| IP ARITHMETIC

| |

|--| |-------|

| |

IP FFT PAC

|

|

IP IFFT

|

|

IMAGE VIEWER

RELATED MODULES
ip fft unpack
ip ifft
ip fft multiply
ip fft
ip fft display
ip read line

SEE ALSO
The example scripts Imaging/IP FFT, and Imaging/filtering data with FFTs demon-
strate this module.

33333333333333333333333333
278 AVS Module Reference Manual

ip fft unpack3333333333333333333
NAME

ip fft unpack – unfold conjugate symmetric FFT representation

SUMMARY
Name ip fft unpack

Availability Imaging module library

Type filter

Inputs field [1D|2D|3D] uniform float n-vector (packed complex)

Outputs field [1D|2D|3D] uniform float same-vector (real)
field [1D|2D|3D] uniform float same-vector (imaginary)

Parameters Name Type Default
Channel selection none|scalar
center DC boolean on

DESCRIPTION
ip fft unpack unfolds the conjugate symmetric FFT representation written by ip fft
into two fields that represent the real and imaginary components. The destination
fields will be conjugate symmetric.

INPUTS
Data Field (required; field [1D|2D|3D uniform float n-vector)

The input is a field in packed complex form produced by the ip fft
module. It is a 1D, 2D, or 3D uniform field of type float. It can be any
vector length. Generally, this is an image. If the field is 3D, then the
unpacking is performed on Z successive XY slices.

PARAMETERS
Channel A set of buttons that select which vector elements to unpack. There are

as many buttons as vector elements. More than one vector element can
be selected at one time—each will be unpacked in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

center DC A switch that specifies where the DC component of the source image
should be placed. If center DC is on, the DC value will be placed at the
center of the destination field; if off, the DC value will be placed in the
[0,0] pixel of the destination field. The default is on.

OUTPUTS
Data Field (field uniform float same-dims n-vector)
Data Field (field uniform float same-dims n-vector)

The float output fields have the same dimensions, extents, and vector
length as the input field. The right output port is the real component.
The left output port is the imaginary component. Those vector elements
not selected by Channel are set to 0. The header’s min/max data values
are set to invalid.

EXAMPLE

33333333333333333333333333
AVS Module Reference Manual 279

ip fft unpack3333333333333333333
READ IMAGE

|

IP FFT

|

IP FFT UNPACK

| |

| |---------|

| |

| IP ARITHMETIC

| |

|--| |-------|

| |

IP FFT PACK

|

|

IP IFFT

|

|

IMAGE VIEWER

RELATED MODULES
ip fft pack
ip fft
ip ifft
ip fft multiply
ip fft display
ip read line

SEE ALSO
The example scripts Imaging/IP FFT, and Imaging/filtering data with FFTs demon-
strate this module.

33333333333333333333333333
280 AVS Module Reference Manual

ip float math3333333333333333333
NAME

ip float math – floating point operations on a field

SUMMARY
Name ip float math

Availability Imaging module library

Type filters

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 2D scalar byte (optional, region of interest)

Outputs field uniform float same-dims same-vector

Parameters Name Type Default Choices
Channel selection none|scalar
op choice log log, log10, sqrt, exp, recip

cos, sin, atan
clear output boolean on

DESCRIPTION
ip float math performs floating-point operations on the input field (generally an
image), placing the result in the output field. Whatever the data type of the input
field, it is converted to float for the calculations, and the output field is float.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, then the operations are performed on Z successive XY slices.

Data Field (optional; field 2D uniform scalar byte)
This leftmost input field is an optional region of interest. If connected,
only the pixels designated by the ROI are affected. If the input is a 3D
field, the ROI is applied to Z successive XY slices. The ROI must have
the same XY extents as the input field.

PARAMETERS
Channel A set of buttons that select which vector elements to perform operations

on. There are as many buttons as vector elements. More than one vector
element can be selected at one time—each will be calculated in the out-
put field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

Operation A series of radio buttons to select the operation.

log generates a field containing the natural logarithms of the
source field’s pixels.

log10 generates a field containing the common (base 10) loga-
rithms of the source field’s pixels.

sqrt generates a field containing the square roots of the field’s
pixels.

exp generates a field containing the exponential values
(epixel_value) of the source field’s pixels.

33333333333333333333333333
AVS Module Reference Manual 281

ip float math3333333333333333333
recip generates a field containing the reciprocals of the source

field’s pixels.

cos generates a field containing the cosines of the source field’s
pixels.

sin generates a field containing the sines of the source field’s
pixels.

atan generates a field containing the arctangent of the source
field’s pixels.

clear output
A boolean switch. If on, the output field has the new data created by ip
fmath, and the rest of the values are 0. If off, those vector elements not
selected by Channel are copied intact to the output field. clear output is
on by default.

OUTPUTS
Data Field (field uniform float same-dims same-vector)

The output is a field with the same dimensions and vector length as the
input field, but of type float. The header’s min/max data values are set
to invalid.

EXAMPLE
READ IMAGE

|

|

IP FLOAT MATH

|

|

FIELD TO BYTE

|

|

IMAGE VIEWER

RELATED MODULES
ip arithmetic
ip absolute
ip logical
field math

SEE ALSO
The example script Imaging/IP FLOAT MATH demonstrates this module.

33333333333333333333333333
282 AVS Module Reference Manual

ip histogram3333333333333333333
NAME

ip histogram – create a histogram

SUMMARY
Name ip histogram

Availability Imaging module library

Type mapper

Inputs field 2D uniform [byte|short|float] n-vector
field 2D scalar byte (optional; region of interest)

Outputs field 1D scalar integer

Parameters (Name Type Default Min Max
Channel selection <channel 0>
N Bins int dial 256 1 unbounded
Lower Limit float dial 0.0 0.0 unbounded
Upper Limit float dial 255.0 0.0 unbounded

DESCRIPTION
ip histogram takes the unnormalized histogram of the source field.

INPUTS
Data Field (required; field 2D uniform [byte|short|float] n-vector)

The right input is a 2D uniform field of type byte, short, or float. It can
be any vector length. Generally, this is an image.

Data Field (optional; field 2D scalar byte)
This leftmost input field is an optional region of interest. If connected,
only the pixels designated by the ROI are affected. The ROI must have
the same XY extents as the input field.

PARAMETERS
Channel A set of buttons that select which vector elements to count for the histo-

gram. There are as many buttons as vector elements. Only one vector
element can be selected at one time.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "channel 0", "channel 1," etc.
The default is the first channel.

N Bins An integer dial that specifies how many bins to group the count in the
output histogram field. The range is 1 to unbounded. The default is 256.

Lower Limit
Upper Limit

Floating point dials that specify the lower limit and upper limit of the
data range to be examined when the histogram is compiled. An optim-
ized special case exists for finding the entire histogram of an byte input.
This optimized case will be invoked for byte fields when N Bins = 256,
Lower Limit = 0, and Upper Limit = 255.

OUTPUTS
Data Field (field 1D scalar integer)

The output is a 1D scalar integer field, N Bins long. Its extents are set to
Lower Limit and Upper Limit. Each element contains an integer count
of the number of data values that fell into that bin. Each bin in the histo-
gram covers a data range of (Upper Limit - Lower Limit)/N Bins in the
source field. This should be used as input to graph viewer’s rightmost
input port.

33333333333333333333333333
AVS Module Reference Manual 283

ip histogram3333333333333333333
The header’s min/max data values are set to invalid.

EXAMPLE
READ IMAGE

|

|-------------------|

| |

IMAGE VIEWER IP HISTOGRAM

|

|

GRAPH VIEWER

RELATED MODULES
generate histogram

SEE ALSO
The example script Imaging/IP HISTOGRAM demonstrates this module.

33333333333333333333333333
284 AVS Module Reference Manual

ip ifft3333333333333333333
NAME

ip ifft – inverse Fourier transform for conjugate data sets

SUMMARY
Name ip ifft

Availability Imaging module library

Type filter

Inputs field [1D|2D|3D] uniform float n-vector (packed complex)

Outputs field uniform float same-dims same-vector

Parameters Name Type Default
Channel selection none|scalar

DESCRIPTION
ip ifft performs an inverse Fourier transformation on a conjugate symmetric field to
produce a real (not complex) field.

INPUTS
Data Field (required; field [1D|2D|3D] uniform float n-vector)

The input is a 1D, 2D, or 3D uniform float field of any vector length.
Generally, this is an image. 1D input can be generated by the ip read
line module that interactively extracts a 1D subset from an image using a
sampling line. If the field is 3D, then the inverse FFT is performed on Z
successive XY slices.

Each XY slice of the input data must have the following format, typical of
FFT algorithms:

Re[0][0] Re[0][N/2] Re[1][0] Im[1][0] ... Re[M/2-1][0]Im[M/2-1][0]
Re[0][1] Im[0][1] Re[1][1] Im[1][1] ... Re[M/2-1][1]Im[M/2-1][1]
.
.
Re[0][N/2-1] Im[0][N/2-1] Re[1][N/2-1] Im[1][N/2-1] ... Re[M/2-1][N/2-1] Im[M/2-1][N/2-1]
Re[M/2][0] Re[M/2][N/2] Re[1][N/2] Im[1][N/2] ... Re[M/2-1][N/2]Im[M/2][N/2]
Re[M/2][1] Im[M/2][1] Re[1][N/2+1] Im[1][N/2+1] ... Re[M/2-1][N/2 + 1]Im[M/2-1][N/2+1]
.
.
Re[M/2][N/2-1] Im[M/2][N/2-1] Re[1][N-1] Im[1][N-1] ... Re[M/2-1][N-1] Im[M/2-1][N-1]

The complete MxN transform may be deduced from the fact that for real
fields, the forward 2D FFT produces a field with conjugate symmetry,
such that:

Re[M-i][N-j] = Re[i][j] and Im[M-i][N-j] = –Im[i][j]

Channel A set of buttons that select which vector elements to inverse FFT. There
are as many buttons as vector elements. More than one vector element
can be selected at one time—each will be inverse FFT’d in the output
field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

OUTPUTS

33333333333333333333333333
AVS Module Reference Manual 285

ip ifft3333333333333333333
Data Field (field uniform float same-dims same-vector)

The output field contains the real representation of the original data. It
has the same dimensions, extents, and vector length as the input field.
Vector elements that were not selected by Channel are set to 0. The
header’s min/max data values are set to invalid. 1D output can be sent
to the graph viewer for viewing.

EXAMPLE
GENERATE FILTERS READ IMAGE

| |

IP FFT IP FFT

| |

|---------| |-----|

| |

IP FFT MULTIPLY

|

|

IP IFFT

|

|

IMAGE VIEWER

RELATED MODULES
ip fft
ip fft multiply
ip fft display
ip fft pack
ip fft unpack
ip read line

SEE ALSO
The example script Imaging/doing convolutions with FFTs demonstrates this
module.

33333333333333333333333333
286 AVS Module Reference Manual

ip lincomb3333333333333333333
NAME

ip lincomb – inter-band linear combination

SUMMARY
Name ip lincomb

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 2D scalar float (transformation matrix)
field 1D scalar float (optional, constant matrix)
field 2D scalar byte (optional, region of interest)

Outputs field uniform same-dims same-data same-vector

Parameters none

DESCRIPTION
ip lincomb operates on the vector elements ("bands") of a source field, combining the
vector elements of each input pixel to produce pixels in the output field. The field is
usually an image.

Each pixel in the input image is treated as a vector whose components are the bands
of that pixel. This vector is multiplied by the transformation matrix contained in the
second input field to produce a new vector whose components represent the bands of
the output pixel. Then, if a constant matrix is provided in the third field input, this
new vector is added to the constant matrix to create the output pixel. Expressed in
matrix notation, o = Tdi ‘‘+ C , where i and o are the input and output vectors, and
T and C are the tmatrix and cmatrix, respectively.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The right input is a 2D or 3D uniform field of type byte, short, or float. It
can be any vector length. Generally, this is an image. If the field is 3D,
then the linear combination is performed on Z successive XY slices.

Data Field (required; field 2D scalar float)
This is the transformation matrix. It is treated as an array of floating
point numbers. The field’s width (first dimension) must be equal to the
number of vectors in the input image. It can have any height. See the
example transformation matrices below.

This input could be generated by a user-written module, or input as a
field using read field or ADIA.

Data Field (optional; field 1D scalar float)
This is the constant matrix. It is treated as a 1D array of floating point
numbers. The field’s length must equal the height of the transformation
matrix. The constant matrix is optional—it is applied only if present.
See the example constant matrix below.

This input could be generated by a user-written module, or input as a
field using read field or ADIA.

Data Field (optional; field 2D uniform scalar byte)
This left input field is an optional region of interest. If connected, only
the pixels designated by the ROI are affected. If the input is a 3D field,
the ROI is applied to Z successive XY slices. The ROI must have the
same XY extents as the input field.

33333333333333333333333333
AVS Module Reference Manual 287

ip lincomb3333333333333333333
OUTPUTS

Data Field (field uniform same-dims same-data same-vector)
The output is a field with the dimensions and data type as the input
field. Its vector length equals the height of the transformation matrix.
The header’s min/max data values are set to invalid.

EXAMPLE
To exchange second and third vector elements (indexes 1 and 2) of a field, use this
transformation matrix and do not apply a constant matrix. This effectively swaps the
red and green channels on an ARGB image.

1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0

To produce an output image that represents YUV (biased by 0.1 in Y) from an input
floating point image whose vectors are normalized ARGB (values between 0.0 and
1.0), the appropriate transformation matrix would be:

0.0 0.1140 0.5870 0.2990
0.0 0.0813 0.4185 0.4998
0.0 0.4997 0.3311 0.1686

and the constant matrix would be:

0.1
0.0
0.0

EXAMPLE
This network reads the transformation and constant matrices from user-supplied
data using the AVS Data Interchange Application’s (ADIA) file descriptor module.

READ IMAGE

|

FILE DESCRIPTOR |

| |

FILE DESCRIPTOR | |

| | |

|-| | |-|

| | |

IP LINCOMB

|

|

IMAGE VIEWER

RELATED MODULES
field math
ip float math
ip arithmetic
ip linremap

SEE ALSO
The example script Imaging/IP LINCOMB demonstrates this module.

33333333333333333333333333
288 AVS Module Reference Manual

ip linremap3333333333333333333
NAME

ip linremap – linearly remap a field

SUMMARY
Name ip linremap

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 2D scalar byte (optional, region of interest)

Outputs field uniform same-dims same-data same-vector

Parameters Name Type Default Min Max
Channel choice none|scalar
constant float dial 0.0 unbounded unbounded
multiplier float dial 1.0 unbounded unbounded
clear output boolean on

DESCRIPTION
ip linremap linearly remaps a field (generally an image) by first adding constant to
the input pixels, then multiplying by multiplier. Byte and short fields are then
clamped. Float fields are not.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The right input is a 2D or 3D uniform field of type byte, short, or float. It
can be any vector length. Generally, this is an image. If the field is 3D,
then the remapping is performed on Z successive XY slices.

Data Field (optional; field 2D uniform scalar byte)
This left input field is an optional region of interest. If connected, only
the pixels designated by the ROI are affected. If the input is a 3D field,
the ROI is applied to Z successive XY slices. The ROI must have the
same XY extents as the input field.

PARAMETERS
Channel A set of buttons that select which vector elements to remap. There are as

many buttons as vector elements. More than one vector element can be
selected at one time—each will be remapped in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

constant A floating point dial that specifies the constant to add to the pixels. The
range is unbounded; the default is 0.

multiplier A floating point dial that specifies the multiplier for the field. The range
is unbounded; the default is 1.0.

clear output
A boolean switch. If on, the output field has the new data created by ip
linremap, and the rest of the values are 0. If off, those vector elements
not selected by Channel are copied intact to the output field. clear out-
put is on by default.

OUTPUTS

33333333333333333333333333
AVS Module Reference Manual 289

ip linremap3333333333333333333
Data Field (field uniform same-dims same-data same-vector)

The output is a field with the same dimensions, data type, and vector
length as the input field. The header’s min/max data values are set to
invalid.

EXAMPLE
IP READ VFF

|

|

FIELD TO FLOAT

|

|

IP LINREMAP

|

|

FIELD TO BYTE

|

|

IMAGE VIEWER

RELATED MODULES
ip lincomb
ip threshold

SEE ALSO
The example script Imaging/IP LINREMAP demonstrates this module.

33333333333333333333333333
290 AVS Module Reference Manual

ip logical3333333333333333333
NAME

ip logical – bitwise logical operations

SUMMARY
Name ip logical

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short] n-vector
field uniform same-dims same-data same-vector (optional)

Outputs field uniform same-dims same-data same-vector

Parameters Name Type Default Min Max
op choice or constant
constant int dial 0 0 maxval

DESCRIPTION
ip logical does bitwise logical operations on each pixel of the two input fields and
places the result at the output field. The two input fields must have the same dimen-
sions, extents, type, and number of vectors. If there is only one input field, the logical
function is performed against itself or a constant.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte or short.
(Float is not accepted.) It can be any vector length. Generally, this is an
image. If the field is 3D, then the operations are performed on Z succes-
sive XY slices.

Data Field (optional; field uniform same-dims same-data same-vector)
If this center, optional input field is present, then operations can be per-
formed between the two input fields. This field will be ignored if one of
the constant operations is selected. This field must have the same dimen-
sions, extents, data type, and vector length as the first input field. One
field can be connected to both input ports.

Data Field (optional; field 2D scalar byte)
This field is an optional region of interest. If connected, only the pixels
designated by the ROI are affected on each XY slice. The ROI must have
the same extents as the input field(s).

PARAMETERS
op A series of radio buttons to select the logical operation.

and
nand
or
nor
xor only work with two inputs; with one input they are ignored.

not
and constant
or constant
xor constant

only work with the right input field and the constant dial
value.

The default is or constant.

33333333333333333333333333
AVS Module Reference Manual 291

ip logical3333333333333333333
constant An integer dial to set the constant value. The default is 0. The minimum

is 0. The maximum is 255 for byte input; 65535 for short input.

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output field has the same dimensions, data type, and vector length
as the input field. Its field header min/max data values are marked
invalid.

EXAMPLE
READ IMAGE

|

|

IP LOGICAL

|

|

IMAGE VIEWER

RELATED MODULES
ip arithmetic
ip float math
ip absolute
field math

SEE ALSO
The example script Imaging/IP LOGIC demonstrates this module.

33333333333333333333333333
292 AVS Module Reference Manual

ip lookup3333333333333333333
NAME

ip lookup – pass field through lookup table

SUMMARY
Name ip lookup

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short] n-vector
field 1D scalar integer (lookup table)
field 2D scalar byte (optional, region of interest)

Outputs field uniform same-dims same-data same-vector

Paramters Name Type Default Min Max
Channel selection none|scalar
clear output boolean on

DESCRIPTION
ip lookup passes a byte or short field through an integer lookup table. The number
in the field is used as an index into the lookup table. The original number is replaced
by the number found at that index in the lookup table.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short] n-vector)

The right input is a 2D or 3D uniform field of type byte or short. (Float is
not accepted.) It can be any vector length. Generally, this is an image.
Because the numbers in this field are used as an array index, they should
be unsigned. If the field is 3D, then the operations are performed on Z
successive XY slices.

Data Field (optional; field 1D uniform scalar integer)
This center input is a 1D integer field containing the lookup table array.
The field’s X dimension should be long enough to satisfy any index value
from the input field. Indexes outside the bounds of the field are
undefined. Lookup tables for byte input fields should not exceed 256 in
length; short lookup tables should not exceed 32767.

This input can be generated by another module, or read from a file using
read field or ADIA.

Data Field (optional; field 2D uniform scalar byte)
This leftmost input field is an optional region of interest. If connected,
only the pixels designated by the ROI are affected. If the input is a 3D
field, the ROI is applied to Z successive XY slices. The ROI must have
the same XY extents as the input field.

PARAMETERS
Channel A set of buttons that select which vector elements to perform the lookup

operation upon. There are as many buttons as vector elements. More
than one vector element can be selected at one time—each will be used to
create the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

clear output
A boolean switch. If on, the output field has the new data created by ip
lookup, and the rest of the values are 0. If off, those vector elements not

33333333333333333333333333
AVS Module Reference Manual 293

ip lookup3333333333333333333
selected by Channel are copied intact to the output field. clear output is
on by default.

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output is a field with the same dimensions, data type, and vector
length as the input field. The header’s min/max data values are set to
invalid.

EXAMPLE 1
IP READ VFF

|

|---------|

| |

IP HISTOGRAM |

| |

|------| |

| |

IP LOOKUP

|

|

IMAGE VIEWER

EXAMPLE 2
IP READ VFF

|

|----------------------|

| |

IP THRESHOLD |

| |

| |

| |

| FILE DESCRIPTOR |

| | |

| |------| |

EXTRACT SCALAR | |

| | |

|-----------------| | |

| | |

IP LOOKUP

|

|

IMAGE VIEWER

RELATED MODULES
ip rescale

SEE ALSO
The example script Imaging/IP LOOKUP demonstrates this module.

33333333333333333333333333
294 AVS Module Reference Manual

ip median3333333333333333333
NAME

ip median – median field filter

SUMMARY
Name ip median

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 2D uniform scalar integer (structuring element)
field 2D uniform scalar byte (optional, region of interest)

Outputs field uniform same-dims same-type same-vector

Parameters Name Type Default
Channel selection none|scalar
clear output boolean on

DESCRIPTION
ip_median finds the median value in a local collection of pixels using a structuring
element.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, then the filtering is performed on Z successive XY slices.

Data Field (required; field 2D uniform scalar integer)
The center input is for the 2D structuring element. This is usually
obtained from a file via the ip read sel module. See that man page for a
detailed description of its format.

The logical structuring element describes the region "mask" to be used in
performing the median filtering.

Data Field (optional; field 2D uniform scalar byte)
This leftmost input field is an optional region of interest. If connected,
only the pixels designated by the ROI are affected. If the input is a 3D
field, the ROI is applied to Z successive XY slices. The ROI must have
the same XY extents as the input field.

This ROI does not limit the size of the median window in the source
field.

PARAMETERS
Channel A set of buttons that select which vector elements to run through the

median filter. There are as many buttons as vector elements. More than
one vector element can be selected at one time—each will be filtered in
the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

clear output
A boolean switch. If on, the output field has the new data created by ip
median, and the rest of the values are 0. If off, those vector elements not
selected by Channel are copied intact to the output field. clear output is
on by default.

33333333333333333333333333
AVS Module Reference Manual 295

ip median3333333333333333333
OUTPUTS

Data Field (field uniform same-dims same-data same-vector)
The output is a field with the same dimensions, data type, and vector
length as the input field. Edge pixels in the destination field are set to 0.
The header’s min/max data values are set to invalid.

EXAMPLE
READ IMAGE

|

IP READ SEL |

| |

|-------| |

| |

IP MEDIAN

|

IMAGE VIEWER

RELATED MODULES
ip dilate
ip erode
ip read sel
local area ops

SEE ALSO
The example script Imaging/IP MEDIAN demonstrates this module.

33333333333333333333333333
296 AVS Module Reference Manual

ip merge3333333333333333333
NAME

ip merge – merge two fields

SUMMARY
Name ip merge

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field uniform same-dims same-data same-vector
field 2D scalar byte (region of interest)

Outputs field uniform same-dims same-data same-vector

Parameters Name Type Default
Channel selection none|scalar
clear output boolean on

DESCRIPTION
ip merge merges two fields (generally, images) on a pixel-by-pixel basis, using a
region of interest (ROI) field to specify which source field a given pixel in the output
field comes from.

All inputs must have the same dimensions, extents, data type, and vector length.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, then the merge is performed on Z successive XY slices.

Data Field (required; field uniform same-dims same-data same-vector)
The center input must have the same dimensions, extents, data type, and
vector length as the right input field.

Data Field (required; field 2D uniform scalar byte)
This leftmost input field is a region of interest. This input is required.

If the ROI value for a particular pixel is non-zero, then the pixel in the
output field will come from the first (right input port) field. Otherwise
the value will come from the second (center) input port.

If the input is a 3D field, the ROI is applied to Z successive XY slices. The
ROI must have the same XY extents as the input fields.

PARAMETERS
Channel A set of buttons that select which vector elements to merge. There are as

many buttons as vector elements. More than one vector element can be
selected at one time—each will be merged in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

clear output
A boolean switch. If on, the output field has the new data created by ip
merge, and the rest of the values are 0. If off, those vector elements not
selected by Channel are copied intact to the output field. clear output is
on by default.

33333333333333333333333333
AVS Module Reference Manual 297

ip merge3333333333333333333
OUTPUTS

Data Field (field uniform same-dims same-data same-vector)
The output is a field with the same dimensions, data type, and vector
length as the input field. The header’s min/max data values are set to
invalid.

EXAMPLE
READ IMAGE

|

|---------------------|

IP THRESHOLD |-----------------|

| | |

|-------------| | IP ARITHMETIC

| | | |

| EXTRACT SCALAR | |

| | | |

| |----| | |---------------|

| | | |

DISPLAY IMAGE IP MERGE

|

|

IMAGE VIEWER

RELATED MODULES
ip blend
composite

SEE ALSO
The example script Imaging/IP MERGE demonstrates this module.

33333333333333333333333333
298 AVS Module Reference Manual

ip morph3333333333333333333
NAME

ip morph – morphological operation

SUMMARY
Name ip morph

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 1D scalar byte (conditional morph table)
field 1D scalar byte (optional, unconditional morph table)
field 2D scalar byte (optional, region of interest)

Outputs field uniform same-dims same-vector byte

Parameters Name Type Default Min Max
Channel selection none|scalar
iterations int dial 1 1 unbounded
clear output boolean on

DESCRIPTION
ip morph performs various morphological operations on an input "logical" field and
places the result in the output field.

INPUTS
Data Field (required, field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, then the filtering is performed on Z successive XY slices.

A "logical" field is one of any data type (but usually byte) whose data
values are either 0 or 255.

Data Field (required; field 1D scalar byte)
Data Field (optional; field 1D scalar byte)

These fields are morphology table structures that tabulate an output for
every possible bit pattern in a 3x3 neighborhood. The are usually read
from an external file via ip read mtable. See that man page for a detailed
description of their formats.

The second-from-the-right input field is a conditional morphology table.
This input is required.

The third-from-the-right input field is an unconditional morphology
table. This input is optional. The unconditional tables contain an extra
bit which reflects whether the previous conditional operation produced a
on-pixel; from this, it is possible to prevent connectivity breaking for cer-
tain thinning operators.

Data Field (optional; field 2D uniform scalar byte)
This leftmost input field is an optional region of interest. If connected,
only the pixels designated by the ROI are affected. If the input is a 3D
field, the ROI is applied to Z successive XY slices. The ROI must have
the same XY extents as the input field.

PARAMETERS
Channel A set of buttons that select which vector elements to morph. There are as

many buttons as vector elements. More than one vector element can be
selected at one time—each will be morphed in the output field.

If the input field’s vectors are labelled, then the labels will appear on the

33333333333333333333333333
AVS Module Reference Manual 299

ip morph3333333333333333333
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

iterations An integer dial that specifies how many times the morph table should be
applied to the input. Allows for iterative morphological operations. The
minimum is 1, the maximum is unbounded, and the default is 1. The
Status bar reports the progress of the iterations.

clear output
A boolean switch. If on, the output field has the new data created by ip
morph, and the rest of the values are 0. If off, those vector elements not
selected by Channel are copied intact to the output field. clear output is
on by default.

OUTPUTS
Data Field (field uniform same-dims same-vector byte)

The output is a byte field with the same dimensions and vector length as
the input field.

This output field is a "logical" field, meaning that each value is either 0 or
255. Edge pixels in the output field are set to 0. Those vector elements
not selected by Channel are set to 0. The header’s min/max data values
are set to be invalid.

EXAMPLE
READ IMAGE

|

IP READ MTABLE |

| |

IP READ MTABLE |--| |

| | |

|-------------| | |

| | |

IP MORPH

|

|

|

IMAGE VIEWER

RELATED MODULES
ip dilate
ip erode
ip read mtable

SEE ALSO
The example script Imaging/IP MORPH demonstrates this module.

33333333333333333333333333
300 AVS Module Reference Manual

ip read kernel3333333333333333333
NAME

ip read kernel – read a convolution kernel from a file into a field

SUMMARY
Name ip read kernel

Availability Imaging module library

Type data input

Inputs none

Outputs field 2D uniform float scalar

Parameters Name Type
Read Kernel Browser file browser

DESCRIPTION
ip read kernel reads a convolution kernel from a file into a 2D uniform float scalar
field. This kernel is used as an input to the ip convolve module.

PARAMETERS
Read Kernel Browser

A file browser widget to specify the kernel file. A kernel file has this for-
mat:
KERNEL <--1st line says KERNEL

size <x y> <--2nd line defines X Y dimensions

datatype <datatype> <--3rd line defines type; only float is supported

.

<data> <--<x> lines of <y> columns,

. separated by blanks

.

This, for example, is a 5x5 "boxcar" column kernel:
KERNEL

size 5 5

datatype float

0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1

0.0 0.0 0.0 0.0 0.0

-0.1 -0.1 -0.1 -0.1 -0.1

-0.1 -0.1 -0.1 -0.1 -0.1

There are sample kernel files in $AVS_PATH/data/ip/kernel.

OUTPUTS
Data Field (field 2D uniform float scalar)

The output is a field containing the convolution kernel. This kernel is
used as an input to the ip convolve module.

RELATED MODULES
ip convolve
generate filters

SEE ALSO
The example script Imaging/IP CONVOLVE demonstrates the ip read kernel
module.

33333333333333333333333333
AVS Module Reference Manual 301

ip read line3333333333333333333
NAME

ip read line – read line of data between two image pixels

SYNOPSIS
Name ip read line

Availability Imaging module library

Type mapper

Inputs field 2D uniform [byte|short|float] n-vector
image viewer id structure (invisible, autoconnect)
mouse info structure (invisible, autoconnect)

Outputs field 1D n-vector
image draw structure

Parameters Name Type
set pick mode oneshot

DESCRIPTION
ip read line reads a line of pixel data between two pixels of an image. The data is
output as a 1D n-vector field.

Reading data involves an interaction between ip read line and the image viewer
module. ip read line’s image draw structure output must be connected to the image
viewer module’s leftmost image draw structure input. See the "Example" below.

You specify the two pixels to measure interactively in the image viewer window as
follows:

1. The ip read line module must have control of the left mouse button in the
Image Viewer window. When ip read line is first connected and data first
passes through it, it should have control of the left mouse button.

2. Press and hold down the left mouse button to select the starting pixel.

3. Move the cursor over the image. As you move the cursor, a line follows it
anchored at the starting pixel.

4. To read data, release the left mouse button. The line disappears. There is now
no starting pixel defined.

If there are multiple images in the Image Viewer window, and/or multiple sketching
modules, then some other module or the Image Viewer itself may have control of the
left mouse button. To get control back to ip read line:

1. Make the image the current image (use shift-left mouse button or left mouse
button).

2. Press set pick mode on ip read line’s control panel.

This tells the image viewer that the left mouse button will be drawing selection
lines, not setting the current image.

INPUTS
Data Field (required; field 2D uniform [byte|short|float] n-vector)

The input is a 2D uniform field of type byte, short, or float. It can be any
vector length.

Note: Though ip read line accepts n-vector and data type byte, short, or
float, the input to image viewer can only be byte, 1-vector or 4-vector.

33333333333333333333333333
302 AVS Module Reference Manual

ip read line3333333333333333333
image viewer id structure (required; invisible, autoconnect)

This input port is invisible by default. It connects automatically to the
image viewer module’s image viewer id structure output. The two
modules communicate the image viewer module’s scene id on this con-
nection. Normally, you can ignore its existance.

mouse info structure (required; invisible, autoconnect)
This input port is invisible by default. It connects automatically to the
image viewer module’s mouse info structure output. The two modules
communicate image name, mouse pointer location and button up/down
information on this connection. Normally, you can ignore its existance.

PARAMETERS
set pick mode A oneshot that sets the image viewer’s upstream mouse picking focus
to this module. Use it to regain control of the mouse whenever the left mouse button
doesn’t seem to be working to draw selection lines.

OUTPUTS
Data Field (field 1D n-vector)

The data read.

image draw structure
The left output port contains the image draw structure that connects to
the image viewer module’s leftmost input port.

EXAMPLE
This example shows a simple network to read pixels. The invisible upstream connec-
tions coming from image viewer to ip read line are not shown.

READ IMAGE

|

|

|

|---------------|

| |

IP READ LINE |

|-------| | |

| | |

| EXTRACT SCALAR |

| | |

| | |

| GRAPH VIEWER |

| |

|------------------| |

| |

IMAGE VIEWER

RELATED MODULES
image viewer
image probe
sketch roi

SEE ALSO
The example script Imaging/IP READ LINE demonstrates this module.

33333333333333333333333333
AVS Module Reference Manual 303

ip read line3333333333333333333
The upstream feedback mechanism that makes ip read line work is described in the
AVS 5 Update document.

33333333333333333333333333
304 AVS Module Reference Manual

ip read mtable3333333333333333333
NAME

ip read mtable – read a morphology table from a file into a field

SUMMARY
Name ip read mtable

Availability Imaging module library

Type data input

Inputs none

Outputs field 1D uniform byte scalar

Parameters Name Type
Read Mtable Browser file browser

DESCRIPTION
ip read mtable reads a morphology table from a file into a 1D uniform byte scalar
field. These tables are used as inputs to the ip morph module.

PARAMETERS
Read Mtable Browser

A file browser widget to specify the morphology table file. The default
directory location is defined by DataDirectory.

A morphology table is a binary file with the following format:

#EC2<3 blanks><name of table><1D byte stream, data values either 0 or
255>

The "<>" characters in the syntax above are not part of the file. Any XY
"dimensioning" of the 1D stream occurs implicitly when it is applied to a
field with ip morph.

There are sample morphology table files in $AVS_PATH/data/ip/mtable.

OUTPUTS
Data Field (field 1D uniform byte scalar)

The output is a 1D uniform byte scalar field containing the morphology
table. These tables are used as inputs to the ip morph module.

EXAMPLE
READ IMAGE

|

IP READ MTABLE |

| |

IP READ MTABLE |--| |

| | |

|-------------| | |

| | |

IP MORPH

|

|

|

IMAGE VIEWER

RELATED MODULES
ip morph

33333333333333333333333333
AVS Module Reference Manual 305

ip read mtable3333333333333333333
SEE ALSO

The example script Imaging/IP MORPH demonstrates the ip read mtable module.

33333333333333333333333333
306 AVS Module Reference Manual

ip read sel3333333333333333333
NAME

ip read sel – read a structuring element from a file into a field

SUMMARY
Name ip read sel

Availability Imaging module library

Type data input

Inputs none

Outputs field 2D uniform integer scalar

Parameters Name Type
Read Sel Browser file browser

DESCRIPTION
ip read sel reads a structuring element from a file into a 2D uniform integer scalar
field. This structuring element is used as an input to the ip dilate, ip erode, and ip
median modules.

PARAMETERS
Read Sel Browser

A file browser widget to specify the structuring file. This is an ASCII file,
containing only 0’s and 1’s.

A structuring element file has this format:
SEL <--1st line says SEL

size <x y> <--2nd line defines X Y dimensions

.

<data> <--<x> lines of <y> columns,

. separated by blanks

.

This, for example, is a 3x3 "cross" structuring element:
SEL

size 5 5

0 0 1 0 0

0 0 1 0 0

1 1 1 1 1

0 0 1 0 0

0 0 1 0 0

There are sample structuring element files in $AVS_PATH/data/ip/sel.

OUTPUTS
Data Field (field 2D uniform integer scalar)

The output is a 2D integer field containing the structuring element. This
structuring element is used as an input to the ip dilate, ip erode, and ip
median modules.

RELATED MODULES
ip dilate
ip erode
ip median

SEE ALSO
The example scripts Imaging/IP DILATE, IP MEDIAN, and IP ERODE demonstrate
this module.

33333333333333333333333333
AVS Module Reference Manual 307

ip read vff3333333333333333333
NAME

ip read vff – import a SunVision .vff-format image file into an AVS field

SUMMARY
Name ip read vff

Availability Imaging module library

Type data

Inputs none

Outputs field 2D uniform [byte|short|float] n-vector

Parameters Name Type Default
Read VFF Image Browser file browser
Gamma Correct boolean off

DESCRIPTION
ip read vff converts SunVision .vff-format image files into a 2D uniform AVS field
with dimensions equal to size=xsize ysize, vector length equal to bands=n, and a data
type that corresponds most closely to bits=n. These fields can be used in a network,
and/or saved to disk with the write field module.

ip read vff reads the .vff file’s header. It processes the information in the following
way:

rank The input image must be of rank=2. This produces an AVS field with
ndim=2.

type The input image must be type=raster.

size size is interpreted as dim1=xsize and dim2=ysize.

rawsize The rawsize is ignored. .vff files are assumed to contain just one 2D
image. Fields do not store size information. The size of the resulting
field is implicitly:

(dim1 x dim2 x veclen x sizeof(data)) + header + extent information

bands bands are taken as the output field’s veclen.

bits AVS fields can contain byte, short, int, float, and double data types. (The
actual size of these data types can vary from platform to platform; for
example, 32 or 64 for int.) However, ip read vff assumes that the input is
either a byte, short, or real, as these were the supported image data types
in SunVision. Bit values are rounded up to the next-matching AVS data
type. For example, a 12 bit image will be stored in a field with data type
short. An 8 bit image is stored in a byte field. A 24 or 32 bit image is
stored as a float.

AVS fields contain just one data type, not mixed data types. The largest
bit value is taken as the target value for the remaining bit values. For
example, bits= 8 16 would result in a 2-vector short output field.

format ip read vff assumes base image file order: all the bands of a pixel are
stored together.

ip read vff will automatically swap an ABGR 4 band, 1 byte per band .vff
input file to be a 4-vector byte ARGB AVS image.

It will also automatically swap a BGR 3 band, 1 byte per band into a 3-
vector RGB field.

One band, 1 byte per band inputs are assumed to be monochrome. They

33333333333333333333333333
308 AVS Module Reference Manual

ip read vff3333333333333333333
produce 1-vector byte fields with a vector label "grey".

All other formats are simply copied to the output field, and their vector
labels set to "band0", "band1", etc. Vector labels past the first four are not
set. If this does not produce a useable field, you may still be able to
import the .vff file with the read field module or ADIA’s file descriptor
module.

origin This field is ignored. ip read vff always produces a uniform field which
assumes the origin is the upper left corner at 0,0.

extent These values are ignored. ip read vff uses the size=xsize ysize as the out-
put field’s header extents. Coordinate area extents are not set.

data_offset
data_scale
title These values are ignored.

PARAMETERS
Read VFF Image Browser

A file browser to select the .vff input file.

There are example .vff files in the directory ...avs/data/ip/vff.

Gamma Correct
A boolean switch. If the input image is not gamma-corrected, then turn-
ing this on causes AVS to apply the gamma correction factor defined by
the -gamma command line option or the Gamma .avsrc file keyword to
the image. This is sometimes necessary because images that display well
under SunVision on Sun workstations may appear too dark on other
monitors. Gamma Correct lightens them. The default is off (no gamma
correction).

OUTPUTS
Data Field (field 2D uniform [byte|short|float] n-vector)

The output is an AVS field.

EXAMPLE
IP READ VFF

|

|

IMAGE VIEWER

RELATED MODULES
read field
file descriptor
write field
write vffimage

SEE ALSO
The example script Imaging/IP READ VFF demonstrates this module.

See the discussions of the AVS field data type in: the read field module man page;
the "Importing Data into AVS" chapter of the AVS User’s Guide; and the "AVS Data
Types" chapter of the AVS Developer’s Guide.

NOTE
SunVision and AVS terminology differ somewhat. A .vff "band" is equivalent to a
"vector element" in an AVS field. A "single-band image" is thus a "scalar field". A 4-
band image is a 4-vector field, etc. Moreover, modules usually refer to the multiple

33333333333333333333333333
AVS Module Reference Manual 309

ip read vff3333333333333333333
vectors in a field as "channels". Thus, a 4-vector byte field containing alpha, red,
green, blue vector elements has four channels. Channels/vector elements have
optional labels that are specified in the field’s header. Such specified labels will
replace the default "Channel 0, Channel 1," etc. selections on module control panels.

A more subtle difference is the use of the term "image". In AVS, "image" refers
specifically to 2D uniform 4-vector byte fields whose vector elements contain alpha,
red, green, blue pixel information. There are also "image files" (.x suffix) that are a
specific binary storage format for alpha, red, green, blue pixel values. (See the "AVS
Module: read image" section in the "Importing Data into AVS" chapter of the AVS
User’s Guide.)

A SunVision "image" has a broader definition that corresponds to the broad use of
the term "image" found in the image processing field. They are 2D, but can have one,
two, or many bands. The data in the bands can represent alpha, red, green, blue, or
any value, such as density or temperature. A "pixel" is just the data in all the bands at
a particular x,y coordinate; not necessarily an ARGB. Data is not restricted to bytes,
and can be of any type.

Thus, a SunVision "image" corresponds to a wide variety of 2D uniform AVS fields,
of which an AVS "image" is just one particular type. When manipulating former
SunVision images in AVS networks, you can do anything with them that you can do
with a 2D uniform AVS field.

The main tool for breaking up a multi-banded image (n-vector field) into its com-
ponent bands (vector elements) for individual manipulation is the extract scalar
module. Bands (vector elements) are recombined with the combine scalars module.

LIMITATIONS
Complex image importation is not supported since AVS does not support a complex
field data type.

33333333333333333333333333
310 AVS Module Reference Manual

ip reflect3333333333333333333
NAME

ip reflect – rotate or transpose field

SUMMARY
Name ip reflect

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector

Outputs field uniform same-dims same-data same-vector

Parameters Name Type Default
dir_code choice horizontal

DESCRIPTION
ip reflect reflects a field (usually an image) in one of seven different directions.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The input is a 2D or 3D uniform field of type byte, short, or float. It can
be any vector length. Generally, this is an image. If the field is 3D, then
the reflection is performed on Z successive XY slices.

PARAMETERS
dir_code A set of radio buttons to select the direction of reflection. The default is

horizontal. The choices are:

horizontal across the Y axis

vertical across the X axis

transpose main
across the main diagonal

transpose anti across the anti-diagonal

90 degrees counterclockwise 90 degrees

180 degrees rotate counterclockwise 180 degrees

270 degrees rotate counterclockwise 270 degrees

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output field has the same dimensions, vector length, and data type
as the input field. When horizonal, vertical, or 180 degrees are selected,
the output field has the same extents as the input field. For other tech-
niques, the output field will have different extents if the original dimen-
sions were not square. The header’s min/max data values are a copy of
the input field’s.

EXAMPLE

33333333333333333333333333
AVS Module Reference Manual 311

ip reflect3333333333333333333
READ IMAGE

|

|

IP REFLECT

|

|

IMAGE VIEWER

RELATED MODULES
ip rotate
ip translate
ip twarp
ip warp
ip zoom
transpose
mirror

SEE ALSO
The example script Imaging/IP REFLECT demonstrates this module.

33333333333333333333333333
312 AVS Module Reference Manual

ip register3333333333333333333
NAME

ip register – determine maximum correlation position

SUMMARY
Name ip register

Availability Imaging module library

Type data output

Inputs field 2D uniform [byte|short|float] n-vector
field 2D uniform [byte|short|float] n-vector (template)

Outputs none

Parameters Name Type Default Min Max
Input Channel choice <channel 0>
Template

Channel choice <channel 0>
X Center int dial max x/2 0 max x-1
Y Center int dial max y/2 0 max y-1
X Range int dial max x/2 0 max x-1
Y Range int dial max y/2 0 max y-1
X Step int dial 1 0 max x-1
Y Step int dial 1 0 max y-1
Correlation string block

DESCRIPTION
ip register performs a sequential search correlation match of a field with a template.

INPUTS
Data Field (required; field 2D uniform [byte|short|float] n-vector)

The right input is a 2D uniform field of type byte, short, or float. It can
be any vector length. Generally, this is an image. This is the field that
will be correlated against the template.

Data Field (required; field 2D uniform [byte|short|float] n-vector)
The left input is a template field that is to be correlated with the right
input. This template field does not have to match the main input field’s
extents, data type, or vector length.

PARAMETERS
Input Channel

A set of radio buttons that selects which channel (vector element) of a
multi-vector input field to perform the correlation on. There are as many
buttons as vector elements. One vector element can be selected at one
time. The default is the first channel listed.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "channel 0", "channel 1," etc.

Input Channel
A set of radio buttons that selects which channel (vector element) of a
multi-vector template field to use as the correlation template. There are
as many buttons as vector elements. One vector element can be selected
at one time. The default is the first channel listed.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "channel 0", "channel 1," etc.

33333333333333333333333333
AVS Module Reference Manual 313

ip register3333333333333333333
X Center
Y Center Two integer dials that define the location of the pixel in the input field

about which the search is performed. The range is 0 to the X and Y
extents (max x-1, max y-1), of the input field. The default is the midpoint
(max x/2, max y/2).

X Range
Y Range Two integer dials that specify the bounds of the area in the input field

over which the search takes place. The numbers on the dials are taken to
be + and - from X and Y Center.

The range is 0 to the X and Y extents (max x-1, max y-1), of the input field.
The default is the midpoint (max x/2 and max y/2), respectively.

X Step
Y Step Two integer dials that specify the granularity of the search in pixels. The

range is 0 to the X and Y extents (max x-1, max y-1), of the input field.
The default is 1.

Image Correlation
Areas of the search region which require the template extend beyond the
edge of the input field are not calculated.

A string block text widget that reports the results. The widget is located
on the module’s control panel.

Three floating values are reported:

X Offset
Y Offset

The XY location of the pixel in which the maximum correlation was
found.

Maximum correlation
The maximum correlation data value.

EXAMPLE
READ IMAGE

|

|------|

| CROP

| |---|

| |

IP REGISTER

RELATED MODULES
ip compare
ip extrema
ip statistics

SEE ALSO
The example script Imaging/IP REGISTER demonstrates this module.

33333333333333333333333333
314 AVS Module Reference Manual

ip rescale3333333333333333333
NAME

ip rescale – rescale a field

SUMMARY
Name ip rescale

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 2D scalar byte (optional, region of interest)

Outputs field uniform same-dims same-data same-vector

Parameters Name Type Default Min Max
Channel selection none|scalar
src min float dial 0.0 unbounded unbounded
src max float dial 255.0 unbounded unbounded
dst min float dial 0.0 unbounded unbounded
dst max float dial 255.0 unbounded unbounded
clear output boolean on

DESCRIPTION
ip rescale rescales fields (usually images) by linearly remapping the pixel values
between src min and src max in the input field to the output field in the range dst
min to dst max.

Source pixels whose values are outside the src min and src max range are mapped to
the destination’s corresponding limits ("clamped"). For example, if src min and src
max are 20.0 and 100.0 and dst min and dst max are 40.0 and 80.0, all source values
below 20.0 are mapped to 40.0 and all source values above 100.0 are mapped to 80.0.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, then the rescaling is performed on Z successive XY slices.

Data Field (optional; field 2D uniform scalar byte)
This leftmost input field is an optional region of interest. If connected,
only the pixels designated by the ROI are affected. If the input is a 3D
field, the ROI is applied to Z successive XY slices. The ROI must have
the same XY extents as the input field.

PARAMETERS
Channel A set of buttons that select which vector elements to rescale. There are as

many buttons as vector elements. More than one vector element can be
selected at one time—each will be rescaled in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

src min
src max
dst min
dst max Floating point dials that establish the range of input data values (src min

and src max) to map to the range of output data values (dst min and dst
max). The range is unbounded. The default is 0.0 for src min and dst
min; and 255.0 for src max and dst max.

33333333333333333333333333
AVS Module Reference Manual 315

ip rescale3333333333333333333
clear output

A boolean switch. If on, the output field has the new data created by ip
rescale, and the rest of the values are 0. If off, those vector elements not
selected by Channel are copied intact to the output field. clear output is
on by default.

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output is a field with the same dimensions, data type, and vector
length as the input field. The header’s min/max data values are set to
invalid.

EXAMPLE 1
READ IMAGE

|

|

IP RESCALE

|

|

IMAGE VIEWER

EXAMPLE 2
READ FIELD

|

ORTHOGONAL SLICER

|

|------| |

| IP RESCALE

| |

|--------------|

SKETCH ROI | | GENERATE COLORMAP

| |----| | |

| | |

|----------| |---------------|

| | |

| | |

IMAGE VIEWER

RELATED MODULES
ip linremap
contrast

SEE ALSO
The example script Imaging/IP RESCALE demonstrates this module.

33333333333333333333333333
316 AVS Module Reference Manual

ip rotate3333333333333333333
NAME

ip rotate – rotate a field

SUMMARY
Name ip rotate

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector

Outputs field uniform same-dims same-data same-vector

Parameters Name Type Default Min Max
angle float dial 0.0 -180.0 180.0
interp choice point

DESCRIPTION
ip rotate rotates a field about its center.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The input is a 2D or 3D uniform field of type byte, short, or float. It can
be any vector length. Generally, this is an image. If the field is 3D, then
the rotation is performed on Z successive XY slices.

PARAMETERS
angle is the angle of rotation, in degrees, on a floating point dial. A positive

angle indicates counter-clockwise rotation; a negative angle indicates
clockwise rotation. Internally, ip rotate converts angles to radians. The
relationship of an angle expressed in radians and degrees is:

angle(radians)=angle(degrees)∗(pi/180)

The default is 0.0; the range -180.0 to 180.0.

interp A set of radio buttons to select the interpolation method. The choices are
point, bilinear, and bicubic. The default is point.

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output is a field with the same dimensions, extents, data type, and
vector length as the input field.

A field rotated at an angle other than a multiple of 90 degrees produces a
field that is clipped by the extents of the input field, with empty areas
rendered as 0 (black) pixels.

The header’s min/max data values are set to invalid.

EXAMPLE
IP READ VFF

|

|

IP ROTATE

|

|

IMAGE VIEWER

33333333333333333333333333
AVS Module Reference Manual 317

ip rotate3333333333333333333
RELATED MODULES

ip reflect
ip translate
ip twarp
ip warp
ip zoom
transpose
mirror

SEE ALSO
The example script Imaging/IP ROTATE demonstrates this module.

33333333333333333333333333
318 AVS Module Reference Manual

ip statistics3333333333333333333
NAME

ip statistics – find field mean and variance

SUMMARY
Name ip statistics

Availability Imaging module library

Type data output

Inputs field 2D uniform [byte|short|float] n-vector
field 2D scalar byte (optional, region of interest)

Outputs none

Parameters Name Type Default
Channel choice <channel 0>
Statistics string block

DESCRIPTION
ip statistics finds the number of pixels, mean, and variance of one channel in a field.
These outputs are displayed as floating point values in an output text widget on the
module’s control panel.

INPUTS
Data Field (required; field 2D uniform [byte|short|float] n-vector) The right input is

a 2D uniform field of type byte, short, or float. It can be any vector
length. Generally, this is an image.

Data Field (optional; field 2D uniform scalar byte)
This left input field is an optional region of interest. If connected, only
the pixels designated by the ROI are affected. The ROI must have the
same XY extents as the input field.

PARAMETERS
Channel A set of buttons that select which vector element to calculate the statistics

for. There are as many buttons as vector elements. One vector element
can be selected at one time. The default is the first channel listed.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "channel 0", "channel 1," etc.

Statistics A string block text widget that reports the results. The widget is located
on the module’s control panel.

Three floats are reported:

Number of Pixels
Mean
Variance

EXAMPLE
READ IMAGE

|

|

IP STATISTICS

RELATED MODULES
ip compare
ip extrema
ip register
statistics

33333333333333333333333333
AVS Module Reference Manual 319

ip statistics3333333333333333333
SEE ALSO

The example script Imaging/IP STATISTICS demonstrates this module.

33333333333333333333333333
320 AVS Module Reference Manual

ip threshold3333333333333333333
NAME

ip threshold – threshold field against a float value

SUMMARY
Name ip threshold

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 2D scalar byte (optional, region of interest)

Outputs field uniform same-dims same-vector byte

Parameters Name Type Default Min Max
Channel selection none|scalar
lo value float dial 0.0 unbounded unbounded
hi value float dial maxval unbounded unbounded
invert boolean off
clear output boolean on

DESCRIPTION
ip threshold thresholds a field against a floating point value, producing a bi-valued
(logical) byte field as a result. A logical field is one in which all values are either 0 or
255.

If the values of lo value and hi value are equal, field values below the limit are set to
0 and field values that are greater than or equal to the limit are set to MAXBYTE.
(MAXBYTE is defined as 255.)

If the values of lo value and hi value are different, field values that are less than or
equal to the low limit are set to 0; field values that are greater than or equal to the
high limit are also set to 0, and values within the high and low limits are set to MAX-
BYTE (255).

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, then the thresholding is performed on Z successive XY slices.

Data Field (optional; field 2D uniform scalar byte)
This leftmost input field is an optional region of interest. If connected,
only the pixels designated by the ROI are affected. If the input is a 3D
field, the ROI is applied to Z successive XY slices. The ROI must have
the same XY extents as the input field.

PARAMETERS
Channel A set of buttons that select which vector elements to threshold. There are

as many buttons as vector elements. More than one vector element can
be selected at one time—each will be thresholded in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

lo value is the low-limit threshold value. This is a float dial. It is unbounded; the
default is 0.0.

33333333333333333333333333
AVS Module Reference Manual 321

ip threshold3333333333333333333
hi_value is the high-limit threshold value. This is an unbounded float dial. The

default depends on the input data type. Byte input defaults to 255.0.
Short input defaults to 65535.0. Float data causes the dial to remain truly
unbounded (no maximum).

invert A boolean switch. If off, the destination bi-valued result is produced as
described above. If invert is on, the bi-valued results are inverted (pixels
are set to MAXBYTE instead of zero and vice versa). The default is off.

clear output
A boolean switch. If on, the output field has the new data created by ip
threshold, and the rest of the values are 0. If off, those vector elements
not selected by Channel are copied intact to the output field. clear out-
put is on by default.

OUTPUTS
Data Field (field uniform same-dims same-vector byte)

The output is a field with the same dimensions and vector length as the
input field. It is of type byte. It is a "logical" field, meaning that it con-
tains only either 0 or MAXBYTE (set to 255) values. Those vector ele-
ments not selected by Channel are set to zero. The header’s min/max
data values are set to invalid.

EXAMPLE
IP READ VFF

|

|

IP THRESHOLD

|

|

IMAGE VIEWER

EXAMPLE 2
READ VOLUME

|

|----------|

| |

IP THRESHOLD |

| |

ORTHOGONAL SLICER |

|-------| |

| |

IP THRESHOLD

|

ORTHOGONAL SLICER

|

IMAGE VIEWER

RELATED MODULES
ip dilate
ip erode
ip morph
define roi
threshold

33333333333333333333333333
322 AVS Module Reference Manual

ip threshold3333333333333333333
SEE ALSO

The example script Imaging/IP THRESHOLD demonstrates this module.

33333333333333333333333333
AVS Module Reference Manual 323

ip translate3333333333333333333
NAME

ip translate – field translation

SUMMARY
Name ip translate

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector

Outputs field uniform same-dims same-data same-vector

Parameters Name Type Default Min Max
dx int dial 0 -max x max x
dy int dial 0 -max y max y

DESCRIPTION
ip translate copies the input field to the output field with the translation relative to
the input specified by dx and dy.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The input is a 2D or 3D uniform field of type byte, short, or float. It can
be any vector length. Generally, this is an image. If the field is 3D, then
the translation is performed on Z successive XY slices.

The translation is replicated across multiple vectors.

PARAMETERS
dx
dy Two bounded integer dials that specify how many pixels to shift the field

in the dx or dy direction. Positive or negative translations may be
specified.

The default for both is 0. The range is set dynamically to equal - and +
the XY extents, respectively, of the input field.

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output is a field with the same dimensions, extents, data type, and
vector length as the input field.

The translated input field is clipped against the output field’s extents,
and the exposed area is set to 0 value in the output field.

The header’s min/max data values are set to invalid.

EXAMPLE
READ IMAGE

|

|

IP TRANSLATE

|

|

IMAGE VIEWER

RELATED MODULES
ip reflect
ip rotate
ip zoom

33333333333333333333333333
324 AVS Module Reference Manual

ip translate3333333333333333333
SEE ALSO

The example script Imaging/IP TRANSLATE demonstrates this module.

33333333333333333333333333
AVS Module Reference Manual 325

ip twarp3333333333333333333
NAME

ip twarp – arbitrary field warp using warp data from table

SUMMARY
Name ip twarp

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 2D uniform 2-vector float (warp table)

Outputs field uniform same-dims same-data same-vector

Parameters Name Type Default Min Max
Channel selection none|scalar
interp choice point
X Offset int dial 0 0 input max x - warp max x
Y Offset int dial 0 0 input max y - warp max y

DESCRIPTION
ip twarp performs an arbitrary warp using a warp table to designate which pixel in
the input field corresponds to each pixel in the output field.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, then the warping is performed on Z successive XY slices.

Data Field (required; field 2D uniform 2-vector float)
The center input is the warp table. It is a 2D uniform 2-vector float field.
The warp table can be any size; it does not have to equal the extents of
the input field. The output field will have the same extents as the warp
table.

Each "cell" of the table is a 2-vector float. The first vector element is the X
coordinate of the input field. The second vector element is the Y coordi-
nate of the input field. ip twarp takes the input pixel defined by this XY
pair and transforms it (with a choice of interpolations) to the location in
the output field implicitly defined by the location of the XY pair in the
warp table.

For example, if warp table location (25,100) contained the XY vector ele-
ment pair (30,90), then the pixel at (30,90) in the input field would be
warped to position (25,100) in the output field.

To produce a warp table, one could:

d Create an ASCII file with the warp coordinates as defined below,
and import it into a 2D uniform 2-vector AVS field using either read
field or the ADIA application.

In this table, x00 and y00 are the coordinates of the source pixel that
corresponds to the first pixel in the first row of the destination field,
and so on.

x00 y00 x01 y01 x02 y02 ... x0n y0n
x10 y10 x11 y11 x12 y12 ... x1n y1n
 .
 .

33333333333333333333333333
326 AVS Module Reference Manual

ip twarp3333333333333333333
xm0 ym0 xm1 ym1 xm2 ym2 ... xmn ymn

d Write a module that generates a field of the correct type that contains
the warp coordinates.

PARAMETERS
Channel A set of buttons that select which vector elements to warp. There are as

many buttons as vector elements. More than one vector element can be
selected at one time—each will be warped in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

interp Radio buttons that set the type of interpolation. The choices are point,
bilinear, and bicubic. The default is point.

X Offset
Y Offset These integer dials are used when the input field is larger than the out-

put field. If you supply nonzero offsets, for each pair of coordinates in
the table, the function adds X Offset to the x coordinate and Y Offset to
the y corrdinate before it reads a pixel value from the input field. For
example, if you supply offsets of 10 (x) and 20 (y) and the first two values
in your table are 125 and 40, the value of the pixel at 0,0 in the output
field will be determined by the value of the pixel at 135,60 in the input.
These offsets allow you to use one table to warp a number of subimages
in the input field.

OUTPUTS
Data Field (field 2D uniform same-dims same-data same-vector)

The output is a field with the same vector, data type, and dimensions as
the input field. The field’s extents will equal those of the warp table
field. The header’s min/max data values are set to invalid.

EXAMPLE
This example uses the read field module to input a user-supplied warp table from an
ASCII file. read field could be replaced with a user-supplied module that generated
the warp table.

READ IMAGE

|

|

CROP

|

READ FIELD |

| |

|--| |

| |

IP TWARP

|

|

IMAGE VIEWER

RELATED MODULES
ip reflect
ip rotate
ip warp
ip zoom

33333333333333333333333333
AVS Module Reference Manual 327

ip twarp3333333333333333333
SEE ALSO

The example script Imaging/IP TWARP demonstrates this module.

33333333333333333333333333
328 AVS Module Reference Manual

ip warp3333333333333333333
NAME

ip warp – polynomial image warp

SUMMARY
Name ip warp

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector
field 1D uniform 2-vector float (warp coefficients)

Outputs field uniform same-dims same-data same-vector

Parameters Name Type Default
Channel selection none|scalar
choice choice point
clear output boolean on

DESCRIPTION
ip warp applies a geometric transform to a field. (This field is generally an image.)
The transform is defined as a polynomial mapping from an output pixel position to
an input pixel position. The input and output fields need not have the same extents.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, then the warping is performed on Z successive XY slices.

Data Field (required; field 1D uniform 2-vector float)
The center input contains the polynomial warp coefficients. It is a 1D
uniform 2-vector float field. The first vector element contains the x poly-
nomial warp coefficients; the second vector element contains the y poly-
nomial warp coefficients.

This field can be supplied by the calc warp coeffs module, or by a user-
written module.

The field containing the warp coefficients has the following format:

1. It has a certain degree. degree is the maximum degree of x or y (not
the maximum cross term degree). Degrees 1 and 2 are accepted. 1
is appropriate for linear polynomials (linear or bilinear). 2 is
appropriate for quadratic polynomials (quadratic or biquadratic).
For degree 1, 4 coefficients are used. For degree 2, 9 coefficients are
used.

Purely by convention, the number of coefficients should be stored
as, and will be retrieved from the field’s maximum X extent value.
A module that is creating the warp field would set this value with
the AVSfield_set_extent routine.

2. The body of the field is a 1D 2-vector float that contains the x and y
coefficients. The first vector element contains the x coefficients; the
second vector element contains the y coefficients. Each can be
thought of as an array that contains (degree + 1)2 polynomial
coefficients.

The ordering of the coefficients is in x major order.

For degree 1 polynomials (i.e., linear and bilinear) there are four

33333333333333333333333333
AVS Module Reference Manual 329

ip warp3333333333333333333
coefficients and their ordering is:

input_pixel_x = cx[0] +
cx[1] ∗ x +
cx[2] ∗ y +
cx[3] ∗ x ∗ y

input_pixel_y = cy[0] +
cy[1] ∗ x +
cy[2] ∗ y +
cy[3] ∗ x ∗ y

This shows the ordering for degree 2 polynomials (i.e., quadratic
and biquadratic) with 9 coefficients:

input_pixel_x = cx[0] +
cx[1]∗x +
cx[2]∗x∗x +
cx[3]∗y +
cx[4]∗x∗y +
cx[5]∗x∗x∗y +
cx[6]∗y∗y +
cx[7]∗x∗y∗y +
cx[8]∗x∗x∗y∗y

input_pixel_y = cy[0] +
cy[1]∗x +
cy[2]∗x∗x +
cy[3]∗y +
cy[4]∗x∗y +
cy[5]∗x∗x∗y +
cy[6]∗y∗y +
cy[7]∗x∗y∗y +
cy[8]∗x∗x∗y∗y

For example, to warp an image according to the mapping:
x_src = 0.2∗x_dst∗x_dst – 512.0
y_src = 0.5∗y_dst + 0.3∗x_dst∗y_dst – 128.0

with degree 2, the coefficients in the field would look like the fol-
lowing, where the first list is the first, x vector element, and the
second list is the second, y vector element:

cx[0] = –512.0;
cx[1] = 0.0;
cx[2] = 0.2;
cx[3] = 0.0;
cx[4] = 0.0;
cx[5] = 0.0;
cx[6] = 0.0;
cx[7] = 0.0;
cx[8] = 0.0;

cy[0] = –128.0;
cy[1] = 0.0;
cy[2] = 0.0;
cy[3] = 0.5;

33333333333333333333333333
330 AVS Module Reference Manual

ip warp3333333333333333333
cy[4] = 0.3;
cy[5] = 0.0;
cy[6] = 0.0;
cy[7] = 0.0;
cy[8] = 0.0;

PARAMETERS
Channel A set of buttons that select which vector elements to warp. There are as

many buttons as vector elements. More than one vector element can be
selected at one time—each will be warped in the output field.

If the input field’s vectors are labelled, then the labels will appear on the
buttons. Otherwise, the buttons are labelled "Channel 0", "Channel 1,"
etc. There is no default selection unless the input is scalar.

choice Radio buttons that set the type of interpolation. The choices are point,
bilinear, and bicubic. The default is point.

clear output
A boolean switch. If on, the output field has the new data created by ip
warp, and the rest of the values are 0. If off, those vector elements not
selected by Channel are copied intact to the output field. clear output is
on by default.

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output is a field with the same vector lenth, data type, and dimen-
sions as the input field. It may have different extents that the input field.

EXAMPLE
This networks shows the warp coefficients being generated interactively using calc
warp coeffs and the image viewer. The automatically-created invisible upstream
connections from image viewer are not shown.

READ IMAGE

|

|

|-------------|

| |

CALC WARP COEFFS |

| | |

| |---------| |

| | |

| IP WARP

| |

|---------| |

| |

IMAGE VIEWER

EXAMPLE 2
This network shows the warp coefficients supplied through a field containing
tiepoints, converted to warp coefficients with calc warp coeffs.

33333333333333333333333333
AVS Module Reference Manual 331

ip warp3333333333333333333
READ FIELD READ IMAGE

| |

| |

| |-------------|

| | |

CALC WARP COEFFS |

| |

|---------| |

| |

IP WARP

|

|

IMAGE VIEWER

RELATED MODULES
calc warp coeffs
ip twarp
ip reflect
ip rotate
ip zoom

SEE ALSO
The example scripts Imaging/CALC WARP COEFFS and Imaging/IP WARP
demonstrate this module.

33333333333333333333333333
332 AVS Module Reference Manual

ip write vff3333333333333333333
NAME

ip write vff – save a AVS image-format field as a SunVision vff-format image file

SUMMARY
Name ip write vff

Availability Imaging module library

Type data output

Inputs field 2D uniform byte 4-vector

Outputs none

Parameters Name Type Default
Write VFF Image Browser file browser
Gamma Correct boolean on

DESCRIPTION
ip write vff converts an AVS field in image format into a SunVision binary vff-format
image file and writes it to disk.

The output file’s vff header will read:
ncaa

rank=2;

size= xdim ydim;

format=base;

bands=4;

bits=8 8 8 8;

type=raster;

AVS uses ARGB as its true color pixel ordering. This ARGB will be automatically
converted to standard SunVision ABGR format in the output file.

INPUTS
Data Field (required; field 2D uniform byte 4-vector)

The input is a field in AVS "image" format.

PARAMETERS
Write VFF Image Browser

A file browser to specify the output file. The default is the DataDirec-
tory startup value. No output is generated until an output file is
specified. A .iff suffix is automatically appended to the output file’s
name.

Gamma Correct
A boolean switch. AVS images are normally gamma corrected by the
factor defined by the -gamma command line option or the Gamma .avsrc
file keyword. SunVision images are also normally gamma corrected.
(Non-gamma corrected images will appear dark on many monitors.) If
you wish to remove the gamma correction when the image is converted,
turn off this switch. The default is on (keep gamma correction).

EXAMPLE
READ IMAGE

|

|

IP WRITE VFF

33333333333333333333333333
AVS Module Reference Manual 333

ip write vff3333333333333333333
RELATED MODULES

write field
read vff image

SEE ALSO
The example script Imaging/IP WRITE VFF demonstrates this module.

33333333333333333333333333
334 AVS Module Reference Manual

ip zoom3333333333333333333
NAME

ip zoom – zoom field with interpolation

SUMMARY
Name ip zoom

Availability Imaging module library

Type filter

Inputs field [2D|3D] uniform [byte|short|float] n-vector

Outputs field 2D uniform same-dims same-data same-vector

Parameters Name Type Default Min Max
x factor float dial 1.0 0.0 unbounded
y facator float dial 1.0 0.0 unbounded
interp choice point
x offset float dial 0.0 0.0 x-size
y offset float dial 0.0 0.0 y-size

DESCRIPTION
ip zoom zooms a field using one of four interpolation methods. The zooming can be
done with floating-point offsets, which enables you to offset a zoomed image by frac-
tional pixels.

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

The rightmost input is a 2D or 3D uniform field of type byte, short, or
float. It can be any vector length. Generally, this is an image. If the field
is 3D, then the zooming is performed on Z successive XY slices.

PARAMETERS
x factor
y factor are floating dials that set the x and y zoom factors. The range is 0.0 to

unbounded; the default is 1.0.

interp Radio buttons to select the interpolation method. The choices are point,
bilinear, bicubic, and adaptive. The default is point.

You can use point, bilinear, bicubic interpolation whether you are scal-
ing a field up or down.

You can only use adaptive ("adaptive support") interpolation if you are
scaling an image down by a factor of 2 or more; that is, your scaling fac-
tors must be equal to or less than 0.5. With adaptive, the value of each
pixel in the output field is calculated by averaging the values of a block
of pixels in the input field. The size of this block is determined by the
scale factor such that all the pixels in the input field affect a pixel in the
output field.

x offset
y offset are the coordinate offsets to the first pixel in the zoom area. The default

is 0.0; the minimum is 0.0, and the maximum is the X/Y size of the
image.

OUTPUTS
Data Field (field uniform same-dims same-data same-vector)

The output is a field with the same dimensions, data type, and vector
length as the input field. The extents of the output field will vary
depending upon the zoom factor. The header’s min/max data values are

33333333333333333333333333
AVS Module Reference Manual 335

ip zoom3333333333333333333
set to invalid.

EXAMPLE
READ IMAGE

|

|

IP ZOOM

|

|

IMAGE VIEWER

RELATED MODULES
ip reflect
ip rotate
ip warp
ip twarp
ip translate
interpolate
downsize

SEE ALSO
The example script Imaging/IP ZOOM demonstrates this module.

33333333333333333333333333
336 AVS Module Reference Manual

isosurface3333333333333333333
NAME

isosurface – generate an isosurface for a volume of data

SUMMARY
Name isosurface

Availability Volume, FiniteDiff module libraries

Type mapper

Inputs field 3D scalar any-data any-coordinates
field 3D scalar any-data (optional)
colormap (optional)

Outputs geometry

Parameters Name Type Default Min Max
Isosurface

Level float 128 unbounded unbounded
Optimize

Surface toggle off
Optimize

Wireframe toggle off
Flip Normals toggle off

DESCRIPTION
The isosurface module inputs a volume data set (3D field of values, either curvi-
linear, rectilinear, or uniform). It produces a geometric object that represents an iso-
surface of this object. An isosurface is a 3D generalization of a 2D contour line — it
connects all field elements that have the same parameter-controlled data value.

INPUTS
Data Field (required; field 3D scalar any-data any-coordinates)

The input data must represent a volume, with a single value of any prim-
itive data type for each field element.

Auxiliary Data Field (optional; field 3D scalar any-data)
This port can be used to generate a colored isosurface; the color at each
point on the surface indicates the value of another attribute of the
volume. For instance, you could generate a pressure isosurface with
colors indicating the temperature at each point on the surface.

In this case, the Data Field would be used to input the pressure data, and
the Auxiliary Data Field would be used to input the temperature data.
In all cases, both volume data sets must have the same dimensions.

Colormap (optional; colormap)
If you use an Auxiliary Data Field, you must also specify a colormap.
Since the auxiliary volume data is floating-point, you must adjust the lo
value and hi value parameters of the generate colormap module to
correspond to the minimum and maximum data values of the auxiliary
field.

For the pressure-temperature example described above, the temperature
data set might have data values in the range 0.0–100.0 degrees. In this
case, set the lo value to 0 and hi value to 100 in generate colormap.

PARAMETERS
Isosurface Level

A floating-point value that specifies the common data value on the iso-
surface: for each point on the isosurface, the field element’s data value

33333333333333333333333333
AVS Module Reference Manual 337

isosurface3333333333333333333
equals the Isosurface Level value. The dial is unbounded. However, the
resolution of the dial is rescaled to the minimum and maximum data
range each time the input changes. The default is reset to minval if the
previous setting is less than the new minimum value. The default is
reset to maxval if the previous setting is greater than the new maximum
value. Otherwise, it is left unchanged.

Optimize Surface
Optimize Wireframe

These two toggle parameters allow you to control a tradeoff between
how efficiently the isosurface is computed and how efficiently it can be
rendered. If you turn on Optimize Surface, extra time will be spent gen-
erating a more optimal surface description, containing fewer triangles.

Turn on Optimize Wireframe to generate a wireframe representation for
the isosurface along with the shaded surface representation. If you want
to view your surface as a wireframe (using the Objects selection in the
geometry viewer control panel), you must toggle this on.

Flip Normals
Reverses the direction of each surface normal in the generated isosurface.
If the normals point in the wrong direction, the outside of the isosurface
will appear at the ambient light intensity. In this case, click this button or
specify bi-directional lighting in the geometry viewer control panel
(Lights selection).

OUTPUTS
Isosurface (geometry)

A shaded surface, optionally with an associated wireframe representa-
tion.

NOTES
The most important parameter is the Isosurface Level (threshold), which is defined
in the unbounded floating-point data space of the volume. Whenever the input to
the isosurface module changes, the range for the Isosurface Level parameter is set to
be the range of the input data. If the current setting for the Isosurface Level parame-
ter is outside this data range, the Isosurface Level parameter is changed to reflect the
new range.
Because isosurface is compute-intensive, it is often advisable to include a downsize
module in the network. This allows you to quickly select a proper isosurface level
before generating one at full resolution.
Another technique is to use the Action capability of the Geometry Viewer (geometry
viewer module) to save and play back a sequence of isosurfaces at different value
levels.

EXAMPLE 1
READ VOLUME

|

DOWNSIZE

|

ISOSURFACE

|

GEOMETRY VIEWER

EXAMPLE 2
This example uses an auxiliary data set.

33333333333333333333333333
338 AVS Module Reference Manual

isosurface3333333333333333333
READ VOLUME (color volume) READ VOLUME (surface volume)

| |

| |

------------------| |-------------

GENERATE COLORMAP | |

| | |

------------------| | |

ISOSURFACE

|

GEOMETRY VIEWER

RELATED MODULES
geometry viewer, render geometry, downsize, generate colormap, read field, read
volume

LIMITATIONS
In some circumstances, the generated isosurface may have some of its normals point-
ing inward and some outward. There is no way to correct this situation, but usage of
bi-directional lighting (Lights selection of the Geometry Viewer/geometry viewer)
may be helpful.

SEE ALSO
The example script FIELD LEGEND demonstrates the isosurface module.

33333333333333333333333333
AVS Module Reference Manual 339

label3333333333333333333
NAME

label – creates a title for flexible geometry viewer annotation

SUMMARY
Name label

Availability Imaging, Volume, FiniteDiff module libraries

Type data

Inputs none

Outputs geometry

Parameters Name Type Default Min Max
Value float dial 0.0 unbounded unbounded
Title String typein none
Font Number int slider 0 0 20
Drop Shadow boolean off
Text Alignment choice Center
X Position float slider 0.00 -1.00 1.00
Y Posiiton float slider 0.00 -1.00 1.00
Text Height float slider 0.10 0.00 1.00
Red float slider 0.70 0.00 1.00
Green float slider 0.70 0.00 1.00
Blue float slider 0.70 0.00 1.00

DESCRIPTION
label creates a label style text string in GEOM format. This label is input to the
geometry viewer. Once in the Geometry Viewer, the label behaves like a Geometry
Viewer title. There are two advantages to using this module over the labelling facili-
ties in the Geometry Viewer:

1. The labelling information is saved with a network, and

2. The optional floating point parameter (Value) can come from another module. It
can represent some important variable such as time, animation step, some
parameter, etc.

The Title String can contain a ’%f’ (like C programs) to include this parameter.
For example, the Title String can be "Time Step %f" and the value of Value will
get transferred to the geometry title. Thus, titles become automatic and dynamic.

OUTPUTS
geom (geometry)

The text string as a geom title label.

PARAMETERS
Value (dial)

A floating point number that can appear in the label as long as the Title
String contains a %f. If you make this parameter visible on the module
icon (Module Editor Parameter Editor’s Port Visible toggle), then you
can attach it to another module such as animated float.

Title String
The character string to appear as a title. If it contains a %f, the value of
the Value parameter is included.

Font Number (islider)
A value from 0 to 20 for the available fonts. The actual font number to
font mapping varies from system to system.

33333333333333333333333333
340 AVS Module Reference Manual

label3333333333333333333
Drop Shadow (boolean)

When on, this produces a black drop shadow. Drop shadows may not be
implemented on all renderers.

Text Alignment (choice)
Describes the start of the text relative to its position. The choices are
Left, Center (default), and Right.

X Position
Y Posiiton Floating point sliders that position the title on the screen. (0.0, 0.0) is the

center of the window.

Text Height
Floating point sliders to specify the font height. The range is from 0.0 to
1.0; the default is 0.10. The actual font sizes available varies from system
to system.

Red
Green
Blue Floating point sliders that determine the color of the label.

EXAMPLE 1
LABEL READ GEOM

| |

|-----------|-----|

|

GEOMETRY VIEWER

SEE ALSO
The example script LABEL illustrates the label module.

33333333333333333333333333
AVS Module Reference Manual 341

local area ops3333333333333333333
NAME

local area ops - image processing based on pixel neighborhoods

SUMMARY
Name local area ops

Availability Imaging module library

Type filter

Inputs field 2D 4-vector byte uniform (image) OR
field 1-3D scalar any-data any-coordinates

Outputs field of same type as input

Parameters Name Type Default Min Max Choices
kernel width integer 3 3 31
choice choice Min Min, Max, Median,

Mean

DESCRIPTION
local area ops contains four operations used in image processing, each of which takes
an input field and computes an output image using some function. In a "local area
operation" the value of each pixel in the output image is based on the values of pixels
in its immediate neighborhood. The kernel is the NxN neighborhood of pixels sur-
rounding each pixel used to calculate each new pixel value. The "width" of the kernel
thus determines the size of this neighborhood.

In the operation Min, for example, using a filter width of 3, the value of each pixel in
the output image becomes the minimum value of the pixel and the 8 pixels surround-
ing it.

In the case of an image, which is a 2D field of 4-byte vectors, local area ops disre-
gards the alpha bytes and separates the red, green, and blue bytes. Then it applies the
operation separately to each color byte, before reassembling the bytes into 4-vector
image format. The status bar shows the module processing three times, once for each
color byte.

Apart from AVS images local area ops handles only scalar values of any data type.
All data-types are converted to floats during computation and then converted back
in the output of local area ops.

In order to handle edge effects, a border around the perimeter of the image is not
operated on. The border is half the width of the kernel.

INPUTS
Data Field (required; field 2D 4-vector byte uniform (image)) OR

Data Field (required; field 1-3D scalar any-data any-coordinates) Typically,
the input will be an AVS image, which is a 2D field of 4-vector bytes.

The input may be any 1-3D field of scalar values of any-data any-type.

PARAMETERS
choice sets which local area operation to apply. There are 4 options:

Min
In the min operation each pixel in the output image becomes the
minimum of the pixels in its immediate neighborhood. This has the
effect of shrinking light regions of an image, and is refered to as a
"region shrinking" operation.

33333333333333333333333333
342 AVS Module Reference Manual

local area ops3333333333333333333
Max

In the max operation each pixel in the output image becomes the
maximum of the pixels in its immediate neighborhood. This has the
effect of enlarging light regions of an image, and is refered to as a
"region growing" operation.

Median
In the median operation the pixels in the neighborhood are sorted.
Then the pixel at the center of the neighborhood gets the value that
is in the middle value of the sorted array. This has an effect similar to
the mean operation, but it can be especially useful in removing noise
from an image, since anomalies are not likely to effect the output
image. Note: since the median calculation requires a sort, it is very
compute intensive, especially when the filter width is large. AVS
puts up a warning message when the median operation is selected.

Mean
In the mean operation each pixel in the output image becomes the
average of the pixels in its immediate neighborhood. This has the
effect of reducing the contrast of an image between the light and the
dark regions.

kernel width
Determines the size of the neighborhood of pixels contributing to the
value of each pixel in the output image.

OUTPUTS
Output Field

The output field is the same type as the input data field.

EXAMPLE 1
The following network reads in an image, applies the local area operations to it, and
displays the resulting image:

READ IMAGE

|

|

LOCAL AREA OPS

|

|

IMAGE VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read image
pixmap to image
orthogonal slicer
any other module which outputs a field of scalars or an image

Modules that can process the output of local area ops:
display image
image viewer
any other module which takes a 2D field as input

Modules that have similar function:
ip convolve
ip read kernel

33333333333333333333333333
AVS Module Reference Manual 343

local area ops3333333333333333333
SEE ALSO

The example script LOCAL OPS demonstrates the local area ops module.

33333333333333333333333333
344 AVS Module Reference Manual

luminance3333333333333333333
NAME

luminance – compute the luminance of an image

SUMMARY
Name luminance

Availability Imaging module library

Type filter

Inputs field 2D uniform 4-vector byte (image)

Outputs field 2D uniform scalar byte

Parameters none

DESCRIPTION
The luminance module computes the luminance (brightness) of an image, then out-
puts a 2-dimensional field of the same dimensions, but with a scalar byte value for
each pixel in the original image instead of the full four-byte alpha, red, green, blue
vector.

The luminance (I) is calculated as follows:
I = (0.299 ∗ red) + (0.587 ∗ green) + (0.114 ∗ blue)

This luminance byte value can be used to produce a black and white version of the
original image (with colorizer), or substituted back into the alpha byte of the original
image (with replace alpha) to produce transparency effects.

INPUTS
Image (required; field 2D uniform 4-vector byte)

The image whose luminance to calculate.

OUTPUTS
Data Field (field 2D uniform scalar byte)

The output field has the same dimension as the input image, but with a
scalar byte value representing the image luminance at each original pixel
instead of color value.

EXAMPLE 1
The following network reads an image, computes its luminance, colorizes the result-
ing field with the default black and white colormap, producing a black and white
version of the original image. The result is displayed through the image viewer.

READ IMAGE

|

LUMINANCE

|

COLORIZER

|

IMAGE VIEWER

EXAMPLE 2
This network takes a geometry, displays it on the screen, then converts the screen
pixmap to an image, computes its luminance, uses that to create an alpha mask,
renders a shaded background and composites the rendered image over the shaded
background. The contrast modules controls should be set to : minimum and max-
imum input contrast, both 1; minimum output contrast 0, and maximum output con-
trast, 255. If the original geometry were $AVS_PATH/data/geometry/jet.geom and the
background module were set to produce a sky-like pattern, this would produce a jet

33333333333333333333333333
AVS Module Reference Manual 345

luminance3333333333333333333
over a sky field.

READ GEOM

|

GEOMETRY VIEWER

|-----------------------|

| |

__________________________| DISPLAY IMAGE

| | |

BACKGROUND LUMINANCE |

| | |

| CONTRAST |

| |------| |

| REPLACE ALPHA

| |

|----------------------| |

COMPOSITE

|

IMAGE VIEWER

RELATED MODULES
Modules that could provide the Image input:

Any module that produces an image as output
Modules that can process luminance output:

colorizer
contrast
Any modules that can process a 2D scalar field

See also background, composite, replace alpha, and extract scalar

SEE ALSO
The example script LUMINANCE demonstrates the luminance module.

33333333333333333333333333
346 AVS Module Reference Manual

minmax3333333333333333333
NAME

minmax – set min and max values of a selected vector in an AVS field

SUMMARY
Name minmax

Availability Supported, Volume, Imaging, Finite Diff module libraries

Type filter

Inputs field

Outputs field (of the same type)
min value (float)
max value (float)

Parameters Name Type Default Min Max
channel integer dial 0 0 n-vectors - 1
min value float typein unbounded unbounded
max value float typein unbounded unbounded

DESCRIPTION
The minmax module modifies the minimum and maximum values of a selected vec-
tor element (channel) of an n-vector AVS field. The output field is identical to the
input field, except for the new vector minimum and maximum values. minmax also
outputs the minimum and maximum values of a selected vector element in its output
ports.

The minmax module has two main purposes:

d It can be used to provide min and max inputs to the generate colormap module’s
hi value and lo value parameters. These in turn will output a scaled colormap to
the color legend module.

d It can be used to set the minimum/maximum range for animating a sequence of
datasets with different minimum and maximum values (such as a time-series). In
this application, setting a wide enough range will prevent such modules as isosur-
face and field legend from resetting their parameters every time a new dataset is
read.

INPUTS
Input (field; required)

The input structure is any valid AVS field.

PARAMETERS
channel An integer dial that selects which channel of an n-vector field’s min/max

is being edited. For a scalar field, this dial is made invisible. For an n-
vector dataset, the maximum value of the dial is set to be the vector
length of the field -1. The default is 0.

min value A floating-point typein that specifies a new minimum value for the
selected channel of the field. By default it is set to the minimum value of
the first dataset read in. If a new field of the same type is read the
parameter value is not updated. If a field of a different type (data type,
vector length, dimensions, etc.) is read, then the module asks to be
thrown away and reinstantiated.

max value A floating-point typein that specifies a new maximum value for the
selected channel of the field. By default it is set to the maximum value of
the first dataset read in. If a new field of the same type is read the
parameter value is not updated. If a field of a different type (data type,
vector length, dimensions, etc.) is read, then the module asks to be

33333333333333333333333333
AVS Module Reference Manual 347

minmax3333333333333333333
thrown away and reinstantiated.

OUTPUTS
Output (field)

The output field is exactly the same as the input field, except that the
channel’s minimum and maximum data values may be reset to the
parameter minimum and maximum values.

EXAMPLE
The following network reads in a field and sets min/max values for a channel, which
are used by generate colormap and contour modules. generate colormap’s lo value
and hi value parameter ports must be made visible before they can be connected to
minmax. To do this, bring up generate colormap’s Module Editor, click on the lo
value parameter button, and then click on Port Visible on the resultant Parameter
Editor panel. Repeat for hi value.

READ FIELD

|

MINMAX

| | |

|------------| | |

| |-------| |

| | |

GENERATE COLORMAP |

| |

| |-----------|-------|

| | |

FIELD LEGEND ISOSURFACE

| |

| |

|----------------------|

|

GEOMETRY VIEWER

RELATED MODULES
ucd minmax

Modules that could provide the Input field input:
read field
read volume
Any module that outputs a field.

Modules that can process minmax’s output:
generate colormap, field legend, isosurface, etc.

SEE ALSO
The example script MINMAX demonstrates the minmax module.

33333333333333333333333333
348 AVS Module Reference Manual

mirror3333333333333333333
NAME

mirror – reverse array indices in a 2D or 3D data set

SUMMARY
Name mirror

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field 2D/3D n-vector any-data any-coordinates

Outputs field of same type as input

Parameters
Name Type Default Choices
axis choice Original Original, X, Y, Z

DESCRIPTION
The mirror module reverses the array indexes along one dimension of a 2D or 3D
field. This has the effect of creating a mirror image of the data set.

For uniform fields, the data is mirrored "in place" in the data array. In a 50 x 100 uni-
form field, applying mirror to the X dimension does the following (in FORTRAN
array notation):
INPUT(1,i) ---> OUTPUT(50,i) (for all 100 values of i)

INPUT(2,i) ---> OUTPUT(49,i)

INPUT(3,i) ---> OUTPUT(48,i)

INPUT(4,i) ---> OUTPUT(47,i)

...

INPUT(50,i) ---> OUTPUT(1,i)

For rectilinear and irregular data, the coordinate data points array is mirrored about
the selected axis. The data in the data array is unchanged.

mirror can be used to change the orientation of the data for display and/or process-
ing purposes.

To perform a reversal in two or more dimensions, use two or more mirror modules
in succession.

INPUTS
Data Field (field 2D/3D n-vector any-data any-coordinates)

The input may be any 2D/3D AVS field.

PARAMETERS
axis The choices for exchanging the data are:

Original Copies the input to the output; no transformation is per-
formed.

X For uniform fields, reverses the array indices in the X dimen-
sion (first dimension). For rectilinear and irregular fields,
the coordinate points array is mirrored about the X axis.

Y For uniform fields, reverses the array indices in the Y dimen-
sion (second dimension). For rectilinear and irregular fields,
the coordinate points array is mirrored about the Y axis.

Z For uniform fields, reverses the array indices in the Z dimen-
sion (third dimension). (Equivalent to Original for a 2D
field.) For rectilinear and irregular fields, the coordinate
points array is mirrored about the Z axis.

33333333333333333333333333
AVS Module Reference Manual 349

mirror3333333333333333333
OUTPUTS

Data Field The output field as the same form as the input field.

RELATED MODULES
This module combined with transpose can re-orient the data in any desired way.

ip reflect
ip rotate
ip translate

SEE ALSO
The example script GRAPH VIEWER demonstrates the mirror module.

33333333333333333333333333
350 AVS Module Reference Manual

Module Generator3333333333333333333
NAME

Module Generator – interactively generate skeletal module source code

SUMMARY
Name Module Generator

Type data output

Inputs none

Outputs none

Parameters various, internal use

DESCRIPTION
The Module Generator is an interface that a programmer can use to interactively
generate skeletal AVS module source code in C or FORTRAN for both subroutine
and coroutine modules. The Module Generator will also create makefiles and
module man page documentation templates, compile modules, and assist the pro-
grammer with debugging. To use the Module Generator, simply drag its module
icon into the Network Editor Workspace. It is not connected to other modules.

When creating output files or reading input files with the Module Generator, first
specify a filename using the file browser widget controls, then press the appropriate
Write or Read button.

AVS modules have a basic structure:
global defines

module description routine

compute routine

AVSinit_modules initialization routine

utility routines

Coroutine modules have a main() routine before the specifcation routine, in lieu of a
compute routine.

The Module Generator’s control panel allows the programmer to specify the
module’s name, input/output ports, and parameters, parameter widgets, and param-
eter ranges and defaults. From this information it automatically generates:

d The correct include files for the module.

d A reserved area for user-supplied global defines.

d A module description routine with all of the AVS libflow.a library routines to
create the input and output ports and parameters.

d A reserved area for user-supplied additions to the module
description/specification routine.

d A module compute function definition with input, output, and parameters
correctly declared.

d Optionally, an area of code that provides "hints" as to how memory should be
allocated and deallocated for the output data.

d A reserved area for user-supplied code that will make up the body of the com-
pute routine.

d A correct module initialization routine. This routine is called by the AVS flow
executive when a module is moved from the Network Editor Palette into the
Workspace. It "activates" the module’s description information and informs the
flow executive of the module’s compute routine’s name so that the flow execu-
tive can call it when its turn in to process data flowing through the network

33333333333333333333333333
AVS Module Reference Manual 351

Module Generator3333333333333333333
comes.

d A reserved area for user-supplied subroutines, functions, and utility routines.

The programmer can generate a makefile for this code, edit it skeletal source code
using their choice of local text editors, compile it, debug it, and create true troff or
ASCII pseudo-man pages, all from within the AVS environment.

SEE ALSO
The Module Generator is described in detail in the "Module Generator" section of
the AVS Applications document.

LIMITATIONS
More detailed "hints" are provided for C routines than FORTRAN routines.

33333333333333333333333333
352 AVS Module Reference Manual

offset3333333333333333333
NAME

offset – deform, or "blow up" a geometry object based on vector values at each node

SUMMARY
Name offset

Type filter

Inputs geometry

Outputs geometry

Parameters Name Type Default Min Max
offset float 0.0 none none

DESCRIPTION
The offset module transforms an AVS geometry, so that each vertex of each polygon
is translated along its vertex normal. It is useful for emphasizing surface discontinui-
ties (e.g. cusps) and for producing "blow ups" of objects.

INPUTS
Geometry (required; geometry)

An AVS geometry, created with the libgeom library or by another AVS
module.

PARAMETERS
offset The amount by which each vertex is translated along its normal. Positive

values create a "blow-up" of the geometry. Negative values collapse it.

OUTPUTS
Geometry A geometry that represents that same object(s) as the input data.

EXAMPLE
READ GEOM

|

OFFSET

|

GEOMETRY VIEWER

RELATED MODULES
read geom, flip normal, tube, geometry viewer, render geometry

LIMITATIONS
This module works only for polytriangle strips and meshes, not for polyhedra. It has
no effect on objects that do not have surface normals.

SEE ALSO
The example script OFFSET demonstrates the offset module.

33333333333333333333333333
AVS Module Reference Manual 353

oneshot3333333333333333333
NAME

oneshot - send a oneshot value to one or more module(s) "oneshot" parameter port(s)

SUMMARY
Name oneshot

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data

Inputs none

Outputs oneshot

Parameters Name Type Default Min Max
oneshot oneshot 0 0 unbounded

DESCRIPTION
The oneshot module sends a single user-specified "oneshot" value to one or more
"oneshot" parameter ports on one or more receiving modules. Its purpose is to make
it possible for a user to simultaneously control "oneshot" parameter input to more
than one module using only a single "oneshot" input widget.

oneshot outputs an integer which represents the number of times that oneshot’s
parameter button was clicked in a certain time period. The length of the time period
is not user controllable, but depends on the speed with wich AVS executes the net-
work to which oneshot is connected. Thus, if AVS were executing a compute inten-
sive network, you could click oneshot’s button 10 times. Then, oneshot will output
the number 10 the next time it executes. Typically, oneshot is used as a signal to per-
form some operation.

Since oneshot data-type is not identical to an integer, oneshot can not be used to pass
integer parameters.

Before you can connect oneshot to the receiving module, you must make that receiv-
ing module’s parameter port visible. To make a parameter port visible, call up the
module’s Editor Window panel by pressing the middle or right mouse button on the
module icon dimple. Next, look under the "Parameters" list to find the parameter
you want to plug into. Position the mouse cursor over that parameter’s button and
press any mouse button. When the Parameter’s Editor Window appears, click any
mouse button over its "Port Visible" switch. A white parameter port should appear
on the module icon. Connect this parameter port to the oneshot module icon in the
usual way one connects modules.

PARAMETERS
oneshot (integer)

The single "oneshot" value, specified through a "oneshot" button, to be
sent to the receiving module(s) oneshot parameter port(s). The default
value is zero.

OUTPUTS
oneshot (integer)

The "oneshot" value is sent to all modules with oneshot-type parameter
ports that are connected to the oneshot module.

RELATED MODULES
Modules that can process oneshot’s output:

all modules with oneshot-type parameter ports

33333333333333333333333333
354 AVS Module Reference Manual

oneshot3333333333333333333
SEE ALSO

The example scripts WRITE VOLUME and WRITE IMAGE demonstrate the oneshot
module.

33333333333333333333333333
AVS Module Reference Manual 355

orthogonal slicer3333333333333333333
NAME

orthogonal slicer – slice through 3D or 2D field with plane perpendicular to coordi-
nate axis

SUMMARY
Name orthogonal slicer

Availability Volume, FiniteDiff module libraries

Type mapper

Inputs field 3D or 2D n-vector any-data any-coordinates

Outputs field 2D or 1D n-vector same-data same-coordinates

Parameters Name Type Default Min Max Choices
slice plane int 0 0 255
axis choice K I, J, K

DESCRIPTION
The orthogonal slicer module takes a 2D slice from a 3D array, or a 1D slice from a
2D array. It does so by holding the array index in one dimension constant, and let-
ting the other index(es) vary. For instance, a data set might include a volume of 5000
points, arranged as follows (using FORTRAN notation):
DATA(I,J,K) I = 1,10

J = 1,20

K = 1,25

You can take a 2D "I-slice" from this data set by setting I=4 and letting the other
indices vary:
DATA(4,J,K) J = 1,20

K = 1,25

The notation used in the example above assumes that the field’s data values are
scalars (in FORTRAN, DATA(4,5,6) must be a scalar). If fact, however, the orthogo-
nal slicer module can takes slices of vector-valued fields, also. It passes through
whatever data type is presented to it; e.g. if the input is a "field 3D 3-vector float", the
output is a "field 2D 3-vector float".

INPUTS
Data Field (field 2D/3D n-vector any-data any-coordinates)

The input may be any 3D or 2D field.

PARAMETERS
slice plane Determines the value of the array index to be held constant. This value

is reset to zero each time a new data field is input.

axis Selects the dimension (I, J, or K) in which the array index is to be held
constant.

OUTPUTS
Data Field (field 1D/2D n-vector any-data any-coordinates)

The output field is 2D instead of 3D (or 1D instead of 2D), and has the
same type of data as the input field.

Appropriate new values for min_ext and max_ext are written to the out-
put field.

EXAMPLE 1
The following network takes a slice from a scalar volume and displays it:

33333333333333333333333333
356 AVS Module Reference Manual

orthogonal slicer3333333333333333333
READ VOLUME

|

ORTHOGONAL SLICER

| GENERATE COLORMAP (optional)

| |-----------------|

| |

COLORIZER

|

DISPLAY IMAGE

The colorizer module is necessary because the output of orthogonal slicer is a "field
2D scalar byte", which must be cast into an AVS image field for display.

EXAMPLE 2
For reasonably small volumes, a better way to construct this network is:

READ VOLUME

| GENERATE COLORMAP (optional)

| |----------------|

| |

COLORIZER

|

ORTHOGONAL SLICER

|

DISPLAY IMAGE

This network has the effect of colorizing the entire volume once, which make the slic-
ing operation more efficient. It does this at the expense of allocating more memory
up front.

EXAMPLE 3
Irregular Data: orthogonal slicer supports the passing of "points" data for rectilinear
and irregular data. This is an important module for visualizing curved data sets. For
example:

READ FIELD (irregular data)

____________|____________

| |

ORTHOGONAL SLICER |

GENERATE COLORMAP | |

|_________ | VOLUME BOUNDS

| | |

FIELD TO MESH |

|___________ ________|

| |

GEOMETRY VIEWER

(This is the reason for labeling the axis control with "I, J, and K": frequently, the data
is not aligned to the X, Y, and Z axes. orthogonal slicer takes slices through the logi-
cal data set, not the physical one.)

EXAMPLE 4
The following network shows how to use orthogonal slicer to plot the values of one
scan-line of an image:

33333333333333333333333333
AVS Module Reference Manual 357

orthogonal slicer3333333333333333333
READ IMAGE

|

|

EXTRACT SCALAR

|

|

ORTHOGONAL SLICER (set to middle of image)

|

|

GRAPH VIEWER

RELATED MODULES
field to mesh
colorizer

SEE ALSO
The example scripts ANIMATED INTEGER, COLOR RANGE, and VECTOR CURL
demonstrate the orthogonal slicer module.

33333333333333333333333333
358 AVS Module Reference Manual

output postscript3333333333333333333
NAME

output postscript – convert pixmap to PostScript and store in file

SUMMARY
Name output postscript

Availability this module is in the unsupported library

Type data output

Inputs pixmap (required; pixmap)

Outputs none

Parameters Name Type Default Choices
filename typein
mode choice laserwriter laserwriter, color, mathematica
Mathematica Options:
monochrome toggle off
8 bit toggle off
compress toggle off
dither toggle off

DESCRIPTION
Note: output postscript is similar to image to postscript. The main difference is that
output postscript takes an input pixmap from the render geometry module, which
may have been dithered down to 8-bits on pseudocolor systems, while image to
postscript takes an input image from various modules including the geometry
viewer and graph viewer modules. image to postscript’s image will be in 24-bit true
color even on pseudocolor systems if the geometry viewer’s software renderer
option is in effect. Thus, output postscript (along with render geometry) is obsolete.
It is retained in the unsupported module library for backward compatibility only.

The output postscript module converts its input pixmap to the PostScript page
description language and stores it in a file.

On most platforms, the window that you are dumping should be wholly on the
screen and unobscured by other windows. On some platforms, the window contain-
ing the picture to be output is mapped before the picture is saved.

After the file is written, the filename is reset to NULL. This prevents subsequent
changes upstream in the network from automatically triggering the rewriting of the
file. A new file is written only when you enter a filename.

Three types of PostScript output are supported:

d An 8-bit gray scale image suitable for sending to a gray-scale PostScript-
compatible laser printer such as a laserwriter.

d A 24-bit true color RGB color image suitable for sending to a PostScript-
compatible laser printer that supports the Level 1 PostScript colorimage operator
color extensions, or any PostScript Level 2 color printer. The actual format is 3-
component (RGB) with 8 bits per component, in multi format, with a line of red
values, then green values, then blue values for each scan line.

d Mathematica compatible. Mathematica PostScript-format files are usually
readable only by Mathematica and its utilities.

All files are formatted as left-to-right, top-to-bottom scan lines.

The PostScript files are not "encapsulated;" that is, they are formatted as PostScript
"main" routines that can be sent directly to the printer. To include the files in other
PostScript files (e.g., documents) they should be run through a PostScript

33333333333333333333333333
AVS Module Reference Manual 359

output postscript3333333333333333333
encapsulation program that will convert them into a PostScript subroutine.

The files are scaled and translated to produce a centered, page-filling image. This can
be altered by manually editing the file, or by using parameters usually provided by
the encapsulation program.

INPUTS
pixmap (pixmap)

Any AVS pixmap.

PARAMETERS
filename A typein that allows you to specify the name of the PostScript file to be

created. After the file is written, the filename is reset to NULL. This
prevents subsequent changes upstream in the network from automati-
cally triggering the rewriting of the file. A new file is written only when
you enter a filename.

Mode Selects the type of PostScript output: laserwriter, color, or mathematica.

The following toggle parameters control the creation of Mathematica PostScript files
only:

monochrome
If ON, produces monochrome output. If OFF, produces color output.

8 bit If ON, produces 8-bit output. If OFF, produces 4-bit output.

compressed
If ON, produces compressed output. If OFF, produces uncompressed output.

dither
If ON, produces dithered output. If OFF, produces undithered output.

EXAMPLE
This example converts a display in the render geometry module into a PostScript file:

any network

|

RENDER GEOMETRY

|-------------|

| |

DISPLAY PIXMAP OUTPUT POSTSCRIPT

RELATED MODULES
image to postscript
render geometry

LIMITATIONS
The Mathematica compress option is not supported in any released version of
Mathematica.

The dither option produces visual artifacts on some images.

COPYRIGHT
Mathematica is a copyright of Wolfram Research.

SEE ALSO
The example script OUTPUT POSTSCRIPT demonstrates the output postscript
module.

33333333333333333333333333
360 AVS Module Reference Manual

particle advector3333333333333333333
NAME

particle advector – release grid of particles into velocity field

SUMMARY
Name particle advector

Availability FiniteDiff module library

Type mapper

Inputs field 3D 3-vector float any-coordinates
field irregular 3-space (optional, from samplers module)
upstream transform (optional, invisible, autoconnect)
integer (optional, invisible)

Outputs particles geometry
tracers geometry

Parameters Name Type Default Min Max
Mesh Res integer dial 5 2 100
Tracer Length integer dial 0 0 100
Time Step float dial 0.2 unbounded unbounded
Size float dial 0.0 unbounded unbounded
Advect Batch oneshot
Stop Advection toggle off
Replay Advect toggle off
Reset Particles oneshot
Show Bounds toggle on
Color toggle off
Surface toggle off
Method radio Euler
Tracer Style choice cap

DESCRIPTION
The particle advector module takes as input a 3D 3-vector field of floats (e.g. fluid
flow simulation data), and treats it as a velocity field. A batch of zero mass (the
"sample") particles is advected (placed into the field at various initial positions with no
initial direction or speed). The particles move through the velocity field according to
the magnitude and direction of the vectors at the nodes in the volume. A forward
differencing method is used to estimate the next position of each particle as a func-
tion of the current position and velocity.

This module is an AVS coroutine — it generates new data continuously, rather than
waiting for a module upstream to pass it new data.

The starting position of the sample of particles is user controlled. If particle
advector’s Show Bounds parameter is turned on, and particle advector is not con-
nected to the samplers module (see description of Upstream Transform input,
below), the sample object, from which particles are advected, is visible. This object
can be manipulated like any other geometry object. To select it, click on it with the
left mouse button, or enter the Geometry Viewer and make it the current object.

particle advector can receive input from the samplers module. samplers outputs a
list of points in space, and these points become the starting location for advecting
particles. When particle advector receives input from the samplers module, the
Mesh Res dial, and the Show Bounds and Surface buttons disappear from the con-
trol panel. If particle advector does not receive input from the samplers module, par-
ticles can only be advected from a plane sample; the point, circle, and space options
are not available.

33333333333333333333333333
AVS Module Reference Manual 361

particle advector3333333333333333333
Note that, using the Stop Advection button, it is possible to advect a batch of parti-
cles, stop their progress, reposition the sample plane, and then advect another batch
with new parameter settings from a different location. Turn Stop Advection off to set
both groups of particles in motion.

On systems without hardware sphere rendering, you can represent the polyhedrons
that render more quickly using the spheres Subdivision slider on the Geometry
Viewer’s Objects submenu.

INPUTS
Data Field (required; field 3D 3-vector float any-coordinates)

The input data must be a 3D field, representing a volume of points. The
data value for each point must be a 3D vector of floats. The input field
can be uniform, rectilinear, or irregular.

Sample Input (optional; field irregular, from samplers module)
This leftmost input port is meant to connect to the output of the
samplers module. samplers creates a field that is nothing but a series of
locations. particle advector uses these locations as the starting positions
for advecting particles. If particle advector does not receive input from
the samplers module, particles can only be advected from a plane sam-
ple; the point, circle, and space options are not available.

Upstream Transform (optional, invisible, autoconnect)
When the particle advector and geometry viewer modules coexist in a
network, they communicate through a normally-invisible data port.
"particle.advect" shows up as an object in the Geometry Viewer. When
you select the particle.advect object and move it, geometry viewer
informs the particle advector module what the sample’s new location is,
and the particle advector module recalculates the location and data it is
displaying accordingly. This module connection occurs automatically.
The effect is to give you direct mouse manipulation control over the par-
ticle advector module’s sample of locations. Note that, when particle
advector receives sample input from the samplers module, the bounds of
the "particle.advect" object are not visible, and particle advector’s Show
Bounds parameter is disabled.

Synchronize (optional, invisible)
The particle advector is an asynchronous coroutine module. There may
be some instances when you will want to synchronize the module to the
rest of your network. When this input port is connected to another
module’s output port, the particle advector module will only fire when
the input port changes value. By disconnecting the input port, the
module will go back to asynchronous computation.

PARAMETERS
Various aspects of the particle advection process can be adjusted interactively.

Mesh Res The number of particles is controlled by the mesh res parameter. The
total number in each batch is mesh_res ∗ mesh_res.

Tracer Length
Integer dial which controls the length of the tracer output which shows
the trajectory of each advected particle. The default is 0; higher numbers
produce longer tracers.

Time Step Adjusts a scalar that multiplies the magnitude of the vector along which
each particle is travelling. This causes successive positions of particles to
be more widely spaced. (See also the Color parameter.)

33333333333333333333333333
362 AVS Module Reference Manual

particle advector3333333333333333333
size Controls the radius of the particles, which are rendered as spheres.

The default size is zero; this causes the particles to be rendered as points
(individual pixels).

Advect batch
Triggers the release of a batch of particles.

Stop Advection
Temporarily halts this module.

Replay Advection
Restarts the advection using the current settings of all parameters.

Reset Particles
Sets the total number of particles to zero.

Show Bounds
(toggle) Controls the visibility of the mesh of particles.

Color (toggle) If ON, colors the line segments to indicate how fast the particles
are travelling through the velocity field:

red fastest
yellow
green
cyan
blue stopped

Surface Creates a solid shaded mesh. The coloring scheme is the same as that
used with the Color parameter.

method (radio buttons) The buttons Euler and Runge-Kutta select the method
used to calculate the next position of a sample particle. The Euler
method is faster, involving a single vector in the input field. The Runge-
Kutta method involves an interpolation, and produces considerably
more accurate results.

Tracer Style
(radio buttons) Specifies the form of the tracers output:

cap Short lines that show the beginning trajectory of each
advected particle. The particles eventually "break free" of
these lines, after which the particles continue to move, but
the lines do not.

cycle Short lines that show the last few interations of the flow.
These lines appear to be "tails" attached to the advected par-
ticles.

end Continuous lines that show the entire trajectories of the par-
ticles.

OUTPUTS
Particles (geometry)

This output is an AVS geometry that represents the batch of particles
advected into the input vector field.

Tracers (geometry)
This output is a set of tracer lines (analogous to stream lines) produced
by the sample particles. The tracer style parameter controls the form that
these lines take.

33333333333333333333333333
AVS Module Reference Manual 363

particle advector3333333333333333333
EXAMPLE

In the following network, read field reads in a 3D scalar field, and compute gradient
calculates a 3-vector for every field location.
READ FIELD

|

+------------------+

| |

COMPUTE GRADIENT VOLUME BOUNDS

| |

| |

PARTICLE ADVECTOR |

| |

| +--------------+

|---|

|

GEOMETRY VIEWER

RELATED MODULES
Vector operations:

vector curl, vector div, vector grad, vector mag, vector norm
Additional geometries:

volume bounds
arbitrary slice
isosurface

Geometric rendering:
geometry viewer
render manager
render geometry
display pixmap

SEE ALSO
The example script PARTICLE ADVECTOR demonstrates the particle advector
module.

33333333333333333333333333
364 AVS Module Reference Manual

pdb to geom3333333333333333333
NAME

pdb to geom – create molecule geometry from Protein Data Bank(PDB) file

SUMMARY
Name pdb to geom

Availability this module is in the unsupported library

Type data

Inputs none

Outputs geometry

Parameters Name Type Choices
Data file browser
Render Mode choice ball and stick, ball, stick,

colored stick, colored residue

DESCRIPTION
The pdb to geom module reads the description of a molecule from a file in the
Brookhaven Protein Data Bank (PDB) data format. Typically, such files have a .pdb
filename suffix. The output is an AVS geometry description of the molecule.

PARAMETERS
Data File A file browser allows you to specify the name of the .pdb file containing

the molecule description.

Mode The type of geometry produced:

ball and stick
Small spheres represent the atoms, and white lines represent the
bonds.

ball
Large spheres represent the atoms.

stick
White lines represent the bonds.

colored stick
Colored lines represent the atoms and their bonds.

colored residue
Colored lines represent the atoms and their bonds. The color of the
lines represents the type of amino acid that the molecule is in.

OUTPUTS
Molecule (geometry)

An AVS geometry description of the molecule.

EXAMPLE
This example shows a simple application of pdb to geom:

PDB TO GEOM

|

GEOMETRY VIEWER

RELATED MODULES
geometry viewer, render geometry

LIMITATIONS
If you read in the same .pdb file name twice, you will get only one instance of the
geometry, not two.

33333333333333333333333333
AVS Module Reference Manual 365

pdb to geom3333333333333333333
Since the .pdb file does not contain any bond information, bonding is determined by
the distances between atoms.

The render Mode is only applied to the last structure if more than one structure is
present.

Readings stops on end-of-file, or "END" line, or any line with just a period "." charac-
ter.

Atom coordinates are from ATOM and HETATM records only.

No futher processing is applied to the atom coordinates. I.e., it is assumed: 1) that
the structure contains only one segment; and 2) that all non-protein atoms (solvent,
inhibitors) and non-realistic atoms (disorder atoms) are protein atoms.

SEE ALSO
The example script PDB TO GEOM demonstrates the pdb to geom module.

33333333333333333333333333
366 AVS Module Reference Manual

pixmap to image3333333333333333333
NAME

pixmap to image – transform AVS pixmap to AVS image

SUMMARY
Name pixmap to image

Availability this module is in the unsupported library

Type mapper

Inputs pixmap

Outputs image (field 2D 4-vector byte)

Parameters none

DESCRIPTION
Note: The geometry viewer module superceded render geometry in AVS 4.
geometry viewer outputs an AVS image directly. There is thus little need for this
older pixmap to image module. It is retained in the unsupported module library for
backward compatibility only.

The pixmap to image module takes an AVS pixmap as input and outputs an AVS
image ("field 2D 4-vector byte"). The pixmap is an X Window System resource used
to store image data in the X server. This reduces the amount of data AVS must pass
between modules: a pixmap id and window id.

The 4-vector byte representation for the image consists of pixels that look like this:

auxiliary
11
1
333333333333

11
1333333333333

red
11
1
333333333333

11
1333333333333

green
11
1
333333333333

11
1333333333333

blue
11
1
333333333333

11
1333333333333

11
1

this field interpreted as
pixel’s opacity value

these three fields make up
pixel’s color value

The high-order byte field (auxiliary) is generally unused, but sometimes contains
alpha (opacity) information on a per-pixel basis.

The pixmap must be entirely on screen and unobscured by other windows or the
results of the conversion will be unpredictable.

INPUTS
pixmap (required; pixmap)

The input is any AVS pixmap.

OUTPUTS
image (field 2D 4-vector byte)

The output data is a 2D block of pixels. The data set at each point of the
2D field will be a 4-vector of bytes in the AVS image format.

EXAMPLE
This module is useful for converting the output of data output modules (e.g. render
geometry) into images for writing to a file.

33333333333333333333333333
AVS Module Reference Manual 367

pixmap to image3333333333333333333
READ GEOM

|

|

RENDER GEOMETRY

|

|

PIXMAP TO IMAGE

|

+_________________+

| |

DISPLAY IMAGE WRITE IMAGE

RELATED MODULES
Image processing:

contrast, threshold, histogram stretch, clamp, interpolate,
colorizer, generate colormap

Renderers which generate pixmaps:
render geometry

Display an image:
display image
image viewer

Pixmap manipulation and display:
transform pixmap, display pixmap

LIMITATIONS
The "Refine" function in a transform pixmap module that is upstream of a pixmap to
image module does not work.

33333333333333333333333333
368 AVS Module Reference Manual

print field3333333333333333333
NAME

print field – create an ASCII printable/readable version of an AVS field

SUMMARY
Name print field

Availability Imaging, Volume, FiniteDiff module libraries

Type data output

Inputs field any-dimension n-vector any-data any-coordinates

Outputs none

Parameters Name Type Default Min Max
Display Header switch on
Display Data switch on
Max Elements integer dial 1 1 5000
Output File typein /tmp/pfield...
Min X typein 0 0 1000000
Max X typein -1 -1 1000000
Min Y typein 0 0 4096
Max Y typein -1 -1 4096
Min Z typein 0 0 4096
Max Z typein -1 -1 4096
Min W typein 0 0 1000
Max W typein -1 -1 1000

DESCRIPTION
The print field module creates a human-readable version of a portion of the contents
of an AVS field. The information takes two forms: it is displayed in an Output
Browser widget on the AVS control panel, and it is written to a online file. print
field is useful whenever you need to inspect the actual contents of an AVS field. For
example, if you are using the import to field module, print field can show whether
you importing the data correctly.

If the Display Header toggle is on, print field displays just the header information,
showing the number of dimensions (Ndim), the size of each dimension (Dims), the
number of coordinate dimensions (Nspace), the vector length (Veclen), the data type
(real, integer, byte, etc.), the size of each data element in bytes (Size), the coordinate
type (uniform, rectilinear, or curvilinear), and the minimum and maximum data
extent. If the information is present, it will also display any labels, any units and
minimum or maximum data values associated with the field.

If the Display Data switch is toggled, print field also displays the data contents of
the field and its coordinate values. An integer dial regulates how many values (to a
maximum of 5000) are shown. A scrollbar lets you scroll vertically through the data
elements outside the normal scope of the display widget.

By default, print field starts at X, Y, Z values 0, 0, 0 and starts counting up with the X
value turning over most quickly. However, you can display any rectangular section
of the data by setting the minimum and maximum coordinate values for X, Y, Z, and
(if present) W.

Whenever you change any of the parameter settings, print field rewrites the Output
File, as well as changing the display in the Output Browser widget.

The window in which print field displays its output can be resized, like any other
widget, using the AVS Layout Editor. For a detailed description of how to do this,
see the section titled "Layout Editor," in the chapter The Network Editor Subsystem
of the AVS User’s Guide.

33333333333333333333333333
AVS Module Reference Manual 369

print field3333333333333333333
INPUT

Data Field (required; field any-dimension n-vector any-data any-coordinates)
The input AVS field can be 1, 2, 3, or 4 dimensional.

PARAMETERS
Display Header

A toggle switch that controls whether print field displays and writes the
field’s header information (dimensionality, type, etc.) It is on by default.

Display Data
A toggle switch that controls whether print field displays and writes the
field’s data and coordinate information. It is off by default.

Max Elements
An integer dial that controls how many elements of the field are
displayed and written to the output file. The default is 1, which displays
and writes one value. The maximum for any one display and file write is
5000 elements. You can use the scrollbar at the side of the Output
Browser widget to see values vertically outside the window. You can
look at the file output version of the field if too much data is clipped hor-
izontally by the Output Browser widget. or resize the widget using the
Layout Editor.

Output File
An ASCII typein for specifying the output file. By default, print field
writes to a file in the /tmp directory called pfield_nnnn, where nnnn is the
process id of the print field module. The Output File is rewritten when-
ever any of the other parameters change.

Min X
Max X
Min Y
Max Y
Min Z
Max Z
Min W
Max W Integer typeins that define a rectangular section of the field to display

and write to the Output File. Whatever values are entered here, Max
Elements regulates the total number of elements that will be output.
print field does not check to see that the values entered are within the
actual dimensions of the field, or that the number of dimensions match,
but it will not exceed the actual dimensions of the field. 1, 2, 3 and 4
dimensional fields are supported. By default, minimum values are set to
0, while the maximum values are -1, causing as much of the field in that
dimension to be displayed as Max Elements allows.

EXAMPLE 1
The following network converts some data into an AVS field, displays the contents of
the new field, and gives the person the option of writing the new AVS field per-
manently to disk. For details on converting data into AVS field format, see the man
page for read field.

33333333333333333333333333
370 AVS Module Reference Manual

print field3333333333333333333
READ FIELD

|

|--------------|

| |

PRINT FIELD WRITE FIELD

RELATED MODULES
compare field

LIMITATIONS
print field writes to /tmp by default. This can cause problems if: (1) there is no /tmp
mounted on your system, (2) the /tmp directory does not have very much room in it
or has inaccessible protections.

SEE ALSO
The example scripts PRINT FIELD, and FIELD MATH demonstrate the print field
module.

33333333333333333333333333
AVS Module Reference Manual 371

probe3333333333333333333
NAME

probe – interactively show numeric data values in a geometry rendered field

SUMMARY
Name probe

Availability Volume, FiniteDiff module libraries

Type mapper

Inputs field 3D n-vector any-data any-coordinates
colormap (optional)
field irregular (optional, from samplers module)
upstream transform (optional, invisible, autoconnect)
upstream geometry (optional, invisible, autoconnect)

Outputs geometry
upstream transform (optional, invisible, autoconnect)

Parameters Name Type Default
Sampling Style choice Point
Probe Type choice Cursor
Pick Geometry boolean off

DESCRIPTION
Scientific visualization converts numbers into colored pictures. However, after you
have a picture, you often want to be able to get back and examine the numbers that
are producing it.

The probe module displays the numeric data values in a field at a location in space.
It works for fields that have been rendered as an AVS geometry. It works for uni-
form, rectilinear, and irregular coordinates, and for any data type. It works for both
scalar and vector fields.

probe works by creating a cursor-like object titled "probe" that coexists in the
Geometry Viewer window with the rendered version of the field data. Its initial
position is 0,0,0; the origin. You deal with this probe object just like any other object
in the Geometry Viewer. As you move the "probe" object through space, it reports its
location and the data value at that location.

There are two major ways to use the probe:

d With the Pick Geometry option off, the "probe" object in the Geometry Viewer
acts like any other object. To find a data value at a particular location in space,
you make "probe" the current object and move it to that location. The movement
can be direct manipulation using the usual Geometry Viewer mouse-button com-
mands (e.g., right button moves object left and right); or, if that is too awkward
and imprecise, you can use the Geometry Viewer’s "Transformation Selection"
panel and have the "probe" object jump to any absolute or relative point in space.
As the probe travels, it continuously reports its location and the data value
beneath it.

d With the Pick Geometry option on, data sampling is more a "point the mouse
cursor and click" technique. Select "probe" as the current object in the Geometry
Viewer, point at the object surface you want to sample with the mouse cursor,
then press the left mouse button. The probe object snaps to the surface beneath
the cursor and reports the data value.

The Geometry Viewer tells the probe module what vertex the mouse cursor was
over when the button was pressed, and probe reports the original data value at
that vertex.

33333333333333333333333333
372 AVS Module Reference Manual

probe3333333333333333333
When reporting data values for vector fields, probe lists the values of all the vec-
tor elements. If the probe is being colored with the data values., the color shown
is SQRT(vec0∗∗2 + vec1∗∗2 + vec2∗∗2 ...), in other words, the magnitude of the
data vector, mapped to the range of the current colormap.

INPUTS
Data Field (required; field 3D n-vector any-data any-coordinates)

The input field is 3D, scalar or vector, uniform or rectilinear or irregular,
of any data type.

Colormap (optional)
If an AVS colormap is supplied to the center input port, the color of the
probe object in the Geometry Viewer will change according to the data
value it is pointing at. I.e., if it is pointing at a "low" value with the
default colormap from generate colormap, the probe object will be blue;
it it is pointing at a "high" value, it will be red.

Data Field (optional; field irregular)
This leftmost input port is meant to connect to the output of the
samplers module. samplers creates a field that is nothing but a series of
locations. probe will take these locations and display the data values
associated with them.

Upstream Transform (optional, invisible, autoconnect)
When the probe and geometry viewer modules coexist in a network,
they communicate through a normally-invisible data port. "Probe"
shows up as an object in the Geometry Viewer. When you select the
probe object and move it, geometry viewer informs the probe module
what the probe’s new location is, and the probe module recalculates the
location and data it is displaying accordingly. This module connection
occurs automatically. The effect is to give you direct mouse manipula-
tion control over the probe module’s "probe" object.

Upstream Geometry (optional, invisible, autoconnect)
Used by the Pick Geometry’s "point cursor and click" technique, this
normally invisible port is what the geometry viewer module uses to
inform probe of the geometry vertex selected so it can display the data
value for it. The module connection occurs automatically.

PARAMETERS
Sampling Style

A pair of radio buttons that specify what sampling technique to use to
report the data values.

point means that, if the probe/cursor is pointing between actual nodes on
the data lattice, it will display the real data value for the nearest node.
This is the faster sampling technique.

Trilinear means that, if the probe/cursor is pointing between actual
nodes on the data lattice, it will calculate a data value that is a trilinear
interpolation of the eight nearest real node data values.

Probe Type
A set of radio buttons that control what the "probe" object looks like in
the Geometry Viewer.

Cursor creates a probe that looks like a miniature XYZ axis.

33333333333333333333333333
AVS Module Reference Manual 373

probe3333333333333333333
Crosshair creates a probe that looks like half of a miniature

XYZ axis. The crosshair stays aligned with the axis, and its
endpoints lie in the XY, YZ, and XZ planes.

Probe creates a probe that looks like an electronic probe
or a dissecting needle.

Pick Geometry
A boolean switch that controls whether one moves the "probe" object like
any Geometry Viewer object by selecting it as the current object and
translating it with mouse button commands or the Transformation Selec-
tions panel (the default, off); or whether one selects data by pointing to
an object’s verticies with the mouse cursor and pressing the left mouse
button.

OUTPUTS
Geometry (geometry)

The output geometry has two parts:

The rendering of the "probe" object, and;

The rendering of the "Text for Probe" that lists the data value and coordi-
nate position.

Upstream Transform (optional, invisible, autoconnect)
If probe is connected to the samplers module, it uses this port to relay
movement information from render geometry back up the network to
samplers.

EXAMPLE 1
The following network inputs a curvilinear scalar field, scales the color values to the
actual data range, displays it through arbitrary slicer, with a colorized "probe" object,
surrounded by volume bounds:

read field

|

generate colormap |

| |

| |----------|

| | |

color range |----------------|---------------|

| | | |

|-----|----- | -------------| | |

| | | | |

| | |--| | | |

arbitrary slicer | probe volume bounds

| | | |

|-----------------|-----------------|

| |

geometry viewer |

|-----|

RELATED MODULES
Modules that could provide the Data Field input:

read volume
read field
read plot3d

Modules that could provide the colormap input:

33333333333333333333333333
374 AVS Module Reference Manual

probe3333333333333333333
generate colormap
color range

Modules that could provide the Sample field input:
samplers

Modules that can process probe output:
geometry viewer
render geometry

SEE ALSO
The example script PROBE demonstrates the probe module.

33333333333333333333333333
AVS Module Reference Manual 375

read field3333333333333333333
NAME

read field – read AVS field from a disk file, or import data files into AVS field format

SUMMARY
Name read field

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data

Inputs none

Outputs field same-dimension same-vector same-data same-coordinates

Parameters Name Type Default
Read File browser
Auto/
Portable(XDR) choice Auto

DESCRIPTION
The read field module has two input modes:

d In its first input mode, it reads an AVS field data structure from a disk file into a
network. The format of an AVS field file is discussed below in the "Native Field
Input" section.

d In its second input mode, it converts data stored in ASCII, Fortran unformatted,
or pure binary data files into AVS field format. read field can thus be used to
import some datasets into the AVS system. (The file descriptor module also per-
forms this function, but with more flexibility.)

The two input modes—"native field input" and "data-parsing input"—are described
separately in the sections below.

PARAMETERS
Read File A file browser window to specify the name of the file to be read.

Auto/Portable(XDR)
A pair of radio buttons that control how read field will interpret binary
AVS field input files.

Auto
If Auto is selected, then read field will examine the ASCII header’s
"data=" line. If the file is described as just "data=integer", or
"data=float", then read field assumes that the field file’s binary data
format is compatible with the system on which the read field
module is executing. If the file is described as "data=xdr_float",
"data=xdr_integer", or "data=xdr_double", then read field assumes
that the binary area of the field file is written in machine-
independent XDR (external data representation) format and will
translate the binary portion of the field file into the binary format of
the system on which the read field module is executing.

Portable(XDR)
If this is selected, then read field assumes that the binary portion of
the field file is written in machine-independent XDR format (no
matter what the ASCII header says) and will translate the binary
portion of the field file into the binary format of the system on
which the read field module is executing.

See the "Binary Compatibility on Different Hardware Platforms" section below for
more information on this feature.

33333333333333333333333333
376 AVS Module Reference Manual

read field3333333333333333333
NATIVE FIELD INPUT

read field can read files in the native AVS field file format into an AVS network. An
AVS field file (suffix .fld) has the following components:

d An ASCII header that describes the field

d Two separator characters that divide the ASCII header from the data and coordi-
nate information

d A binary area containing the data and coordinate information

The write field module creates files in this format.

ASCII Header
The ASCII header contains a series of text lines, each of which is either a comment or
a TOKEN=VALUE pair. For example, the following header created by the write field
module defines a field of type "field 2D 4-vector byte", which is the AVS image for-
mat:
AVS field file

creation date: Fri Aug 23 11:23:27 1991

#

ndim=2 # number of dimensions in the field

dim1=500 # dimension of axis 1

dim2=480 # dimension of axis 2

nspace=2 # number of physical coordinates per point

veclen=4 # number of components at each point

data=byte # portable data format

field=uniform # field type (uniform, rectilinear, irregular)

min_ext=0.000000 0.000000 # coordinate space extent

max_ext=499.000000 479.000000 # coordinate space extent

label= alpha red green blue

min_val=0 0 0 0 # minimum data values for each data component

max_val=0 255 255 255 # maximum data values for each data component

The first three lines are comments, indicated by the # character. Note that the first
line of the header must begin as follows:
AVS

In this example, comments also occur at the end of each line. Any characters follow-
ing (and including) # in a header line are ignored. Comments are not required.

Separator Characters
The ASCII header must be followed by two formfeed characters (i.e. Ctrl-L, octal 14,
decimal 12, hex 0C), in order to separate it from the binary area. This scheme allows
you use the more(1) shell command to examine the header. When more stops at the
formfeeds, press q to quit. This avoids the problem of the binary data garbling the
screen.

Binary Area
The size (in bytes) of the binary area depends on the field type:

d For uniform fields, the binary area contains data values followed by the coordi-
nate values.

Coordinate information is limited to minimum and maximum extent fullword
values for each physical dimension (n-space) of the data. The minimum and
maximum extent values in the coordinate binary area are copies of the min_ext
and max_ext values in the field data structure, except when the field has been
cropped, downsized, or interpolated. Then the field data structure contains the

33333333333333333333333333
AVS Module Reference Manual 377

read field3333333333333333333
original field’s min_ext and max_ext values, while the coordinate section of the
binary area contains the minimum and maximum extent of the subsetted data.
Mapper modules can use this additional extent information to properly locate
their geometric representation of the subsetted data in world coordinate space.
The extents in the coordinate binary area are stored in this order: minimum x,
maximum x, minimum y, maximum y, minimum z...etc.

Thus, the size of the binary area is the product of the following numbers:
value of dim1 (product of sizes of computational dimensions
value of dim2 yields total number of field elements)
...
value of dimx
value of veclen (number of data values per field element)
size of data (byte size of primitive data type)

Plus:
8 ∗ value of nspace (2 coordinates per dimension, 4 bytes per coordinate)

In the stream of data values:

d All the data values for a field element are stored together.

d The first array index varies most quickly (FORTRAN-style).

d For rectilinear fields, the binary area contains both data values and coordinates
for each scalar data value or vector of data values. The data values occupy the
same amount of space as for a uniform field. Each coordinate is a single-
precision floating-point number (4 bytes), and there is one coordinate for each
array index in each dimension of computational space. Thus, the size of the coor-
dinates area is:

(dim1 + dim2 ... + dimx) ∗ 4
All of the X-coordinates are stored together, at the beginning of the coordinates
area. Following these are all the Y-coordinates, and so on.

d For irregular fields, the data area contains both data values and coordinates. The
data values occupy the same amount of space as for a uniform field. Each coordi-
nate is a single-precision floating-point number (4 bytes), and each field element
is mapped to a point in nspace-dimensional physical space. Thus, the size of the
coordinates area is:

(dim1 ∗ dim2 ... ∗ dimx) ∗ nspace ∗ 4
As with rectilinear field, all of the X-coordinates are stored together, at the
beginning of the coordinates are. Following these are all the Y-coordinates, and
so on.

Binary Compatibility on Different Hardware Platforms
Memory addressing on 32-bit systems is usually divided into two major hardware
classes:

"Big-endian"
32-bit words are divided into 4 8-bit bytes, where the high-order byte is
byte 0. Systems with this organization include Sun, Hewlett-Packard,
and IBM workstations.

"Little-endian"
32-bit words are divided into 4 8-bit bytes, where the low-order byte is
byte 0. Systems with this organization include Digital Equipment Cor-
poration workstations.

33333333333333333333333333
378 AVS Module Reference Manual

read field3333333333333333333
Binary byte data are compatible between the two kinds of systems. Binary integer,
floating point, and double-precision floating point data are not compatible between
the two kinds of systems. For example, an integer AVS field file written on a Sun
workstation would not normally be readable on a DEC workstation.

To make AVS field data interchangeable among platforms, the write field module
has a Native/Portable(XDR) switch. Selecting Portable(XDR) will write the binary
area of the field in Sun’s external data representation (XDR). The field header will
show "data=xdr_integer|xdr_float|xdr_double". If Native is selected, the field
header will contain a comment at the end of the "data=" line stating what platform
the field file was created on. read field uses its Auto/Portable(XDR) switches to
either examine the ASCII header for the "data=xdr_" flag, or to force reading the data
file as XDR format no matter what the ASCII header says. (Note: XDR format is sim-
ply 32-bit "big-endian" integers and IEEE standard format floating point.)

EXAMPLE 1
The following ASCII header describes a volume (3D uniform field) with a single byte
of data for each field element. This format might be used to represent CAT scan data.
AVS field file

ndim=3 # number of dimensions in the field

dim1=64 # dimension of axis 1

dim2=64 # dimension of axis 2

dim3=64 # dimension of axis 3

nspace=3 # number of physical coordinates per point

veclen=1 # number of components at each point

data=byte # data type (byte, integer, float, double)

field=uniform # field type (uniform, rectilinear, irregular)

In the binary area, the data area occupies this amount of space:
(64 ∗ 64 ∗ 64) ∗ 1 ∗ 1 = 262,144 bytes

The coordinates area occupies (2 ∗ 4) ∗ 3 bytes. The total binary area occupies 262,168
bytes.

EXAMPLE 2
The following ASCII header describes a volume (3D uniform field) whose data for
each field element is a 3D vector of single-precision values. This format might be
used to represent the wind velocity at each point in space. This field file is written in
XDR format.
AVS field file

ndim=3 # number of dimensions in the field

dim1=27 # dimension of axis 1

dim2=25 # dimension of axis 2

dim3=32 # dimension of axis 3

nspace=3 # number of physical coordinates per point

veclen=3 # number of components at each point

data=xdr_float # portable data format

field=uniform # field type (uniform, rectilinear, irregular)

In the binary area, the data area occupies this amount of space:
(27 ∗ 25 ∗ 32) ∗ 4 ∗ 3 = 259,200 bytes

The coordinates area occupies (2 ∗ 4) ∗ 3 bytes. The total binary area occupies 259,224
bytes.

EXAMPLE 3
The following ASCII header describes an irregular volume (3D irregular field) with
one single-precision value for each field element. The binary area includes an (X,Y,Z)

33333333333333333333333333
AVS Module Reference Manual 379

read field3333333333333333333
coordinate triple for each field element, indicating the corresponding point in physi-
cal space. This format might be used to represent fluid flow data.
AVS field file

ndim=3 # number of dimensions in the field

dim1=40 # dimension of axis 1

dim2=32 # dimension of axis 2

dim3=32 # dimension of axis 3

nspace=3 # number of physical coordinates per point

veclen=1 # number of components at each point

data=float # data type (byte, integer, float, double)

field=irregular # field type (uniform, rectilinear, irregular)

In the binary area, the data area occupies this amount of space:
(40 ∗ 32 ∗ 32) ∗ 4 ∗ 1 = 163,840 bytes

The coordinates area occupies this amount of space:
(40 ∗ 32 ∗ 32) ∗ 4 ∗ 3 = 491,520 bytes

DATA-PARSING INPUT MODE
In its second input mode, read field can convert a certain class of data stored in
ASCII, Fortran unformatted, or pure binary data files into AVS field format. To
import data into AVS, you must create an ASCII description file that defines the
structure of the AVS field to make. The first part of this description file is identical in
format and meaning to the ASCII header file described above.

The second part of this file contains commands that specify which files contain the
data or coordinate information, its data type (ASCII, binary, or Fortran unformatted)
and simple parsing instructions. read field can read a file that is parseable by this
general scheme:

skip n lines or bytes
move over an offset of m columns on this line (ASCII only)
read the value
do until # of values needed

{
take p stride(s) to the next value
read the value
}

The ASCII description file, data, and coordinate information for rectilinear and irreg-
ular data can all be read from different files. If the resulting AVS field contains a vec-
tor of data values at each point, each vector element can also be read from a separate
file.

The ASCII description file must have a .fld file suffix or the read field file browser
will not display the file.

read field data parsing capablility is meant to be used only once, in order to convert
data to AVS field format. The parsing activity makes read field run more slowly
than when it reads a file that is already in AVS field format. Once you have read
your data using read field’s data-parsing mode, you should use the write field
module to store it permanently on disk in AVS field file format.

Suggestion: While experimenting with read field’s ASCII description file, connect its
output port to the print field module’s input port and use print field. This allows
you to examine the results online, to see whether the data is being interpreted
correctly.

33333333333333333333333333
380 AVS Module Reference Manual

read field3333333333333333333
read field chronicles its progress in a status display below the file browser widget as
it works through the input files to assemble the AVS field.

ASCII Description File
As the example below shows, the ASCII description file contains a series of text lines
that define the AVS field to construct. Each line is either:

d A comment

d A required line in the form token=value

d An optional line in the form token=value

d A variable or coord parsing specification

The following ASCII description file imports three dimensional curvilinear data with
a vector of values at each point into an AVS field of type "field 3D 3-vector irregular
float". This type of data often occurs in computational fluid dynamics applications.
The data and coordinate information are in separate files, both of which were written
as straight binary data. Both files happen to have a serial organization. In the data
file, all of vector element 1’s values appear, then all of vector element 2’s, then all of
vector element 3’s values. In the X, Y, Z coordinate file, all the X coordinate values
appear, then all the Y’s, then all the Z’s.

Each line’s meaning is explained in detail below.
AVS field file the string "# AVS" must be the first

five characters in the file

when a ’#’ character appears in a line,

the rest of the line is a comment

#

ndim=3 # REQUIRED--the number of dimensions in the field

dim1=40 # REQUIRED--dimension of axis 1

dim2=32 # REQUIRED--dimension of axis 2

dim3=32 # REQUIRED--dimension of axis 3

nspace=3 # REQUIRED--number of coordinates per point

veclen=3 # REQUIRED--number of components at each point

data=float # REQUIRED--data type (byte,integer,float,double)

field=irregular # REQUIRED--field type (uniform, rectilinear,irregular)

min_ext=-1.0 -1.0 -1.0 # OPTIONAL--coordinate space extent

max_ext=1.0 1.0 1.0 # OPTIONAL--coordinate space extent

label=x-velocity # OPTIONAL--component label for variable 1

label=y-velocity # OPTIONAL--component label for variable 2

label=z-velocity # OPTIONAL--component label for variable 3

unit=miles-per-second # OPTIONAL--describes unit of measure for variable 1

unit=miles-per-second # OPTIONAL--describes unit of measure for variable 2

unit=miles-per-second # OPTIONAL--describes unit of measure for variable 3

min_val=-2.18 -0.32 -3.73 # OPTIONAL--minimum data values per component

max_val=5.79 3.54 1.50 # OPTIONAL--maximum data values per component

#

For each coordinate X, Y, and Z, where to find it and how to read it

#

coord 1 file=/usr/userid/data/wing.bin filetype=binary skip=12

coord 2 file=/usr/userid/data/wing.bin filetype=binary skip=163852

coord 3 file=/usr/userid/data/wing.bin filetype=binary skip=327692

#

For each value in the vector, where to find it and how to read it

#

33333333333333333333333333
AVS Module Reference Manual 381

read field3333333333333333333
variable 1 file=/usr/userid/data/wdata.bin filetype=binary skip=28

variable 2 file=/usr/userid/data/wdata.bin filetype=binary skip=163868

variable 3 file=/usr/userid/data/wdata.bin filetype=binary skip=327708

Any characters following (and including) # in a header line are ignored.

NOTE: The first five characters in the ASCII description file must be "# AVS" or read
field will not recognize the file as valid.

The example above shows all of the required TOKEN=VALUE token names: an
ASCII description file that is missing one or more of these lines causes read field to
generate an error. Required TOKEN=VALUE pairs are stored in the AVS field that
read field produces as output.

Optional TOKEN=VALUE pairs are stored in the output AVS field as well, if they are
provided. min_ext and max_ext are stored in the output AVS field even if they are
not specified, as read field calculates them if they are not provided.

The variable and coord lines are not stored in the output AVS field. They are only
instructions to read field.

With the exception of filenames, ASCII description file specifications are not case-
sensitive.

d You can surround the = character with any amount of white space (including
none at all). For example, "dim2 = 32", "DIM 2 =32", and "Dim2=32" are all
equivalent.

d Value strings do not have to be padded out to 11 characters.

ndim = value (required)
The number of computational dimensions in the field. For an image,
ndim = 2. For a volume, ndim = 3.

dim1 = value (required)
dim2 = value (required, depending on total number of dimensions)
dim3 = value (required, depending on total number of dimensions)
... The dimension size of each axis (the array bound for each dimension of

the computational array). The number of dimx entries must match the
value of ndim. For instance, if you specify a 3D field (ndim=3), you must
specify the length of the X dimension (dim1), the length of the Y dimen-
sion (dim2), and the length of the Z dimension (dim3).

Note that counting is 1-based, not 0-based.

nspace = value (required)
The dimensionality of the physical space that corresponds to the compu-
tational space (number of physical coordinates per field element).

In many cases, the values of nspace and ndim are the same — the physi-
cal and computational spaces have the same dimensionality. But you
might embed a 2D computational field in 3D physical space to define a
manifold; or you might embed a 1D computational field in 3D physical
space to define an arbitrary set of points (a "scatter").

veclen = value (required)
The number of data values for each field element. All the data values
must be of the same primitive type (e.g. integer), so that the collection of
values is conceptually a veclen-dimensional vector. If veclen=1, the sin-
gle data value is, effectively, a scalar. Thus, the term scalar field is often
used to describe such a field.

33333333333333333333333333
382 AVS Module Reference Manual

read field3333333333333333333
data = byte (one of the four options is required)
data = integer
data = float
data = double

The primitive data type of all the data values. It is possible to specify
"data=xdr_integer|xdr_float|xdr_double" in data parsing input mode as
well as native field input mode. However, it will only work correctly in
the case where the original binary file is in 32-bit big-endian format. The
reverse case will not work.

field = uniform (one of the three options is required)
field = rectilinear
field = irregular

The field type. A uniform field has no computational-to-physical space
mapping. The field implicitly takes its mapping from the organization of
the computational array of field elements.

For a rectilinear field, each array index in each dimension of the compu-
tational space is mapped to a physical coordinate. This produces a physi-
cal space whose axes are orthogonal, but the spacing among elements is
not necessarily equal.

For an irregular field, there is no restriction on the correspondence
between computational space and physical space. Each element in the
computational space is assigned its own physical coordinates.

min_ext = x-value [y-value] [z-value]... (optional)
max_ext = x-value [y-value] [z-value]... (optional)

The minimum and maximum coordinate value that any member data
point occupies in space, for each axis in the data. If you do not supply
this value, read field calculates it and stores it in the output AVS field
data structure. This value can be used by modules downstream to, for
example, size the volume bounds drawn around the data in the
Geometry Viewer or put minimum and maximum values on coordinate
parameter manipulator dials (probe). Values can be separated by blanks
and/or commas.

If you do not know the extents, don’t guess — let read field calculate
them. Most downstream modules use whatever values are supplied,
without checking their validity. If the wrong numbers are specified,
incorrect results will be computed.

label = string1 [string2] [string3]... (optional)
Allows you to title the individual elements in a vector of values. These
labels are stored in the output AVS field data structure. Subsequent
modules that work on the individual vector elements (for example,
extract scalar) will label their parameter widgets with the strings pro-
vided here instead of the default "Channel 0, Channel 1...", etc. You can
either use one label line as shown here, or separate label lines as shown
in the example above. In either case, the labels are applied to the ele-
ments of the vector in the order encountered. You can also label single
scalar values, though downstream modules may ignore such a label.
Any alphanumeric string is acceptable. Strings can be separated by
blanks and/or commas.

33333333333333333333333333
AVS Module Reference Manual 383

read field3333333333333333333
unit = string1 [string2] [string3]... (optional)

Allows you to specify a string that describes the unit of measurement for
each vector element. You can either use one unit line as shown here, or
separate unit lines as shown in the example above. In either case, the
unit specifications are applied to the elements of the vector in the order
encountered. You can also specify the unit for a single scalar value,
though downstream modules may ignore it. Any alphanumeric string is
acceptable. Strings can be separated by blanks and/or commas.

min_val = value [value] [value]... (optional)
max_val = value [value] [value]... (optional)

For each data element in a scalar or vector field, allows you to specify the
minimum and maximum data values. These values are stored in the out-
put AVS field data structure. This is used by subsequent modules that
need to normalize the data. Values can be separated by blanks and/or
commas.

read field does not calculate these values if you do not supply them
(unlike min_ext and max_ext). If you do not know these values, don’t
guess — just leave these optional lines out. In this case, you can use the
write field module to compute these values when it creates an AVS field
file. Most downstream modules use whatever values are supplied,
without checking their validity. If the wrong numbers are specified,
incorrect results will be computed.

variable n file=filespec filetype=type skip=n offset=m stride=p
coord n file=filespec filetype=type skip=n offset=m stride=p

variable specifies where to find data information, its type, and how to
read it.

coord specifies where to find coordinate information, its type, and how to
read it. It is used when the data is rectilinear or irregular.

The individual parameters are interpreted as follows:

n An integer value that specifies which element of a data vec-
tor or which coordinate (1 for x, 2 for y, 3 for z, etc.) the sub-
sequent read instructions apply to. n does not default to 1
and must be specified.

file = filespec
The name of the file containing the data or coordinates. The
filespec can be an absolute full pathname to a file, or it can be
a filespec relative to the directory that contains the field
ASCII header. For example, an absolute pathname might be
/home/myuserid/experiment/data1. Note: the $AVS_PATH
environment variable is not recognized nor interpreted
correctly. You must use a full absolute pathname.

In a relative pathname specification, if the ASCII file of field
parsing instructions exists in the file
/home/myuserid/experiment/readit.fld and the data and coordi-
nate files are in the subdirectory
/home/myuserid/experiment/data, you can name these files as
data/xyzs and data/values. The advantage of this second
approach is that you can move the directories containing
your data around without having to change the contents of

33333333333333333333333333
384 AVS Module Reference Manual

read field3333333333333333333
the ASCII parsing instruction file.

filetype = ascii
filetype = unformatted
filetype = binary

ascii means that the data or coordinate information is in an
ASCII file. In ASCII files, float data can be specified in either
real (0.1) or scientific notation (1.00000e-01) format inter-
changeably.

unformatted means that the data or coordinate information
is in a file that was written as Fortran unformatted data.
(Fortran unformatted data is binary data with additional
words written at the beginning and end of each data block
stating the number of bytes or words in the data block.).
When you are figuring out the skip and stride values below,
you must count the additional words surrounding any
header information that must be skipped over; but ignore
the size words when reading the actual data. See the exam-
ple below.

binary means that the file is written in straight binary for-
mat. such as that produced by Unix output routines, write
and fwrite.

Note the warning on binary compatibility among different
hardware platforms earlier on this man page.

In each case, read field will use the data type specified in the
earlier data={byte,float,integer,double} statement when it
interprets the file.

skip = n For ascii files, skip specifies the number of lines to skip over
before starting to read the data. Lines are demarked by
newline characters.

For binary or unformatted files, skip specifies the number of
bytes to skip over before starting to read the data.

There are two motivations for skip. First, data files often
include header information irrelevant to the AVS field data
type. Second, if the file contains, for example, all X data
values, then all Y data values, skip provides a way to space
across the irrelevant data to the correct starting point.

skip can only be used once at the start of the file. There is no
way to skip, read, stride, then skip again.

You must simply know what value to use for skip based on
your knowledge of the software that produced the original
data file, the number of data elements, and the type (byte,
float, double, integer, etc.)

skip defaults to 0.

offset = m offset is only relevant to ASCII files; it is ignored for binary
or unformatted files. offset specifies the number of columns
to space over before starting to read the first datum. (The
stride specification determines how subsequent data are
read.) Hence, to read the fourth column of numbers in an
ASCII file, use offset=3.

33333333333333333333333333
AVS Module Reference Manual 385

read field3333333333333333333
In ASCII files, columns must be separated by one or more
blank characters. Commas, semicolons, TAB characters, etc.,
are not recognized as delimiters. If necessary, edit ASCII
files to meet this restriction.

offset defaults to 0 (the first column, no columns spaced
over).

stride = p stride assumes you are "standing on" the data value just
read. stride specifies how many "strides" must be taken to
get to the next data value. In ASCII files, stride means stride
forward p delimited items. In binary and unformatted files,
stride means stride forward p × the size of the data type (byte,
float, double, integer). In a file where the data or coordinate
values are sequential, one after the other, the stride would
be 1. Note that this presumes homogeneous data in binary
and unformatted files — double-precision values could not
be intermixed with single precision values.

stride defaults to 1.

The stride value will be repeatedly used until the number of
data items indicated by the product of the dimensions (e.g.
dim1 × dim2 × dim3) have been read.

Here are some skip, offset, and stride examples for ASCII data. "A’s" are vector
component 1; "B’s" are vector component 2. There are more examples at the end of
this manual page.

ASCII file organization 1:
X Y Z A B

1 1 1 A1 B1

2 2 2 A2 B2

3 3 3 A3 B3

4 4 4 A4 B4

5 5 5 A5 B5

to read A: skip=1, offset=3, stride=5
to read B: skip=1, offset=4, stride=5

ASCII file organization 2:
A1 A2 A3 A4 A5

A6 A7 A8 A9 A10

A11 A12 A13 A14 A15

B1 B2 B3 B4 B5

B6 B7 B8 B9 B10

B11 B12 B13 B14 B15

to read A: skip=0, offset=0, stride=1
to read B: skip=3, offset=0, stride=1

ASCII file organization 3:
A1 B1 A2 B2 A3 B3

A4 B4 A5 B5 A6 B6

A7 B7 A8 B8 A9 B9

A10 B10 A11 B11 A12 B12

to read A: skip=0, offset=0, stride=2
to read B: skip=0, offset=1, stride=2

33333333333333333333333333
386 AVS Module Reference Manual

read field3333333333333333333
ASCII file organization 4:
TEMP1=A1 TEMP2=A2 TEMP3=A3 TEMP4=A4

TEMP5=A5 TEMP6=A6 TEMP7=A7 TEMP8=A8

PRESS=B1 PRESS=B2 PRESS=B3 PRESS=B4

PRESS=B5 PRESS=B6 PRESS=B7 PRESS=B8

read field cannot read this file until
the data labels and equal signs are edited out.

EXAMPLE 4
You have some 3-dimensional, curvilinear data that projects the amount and location
of wood that will be eaten after five years by a colony of termites that has entered a
14th century Scandanavian grain silo structure at a particular spot in its base. The
data is in one ASCII file, decay.dat, as a long sequential, numbered list of 1250
consumed-wood values that looks like this:
1,1002.707;

2,1443.971;

3,1307.069;

4,1240.354;

5,1778.715;

...

The coordinates that correspond to the data values are in a separate ASCII file,
where.coord, that looks like this:
LOC,1,0,0.2500000,0.0000000e+00,1.105255,0.0000000e+00;

LOC,2,0,0.2500000,0.0000000e+00,1.000000,0.0000000e+00;

LOC,3,0,0.5000000,0.0000000e+00,1.552552,0.0000000e+00;

LOC,4,0,0.5000000,0.0000000e+00,1.442042,0.0000000e+00;

LOC,5,0,0.5000000,0.0000000e+00,1.331531,0.0000000e+00;

...

In the data file, the second column represents the data. In the coordinate file, the
fourth through sixth columns are the x, y, and z coordinates, respectively.

First, to read this data, you must use a text editor to globally edit out the commas
and semi-colons, changing them to spaces. The files now look like:
1 1002.707

2 1443.971

...

LOC 1 0 0.2500000 0.0000000e+00 1.105255 0.0000000e+00

LOC 2 0 0.2500000 0.0000000e+00 1.000000 0.0000000e+00

...

The following ASCII description file, decay.fld, would import the data into AVS field
format.
AVS Field File

#

Termite Decay after Five Years

#

ndim=3 # number of dimensions in the field

dim1=25 # dimension of axis 1

dim2 =10 # dimension of axis 2

dim3 =5 # dimension of axis 3

nspace=3 # number of physical coordinates

veclen=1 # number of elements at each point

33333333333333333333333333
AVS Module Reference Manual 387

read field3333333333333333333
data=float # data type (byte, integer, float, double)

field=irregular # field type (uniform, rectilinear, irregular)

coord 1 file = where.coord filetype=ascii offset = 3 stride = 7

coord 2 file = where.coord filetype=ascii offset = 4 stride = 7

coord 3 file = where.coord filetype=ascii offset = 5 stride = 7

variable 1 file = decay.dat filetype=ascii offset =1 stride = 2

In this example, the ASCII description file decay.fld is in the same directory as the
where.coord and decay.dat files. If it were in a different directory, you could either give
a pathname relative to decay.fld’s position, (e.g., ../data/where.coord or data/decay.dat,
etc.), or an absolute pathname to the files.

EXAMPLE 5
The following ASCII description file specifies how to convert the volume data in the
file $AVS_PATH/data/volume/hydrogen.dat into an AVS field. hydrogen.dat is a series of
binary byte values that represent the probability of finding an electron at various
locations around a hydrogen nucleus. The first three bytes in the file give the X, Y,
and Z dimensions of the data—however, this information is not part of the actual
data and must be skipped over. You could examine these three bytes and determine
what to use for the dimensions in the ASCII description file. Thereafter, it is just a
matter of reading successive bytes. offset is not used because this is not an ASCII
file. stride is allowed to default to 1. Note that, because the $AVS_PATH construct is
not recognized, the example uses a full absolute pathname of /usr/avs/... to find the
file.
AVS field file

ndim=3 # number of dimensions in the field

dim1=64 # dimension of axis 1

dim2=64 # dimension of axis 2

dim3=64 # dimension of axis 3

nspace=3 # number of physical coordinates per point

veclen=1 # number of components at each point

data=byte # data type (byte, integer, float, double)

field=uniform # field type (uniform, rectilinear, irregular)

variable 1 file=/usr/avs/data/volume/hydrogen.dat filetype=binary skip=3

EXAMPLE 6
This ASCII description file specifies how to use read field to convert the image data
in $AVS_PATH/data/image/mandrill.x into an AVS field. The first two words in
mandrill.x are 32-bit integers that specify the horizontal and vertical dimensions of
the image. This information must be skipped over — you must supply it in the
ASCII description file. Thereafter, mandrill.x is a succssion of 32-bit straight binary
words, one word per pixel. However, in AVS, each of these words is considered to
be a vector of 4 bytes. The first byte is the "alpha" (or "transparency") value for the
pixel, and the second through fourth bytes are the red, green, and blue values for
each pixel. Thus, this whole file is treated as a series of binary bytes. Note that,
because the $AVS_PATH construct is not recognized, the example uses a full absolute
pathname of /usr/avs/... to find the file.
AVS field file

#

ndim = 2 # number of dimensions in the field

nspace=2 # number of physical coordinates

dim1=500 # dimension of axis 1

dim2=480 # dimension of axis 2

veclen=4 # number of components at each point

data=byte # data type (byte, integer, float, double)

33333333333333333333333333
388 AVS Module Reference Manual

read field3333333333333333333
field=uniform # field type (uniform, rectilinear, irregular)

label = alpha, red, green, blue # labels the vector elements

variable 1 file=/usr/avs/data/image/mandrill.x filetype=binary skip=8 stride=4

variable 2 file=/usr/avs/data/image/mandrill.x filetype=binary skip=9 stride=4

variable 3 file=/usr/avs/data/image/mandrill.x filetype=binary skip=10 stride=4

variable 4 file=/usr/avs/data/image/mandrill.x filetype=binary skip=11 stride=4

EXAMPLE 7
This ASCII description file reads a FORTRAN unformatted ARC 3D dataset. The file
is 34x34x34, made up of floating point numers. It is irregular, therefore there is both
computational and coordinate data, in this case in two separate files. The vector
length is six. The data file is written as a 24 byte header that must be skipped over
followed by all vector 1 values, all vector 2 values, etc. The coordinate file is written
as a 12 byte header (a fullword for each of the X, Y, and Z dimensions) followed by
all X coordinates, all Y coordinates, then all Z coordinates. The person is using a rela-
tive file specification—the filenames will be interpreted relative to the directory of
the ASCII description file.
AVS field file

to read an Arc 3D FORTRAN unformatted file that’s 34x34x34

ndim = 3

dim1 = 34

dim2 = 34

dim3 = 34

nspace = 3

veclen = 6

data = float

field = irregular

#

coord 1 file=for003.dat filetype=unformatted skip=20 stride=1

coord 2 file=for003.dat filetype=unformatted skip=157236 stride=1

coord 3 file=for003.dat filetype=unformatted skip=314452 stride=1

#

variable 1 file=for004.dat filetype=unformatted skip=32 stride=1

variable 2 file=for004.dat filetype=unformatted skip=157248 stride=1

variable 3 file=for004.dat filetype=unformatted skip=314464 stride=1

variable 4 file=for004.dat filetype=unformatted skip=471680 stride=1

variable 5 file=for004.dat filetype=unformatted skip=628896 stride=1

variable 6 file=for004.dat filetype=unformatted skip=786112 stride=1

Given that the coordinate file header is 12 bytes, why is the skip value 20? It is 20
because read field must be directed to skip over the one word FORTRAN unformat-
ted header, and the one word FORTRAN unformatted record trailer (12+4+4=20).
The same 20 bytes must be added to the skip value for coords 2 and 3. Similarly, the
data file’s 24 byte header must have 8 bytes added to it for a total of 32. read field
correctly deals with the remaining "invisible" FORTRAN unformatted record header
and trailer words in the rest of the file, provided that all values pertaining to a
dimension (X, Y, or Z) and/or all values pertaining to a vector (e.g., all x-
momentums) were written as one record. It will also work if the records were writ-
ten as repeating groups (e.g., X, Y, Z; X, Y, Z; etc.). It will not work if the output was
generated as "first half of X’s; second half of X’s", since the intermediate FORTRAN
length words will throw of its strides.

RELATED MODULES
The file descriptor module can also be used to import data into AVS. It has some
additional capabilities such as the ability to read 16-bit halfword data, to read some

33333333333333333333333333
AVS Module Reference Manual 389

read field3333333333333333333
parsing information (such as the dimensions of the data) directly from the data file
itself, and to use variables and expressions for skips, offsets, and strides. The data
dictionary modules can use the data forms that file descriptor constructs to repeat-
edly read external format data.

The write field module will take the AVS field produced by read field and write it to
disk as a permanent AVS field file. The read field module can then read the data
much more quickly whenever you need to use it.

The print field module displays the ASCII header and contents of an AVS field
interactively on the screen. Connect it to read field’s output port while experiment-
ing with ASCII description files to verify that the data is being read correctly.

ERROR CHECKING
read field performs a significant amount of error checking. If an error is detected
while reading the field, an error dialog box appears on the screen, indicating the line
in which the error occurred (if it was in the ASCII header), along with the type of
error.

SEE ALSO
The example scripts PRINT FIELD, CONTRAST, FIELD MATH, as well as others
demonstrate the read field module.

33333333333333333333333333
390 AVS Module Reference Manual

read geom3333333333333333333
NAME

read geom – reads a data file containing an AVS ´geometry´

SUMMARY
Name read geom

Availability FiniteDiff module library

Type data

Inputs none

Outputs geometry

Parameters Name Type
Read Geometry browser

DESCRIPTION
The read geom module reads a file containing an AVS geometry and outputs the
geometry to one or more modules connected to its output port. The resulting object
will be named after the file from which it was read. Since AVS replaces geometries
based on the object name, if you read in the same filename twice, you will only get
one representation of the object.

Since the Geometry Viewer subsystem (also accessible as the geometry viewer
module) has a built-in Read Object function, you rarely need to use this module. It
is most useful when used in conjunction with a filter module that processes
geometric data (e.g. shrink).

PARAMETERS
filename A file browser allows you to specify the name of the file that contains an

AVS geometry.

OUTPUTS
geometry The output is the geometry that was read from the specified file.

EXAMPLE
READ GEOM

|

SHRINK

|

GEOMETRY VIEWER

RELATED MODULES
shrink, offset, geometry viewer, render geometry, wireframe, tube

LIMITATIONS
This module reads GEOM-file files only. It cannot read .obj script files or .scene scene
files that can be created with the Geometry Viewer Script Language (see Appendix
B).

The object is always named after the file from which it is read. This makes it awk-
ward to create animation loops, for which you might want to direct multiple files to
the same name or to read in multiple instances of the same object.

SEE ALSO
The example scripts CONTRAST, OFFSET, PROBE, as well as others demonstrate
the read geometry module.

33333333333333333333333333
AVS Module Reference Manual 391

read image3333333333333333333
NAME

read image – read image file from disk into a field

SUMMARY
Name read image

Availability Imaging module library

Type data

Inputs none

Outputs field 2D 4-vector byte

Parameters Name Type Default Min Max
Read Image Browser not applicable

DESCRIPTION
The read image module reads an image file from disk and outputs the image as a
"field 2D 4-vector byte". Each field element represents a pixel. The data value for
each element is a 4D vector of bytes, laid out as follows:

auxiliary
11
1
333333333333

11
1333333333333

red
11
1
333333333333

11
1333333333333

green
11
1
333333333333

11
1333333333333

blue
11
1
333333333333

11
1333333333333

11
1

this field interpreted as
pixel’s opacity value

these three fields make up
pixel’s color value

The auxiliary field ("alpha") is sometimes used to store opacity information on a per-
pixel basis.

PARAMETERS
Read image

A file browser window that allows you to specify the name of the image
file to be read.

OUTPUTS
Data Field The output data is a 2D block of pixels. The data set at each point of the

2D field will be a 4-vector of bytes in the AVS image format.

IMAGE FILE FORMAT
read image expects its input file to be in the following format:
4-byte integer nx: number of pixels in X dimension

4-byte integer ny: number of pixels in Y dimension

nx ∗ ny ∗ 4 bytes pixel data (4 bytes per pixel)

RELATED MODULES
Image processing:

contrast, threshold, histogram stretch, clamp, interpolate
luminance, generate filters, sobel, convolve, local area ops

Decompose/compose images from separate bands:
extract scalar
combine scalars

Display picture:
display image

Turn image data into a pixmap for more powerful viewing techniques:
image to pixmap
transform pixmap
display pixmap

33333333333333333333333333
392 AVS Module Reference Manual

read image3333333333333333333
SEE ALSO

The example scripts CONTRAST, FIELD IMAGE, PRINT FIELD, as well as others
demonstrate the read image module.

33333333333333333333333333
AVS Module Reference Manual 393

read plot3d3333333333333333333
NAME

read plot3d – read a PLOT3D format file into an AVS field

SUMMARY
Name read plot3d

Unsupported this module is in the unsupported library

Type data

Inputs none

Outputs field 1D, 2D, or 3D irregular 3-, 4-, or 5-vector float

Parameters Name Type Default
X[YZ] Grid File browser
Q Solution File browser
Multigrid boolean false
w/IBLANK boolean false
Data Format choice binary
Organization choice 3D/whole
Grid number integer 1

DESCRIPTION
The read plot3d module reads computational fluid dynamics data files in the
National Aeronautics and Space Administration’s PLOT3D format (see reference)
and converts them into AVS field format. There are two types of PLOT3D files, the
XYZ grid files that specify the irregular coordinate information, and the Q solution
files that contain a vector of values for each point in the grid.

XYZ and Q file pairs can contain a single set of grid/data mappings, or multiple
grid/data mappings. The XYZ file can also contain an IBLANK value for each point.
The data within the files can be in either binary, or FORTRAN formatted or unfor-
matted format. XYZ grid file and Q solution file formats must match in all respects.

read plot3d requires that you know the format (dimensionality, whole/plane,
number of grids, binary/formatted/unformatted, and whether IBLANK values are
present) of the PLOT3D files that you are trying to read. It does not check to verify
that the values it is given map reasonably to the data.

Q solution files contain three to five floating point values for each point in the grid: X
momentum (1D), Y momentum (1D and 2D), Z momentum (1D, 2D, and 3D), den-
sity, and stagnation. The four header values (FSMACH, ALPHA, RE and TIME) are
ignored.

read plot3d does impose some practical limits to the size of the data: No one dimen-
sion can be larger than 1,000,000; the output data can have no more than
1,000,000,000 points in any one grid; and the maximum number of data grids is 50.

read plot3d displays a control panel with a set of radio button switches for specifying
the multigrid attribute, the IBLANK attribute, dimensionality and organization, a set
for the input file type, and an integer dial for the grid number (this dial is not
displayed for single-grid files). You specify the Q solution file and XYZ grid file
through two separate file browsers. The file selections are cancelled whenever the
selection of data format or organization is changed. In addition, if the module has
successfully produced an output field, and subsequently one of the file browsers is
used to select a file, the file selection for the other browser is cancelled. These actions
prevent the module from attempting to mesh unrelated XYZ and Q files when you
change from one data set to another.

33333333333333333333333333
394 AVS Module Reference Manual

read plot3d3333333333333333333
PARAMETERS

multigrid A toggle that specifies whether the file has a single grid or multiple
grids.

grid number
Which grid, in multi-grid files, to use to produce the AVS field.

w/IBLANK
A toggle that specifies whether or not the XYZ file contains an array of
IBLANK values for each point in the grid.

data format
A set of radio buttons to specify how both the X[YZ] grid file and Q solu-
tion file are organized:

binary
The file is written in binary format, that is, the machine’s native
representation for integers (for the indices) and single precision
floating point (for the points and values).

formatted
The file is written as FORTRAN formatted ASCII output.

unformatted
The file is written as FORTRAN unformatted output, including any
framing values used by the machine’s native FORTRAN compiler.

Organization
A set of radio buttons to specify the dimensionality and organization of
the data for both the X[YZ] grid file and the Q solution file.

1D Input files are each a sequence of 1-dimensional arrays of values.

2D Input files are each a sequence of 2-dimensional arrays of values,
stored in natural FORTRAN order.

3D/whole
Input files are each a sequence of 3-dimensional arrays of values,
stored in natural FORTRAN order.

3D/planes
Input files are each a sequence of sets of 2-dimensional arrays of
values, where each set of arrays corresponds to a single plane from
the entire array.

X[YZ] File A file browser widget for specifying the grid file.

Q (solution) File
A file browser widget for specifing the solution file.

OUTPUTS
Data Field (field irregular float 1D, 2D, or 3D of 3-, 4-, or 5-vector)

The AVS field output will match the dimensionality of the original
PLOT3D dataset. At each point in the grid will be three to five floating
point values: density, X momentum (and Y momentum, and Z momen-
tum, if appropriate), and stagnation, in that order. The output AVS field
represents only the one specified grid of multi-grid parameter files.
There is no way to pack multiple grids into an AVS field.

EXAMPLE
The following example shows how cfd values and read plot3d can be used. The
extract scalar on the right extracts one value from the 12-vector that cfd values

33333333333333333333333333
AVS Module Reference Manual 395

read plot3d3333333333333333333
outputs. isosurface computes the isosurface for this scalar output, and volume
bounds is used to draw a bounding box for the data. The left hand extract scalar
module extracts another value from cfd values output. This second scalar field is
used to color the isosurface. The color range module is used to scale the colormap to
the range of the extracted cfd value. This network will allow you, for example, to
generate an isosurface of the density in a field, and then color this isosurface based
on the temperature values at each point on the isosurface.

READ PLOT3D

|

|

CFD VALUES

|

GENERATE COLORMAP |---------|--------|

| | |

| EXTRACT SCALAR EXTRACT SCALAR

| | |

|-----| |-------|----| |

| | | |---------|---------|

COLOR RANGE | | |

| | | VOLUME BOUNDS

|---------| | | |

| | | |

ISOSURFACE |

| |

|----------------------|

|

GEOMETRY VIEWER

RELATED MODULES
The cfd values modules is particularly designed to compute 7 common CFD values
such as temperature, pressure, enthalpy, mach number, and energy from the five
values provided by this and any other CFD input modules.

Modules that can process read plot3d output:
cfd values
extract scalar
extract vector
volume bounds
isosurface
arbitrary slicer

REFERENCES
Pieter Buening, PLOT3D Reference Manual.

SEE ALSO
The example scripts READ PLOT3D and CFD VALUES demonstrate the read plot3D
module.

33333333333333333333333333
396 AVS Module Reference Manual

read ucd3333333333333333333
NAME

read ucd – read UCD structure from a disk file

SUMMARY
Name read ucd

Availability UCD module library

Type data

Inputs none

Outputs ucd structure

Parameters Name Type
Read UCD browser

DESCRIPTION
read ucd reads a UCD structure from a file, which must have a .inp suffix. The file
may be ASCII or binary. The cell connectivity list is calculated automatically.

Binary UCD files have a different format than ASCII UCD files. Specifically, if a file
is binary then it is assumed that it is in the format output by the module write ucd.

ASCII UCD files have a simple format described below under "ASCII File Format".
For a more detailed description of both ASCII and binary file formats, see the
"Unstructured Cell Data" appendix of the AVS Developer’s Guide.

PARAMETERS
Read UCD A file browser window to specify the name of the UCD file to be read.

Files must have a .inp suffix or they will not appear in the browser.

OUTPUTS
UCD structure

The output structure is in AVS unstructured cell data format.

ASCII FILE FORMAT
If a UCD file is in ASCII, it has the following format. For a more complete description
of UCD file formats, as well as a discussion of UCD data in general, see the "Unstruc-
tured Cell Data" appendix of the AVS Developer’s Guide.

Comments, if present, must precede all data in the file—comments within the data
will cause read errors. The general order of the data is:

1. Numbers defining the overall structure, including the number of nodes, the
number of cells, and the length of the vector of data associated with the nodes,
cells, and the model.

2. For each node, its node-id and the coordinates of that node in space. Node-ids
must be integers, but any number including non-sequential numbers can be
used. Mid-edge nodes are treated like any other node.

3. For each cell: its cell-id, material, type (hex, prism, pyr, tet, quad, tri, line, pt),
and the list of node-ids that correspond to each of the cell’s verticies. (The UCD
appendix shows the order in which cell verticies are numbered.)

4. For the data vector associated with nodes, how many components that vector is
divided into (e.g., a vector of 5 floating point numbers may be treated as 3 com-
ponents: a scalar, a vector of 3, and another scalar, which would be specified as 3
1 3 1).

5. For each node data component, a component label/unit label pair, separated by a
comma.

33333333333333333333333333
AVS Module Reference Manual 397

read ucd3333333333333333333
6. For each node, the vector of data values associated with it.

7. That is the end of the node definitions. Cell-based data descriptions, if present,
then follow in the same order and format as items 4, 5, and 6.

8. The single model-based data descriptions, if present, comes last.

The input file cannot contain blank lines or lines with leading blanks. The numbers
down the left correspond to the above descriptions and are not part of the ASCII file.

<comment 1>
.
.
.

<comment n>
1. <num_nodes> <num_cells> <num_ndata> <num_cdata> <num_mdata>
2. <node_id 1> <x> <y> <z>

<node_id 2> <x> <y> <z>
.
.
.

<node_id num_nodes> <x> <y> <z>
3. <cell_id 1> <mat_id> <cell_type> <cell_vert 1> ... <cell_vert n>

<cell_id 2> <mat_id> <cell_type> <cell_vert 1> ... <cell_vert n>
.
.
.

<cell_id num_cells> <mat_id> <cell_type> <cell_vert 1> ... <cell_vert n>

Note: valid strings for <cell-type> are: pt, line, tri, quad,
tet, pyr, prism, and hex.

4. <num_comp for node data> <size comp 1> <size comp 2>...<size comp n>
5. <node_comp_label 1> , <units_label 1>

<node_comp_label 2> , <units_label 2>
.
.
.

<node_comp_label num_comp> , <units_label num_comp>
6. <node_id 1> <node_data 1> ... <node_data num_ndata>

<node_id 2> <node_data 1> ... <node_data num_ndata>
.
.
.

<node_id num_nodes> <node_data 1> ... <node_data num_ndata>
7. <num_comp for cell’s data> <size comp 1> <size comp 2>...<size comp n>

<cell-component-label 1> , <units-label 1>
<cell-component-label 2> , <units-label 2>

.

.

.
<cell-component-label n> , <units-label n>
<cell-id 1> <cell-data 1> ... <cell-data num_cdata>
<cell-id 2> <cell-data 1> ... <cell-data num_cdata>

.

33333333333333333333333333
398 AVS Module Reference Manual

read ucd3333333333333333333
.
.

<cell-id num_cells> <cell-data 1> <cell-data num_cdata>
8. <num_comp for model’s data> <size comp 1> <size comp 2>...<size comp n>

<model-component-label 1> , <units-label 1>
<model-component-label 2> , <units-label 2>

.

.

.
<model-component-label n> , <units-label n>
<model-id> <model-data 1> <model-data num_mdata>

The UCD structure and library will support either integer or character node-, cell-,
and model-ids, (referred to in the library documentation as names). However, the
read ucd module only accepts integer node-ids, cell-ids, and model-ids. This is
shown in the example below. The ids do not have to be consecutively numbered.

Also note that, at present, most of the UCD modules do not make use of cell and
model-based data, thus the input data examples all show "0" for <num-cdata> and
<num-mdata>. User-written modules can use the UCD library to manipulate cell-
and model-based data.

SAMPLE UCD FILE
The following is an example of a simple UCD file. This UCD structure has 8 nodes in
1 hexahedral cell. Associated with each node is a single scalar data value, making up
one component that this person labels "stress," and specifies a "lb/in∗∗2" unit label.
There is no cell- or model-based data. See the "Unstructured Cell Data" appendix in
the Developer’s Guide for more examples.
8 1 1 0 0 1. 8 nodes, 1 cell, 1 component of node data

1 0.000 0.000 1.000 2. for each node, its id and node coordinates

2 1.000 0.000 1.000

3 1.000 1.000 1.000

4 0.000 1.000 1.000

5 0.000 0.000 0.000

6 1.000 0.000 0.000

7 1.000 1.000 0.000

8 0.000 1.000 0.000

1 1 hex 1 2 3 4 5 6 7 8 3. cell id, material id, cell type, cell vertices

1 1 4. num data components, size of each component

stress, lb/in∗∗2 5. component label, units label

1 4999.9999 6. data vector for each node

2 18749.9999

3 37500.0000

4 56250.0000

5 74999.9999

6 93750.0001

7 107500.0003

8 5000.0001

EXAMPLE
The following network reads in a UCD ASCII file (.inp suffix), and displays it:

33333333333333333333333333
AVS Module Reference Manual 399

read ucd3333333333333333333
GENERATE COLORMAP READ UCD

| |

| |------------|

UCD CONTOUR |

| |

|--------| |

| |

UCD TO GEOM

|

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that can process read ucd’s output:

ucd to geom, ucd crop, ucd threshold, ucd extract, ucd hex to tet, ucd anno,
ucd contour, ucd hog, ucd iso, ucd offset, ucd rslice, ucd slice2d,
ucd legend, ucd probe, ucd streamline, write ucd, ucd tracer.

SEE ALSO
The example script READ UCD demonstrates the read ucd module.

33333333333333333333333333
400 AVS Module Reference Manual

read volume3333333333333333333
NAME

read volume – read volume file from disk into a field

SUMMARY
Name read volume

Availability Volume, FiniteDiff module libraries

Type data

Inputs none

Outputs field 3D scalar byte

Parameters Name Type
Read Volume Browser

DESCRIPTION
The read volume module reads a disk file in volume data format and outputs the data
as a "field 3D scalar byte". It is used to read data files containing scalar-valued
volume data (e.g. CAT scan data, NMR data).

PARAMETERS
read volume

A file browser allows you to specify the name of the file that contains the
volume data set.

OUTPUTS
Data Field (field 3D scalar byte)

The output is the byte data cast as the scalar data in a 3D field.

VOLUME DATA FILE FORMAT
read volume expects its input file to be in the following format:
(1 byte) nx: number of voxels in X

(1 byte) ny: number of voxels in Y

(1 byte) nz: number of voxels in Z

(nx ∗ ny ∗ nz bytes): volume data elements

EXAMPLE
This simple example displays a volume data set.

READ VOLUME

|

COLORIZER

|

ORTHOGONAL SLICER

|

DISPLAY IMAGE

RELATED MODULES
Colormaps:

generate colormap, read colormap
Filters:

clamp, contrast, crop, downsize, field to byte, field to double,
field to float, field to int, histogram stretch, interpolate,
mirror, offset, transpose, colorizer, compute gradient, gradient shade

Mappers:
dot surface, arbitrary slicer, bubbleviz, orthogonal slicer,
field to mesh, isosurface, volume bounds

33333333333333333333333333
AVS Module Reference Manual 401

read volume3333333333333333333
Renderers:

alpha blend, display image, render geometry

SEE ALSO
The example scripts ANIMATED FLOAT, BRICK, and THRESHOLDED SLICER
demonstrate the read volume module.

33333333333333333333333333
402 AVS Module Reference Manual

render geometry3333333333333333333
NAME

render geometry – convert geometric description to pixmap (Geometry Viewer)

SUMMARY
Name render geometry

Availability this module is in the unsupported library

Type data output

Inputs geometry (optional, multiple)
field 2D/3D 4-vector byte (optional, requires 3D texture mapping support)

Outputs pixmap

Parameters Name
add to object transform

DESCRIPTION
Note: the render geometry module has been superceded by the geometry viewer
module. Please read the documentation for the geometry viewer module. render
geometry is retained in the unsupported module library for backward compatibility
only.

The render geometry module provides access within an AVS network to the com-
plete Geometry Viewer subsystem. Many different modules can supply input
geometries. That is, many geometry-format outputs can be connected to render
geometry’s geometry input port. All the objects will be combined into a single scene.
Each module providing input to render geometry can define attributes and
geometries for any number of objects. Each of these modules can also define a
hierarchical relationship among its objects.

You can also invoke render geometry with no inputs, so that the "scene" is initially
empty. Objects can be added to a scene either by upstream modules or by the Read
Object selection on the render geometry control panel. Geometries and descriptions
sent by upstream modules can be saved to files using the Save Object and Save
Scene selections. In this way, you can save visualization results and retrieve them
later with Read Scene or Read Object.

SPECIAL CONSIDERATIONS
This module is special: instead of having a few control widgets organized onto a sin-
gle control panel page, its control panel is the entirely separate multi-level applica-
tion menu of the Geometry Viewer subsystem. Thus, when you add the geometry
viewer icon to a network, no page is added to the Network Control Panel. There are
two ways to access the Geometry Viewer menu:

d Click the small square in render geometry icon with the left mouse button.

d Click the Geometry Viewer button located at the top of the Network Control
Panel. This button is always visible, even when there is no active network.

In some circumstances, it is useful to be able to access both the Geometry Viewer con-
trol panel and the Network Control Panel simultaneously. They both occupy the
same screen position, along the left edge of the screen. In these cases, use the X Win-
dow System window manager to move the one of these menu windows out of the
way.

The geometry viewer’s control panel also differs from that of other modules in these
ways:

33333333333333333333333333
AVS Module Reference Manual 403

render geometry3333333333333333333
d The Network Editor’s Layout Editor cannot be used to rearrange Geometry

Viewer controls.

d If a network includes more than one instance of render geometry, AVS does not
create a separate control panel for each instance. Each render geometry sends its
output to a different window, but the same Geometry Viewer application menu
controls all the windows. The module whose output window is currently
highlighted in red is the one being controlled. To switch the focus to another
render geometry output window, just click in it with any mouse button.

INPUTS
Geometry (optional, multiple; geometry)

The input data can be any AVS geometry. More than one geometry can be
input to this port. All the geometries will be combined into the same
"scene".

Texture (optional; field 2D/3D 4-vector byte uniform)
This input port requires 2D/3D texture mapping support. 2D/3D tex-
ture mapping is supported on only a few hardware renderers (see the
release note information that accompanies AVS on your platform). The
software renderer does support 2D/3D texture mapping.

The optional input provides a way to perform "dynamic texture map-
ping". The AVS 2D or 3D field of color values input to this port it is
available as a dynamic texture. From within the "Edit Texture" submenu
under Objects, you can bind this texture map to a particular object.

PARAMETERS
add to object transform

This parameter can be attached to the dialbox or the Spaceball, allowing
these devices to control object transformations. In such cases, you can
still control transformations using the mouse:

Mouse Transform
middle rotate
right translate in plane of screen
middle with SHIFT key scale
right with SHIFT key translate perpendicular to plane of screen

OUTPUTS
pixmap The output is a pixmap containing a scene that includes all the input

objects.

EXAMPLE 1
This network creates a tube version of an object:

READ GEOM

|

WIREFRAME

|

TUBE

|

RENDER GEOMETRY

|

DISPLAY PIXMAP

RELATED MODULES
geometry viewer, display pixmap, read geom

33333333333333333333333333
404 AVS Module Reference Manual

render geometry3333333333333333333
SEE ALSO

The Geometry Viewer chapter of the AVS User’s Guide.

33333333333333333333333333
AVS Module Reference Manual 405

render manager3333333333333333333
NAME

render manager – share geometries among subnetworks

SUMMARY
Name render manager

Unsupported this module is in the unsupported library

Type data output

Inputs geometry

Outputs none

Parameters Name Type
Create New Window one shot
Active Windows choice

DESCRIPTION
The render manager module takes geometries as input, uses the AVS Geometry
Viewer to render them, and displays the results in one or more windows. This
module is very similar to the render geometry module, with these differences:

d render manager creates its own pixmap and window on the screen, rather than
relying on display pixmap. An initial window is created by default.

d render manager has a built-in mechanism for creating and selecting output win-
dows. A set of windows is shared among render manager modules in separate
subnetworks. At any moment, one of them — the current output window — is
shared by all the render manager modules in all subnetworks. This window
displays the combined results of all these modules.

It is possible to create a new output window, which automatically becomes the
shared current output window. This provides a powerful capability for exploring
differences between datasets, or different mappings of the same dataset. See the
Create New Window parameter below.

This module is used by the AVS Image Viewer and Volume Viewer subsystems.

INPUTS
Geometry (geometry)

Any AVS geometry.

PARAMETERS
Create New Window

Click this button to create a new output window, which becomes the
current output window. Subsequent geometric input is rendered into
this window, until such time as you change the current output window
again (perhaps by creating yet another window).

Active Windows
A choice menu that lists all the output windows, showing which one is
current. You can also make an output window current by pressing any
mouse button in the window itself.

EXAMPLE
Suppose you have built the following two networks:

33333333333333333333333333
406 AVS Module Reference Manual

render manager3333333333333333333
READ VOLUME READ VOLUME

| |

GENERATE COLORMAP | VOLUME BOUNDS

| | |

ARBITRARY SLICER |

| |

RENDER MANAGER RENDER MANAGER

When you select a volume dataset (e.g. hydrogen.dat) for the arbitrary slicer subnet-
work, the slice is rendered by the Geometry Viewer, and a window is created to
display the picture. If you select the same dataset in the volume bounds subnet-
work, the bounds are rendered and displayed in the same window.

If you click Create New Window, and then select a new dataset was selected in the
arbitrary slicer subnetwork, it (and it alone) is displayed in the new window. The
geometries in the original window do not change.

RELATED MODULES
Same as for render geometry.

NOTES
The output window(s) are not destroyed until all render manager modules are des-
troyed.

33333333333333333333333333
AVS Module Reference Manual 407

replace alpha3333333333333333333
NAME

replace alpha – replace the alpha channel (transparency) in an image

SUMMARY
Name replace alpha

Availability Imaging mobule library

Type filter

Inputs field 2D uniform 4-vector byte (image)
field 2D uniform scalar byte (new alpha)

Outputs field 2D uniform 4-vector byte (image)

Parameters none

DESCRIPTION
The replace alpha module replaces the alpha (opacity) byte of all the pixels in an
image with the byte value from a 2D uniform scalar field of the same dimensions.
This 2D uniform scalar field is usually produced by passing the image through the
luminance or extract scalar module, then perhaps performing further imaging tech-
niques on the scalar value (e.g. contrast), The modified alpha is then rejoined with
the original image using replace alpha.

INPUTS
Image (required; field 2D uniform 4-vector byte)

The image whose alpha byte will be replaced. This is the right input port
on the replace alpha module.

Data Field (required; field 2D uniform scalar byte)
The field of byte values, with the same dimensions as the input image, to
use as the replacement alpha values. This is the left input port on the
replace alpha module.

OUTPUTS
Image (field 2D uniform 4-vector byte)

The output image has the same dimension as the input image.

EXAMPLE 1
The following network reads an image, computes its luminance, uses that to create
an alpha mask, generates a shaded background, and composites the rendered image
over the shaded background image.

READ IMAGE

|

__________________________|

| | |

BACKGROUND LUMINANCE |

| | |

| CONTRAST |

| |------| |

| REPLACE ALPHA

| |

|----------------------| |

COMPOSITE

|

DISPLAY IMAGE

33333333333333333333333333
408 AVS Module Reference Manual

replace alpha3333333333333333333
RELATED MODULES

Modules that could provide the Image input:
contrast
pixmap to image
read image
threshold
Any module that produces an image as output

Modules that could provide the 2D scalar field:
luminance
extract scalar
Any modules that can output a 2D scalar field

Modules that can process replace alpha output:
composite
write image
image to pixmap

See also background, luminance

SEE ALSO
The two example BACKGROUND scripts demonstrate the replace alpha module.

33333333333333333333333333
AVS Module Reference Manual 409

ribbons3333333333333333333
NAME

ribbons – generate ribbon representation for streamlines

SUMMARY
Name ribbons

Availability FiniteDiff module library

Type filter

Inputs geometry (from stream lines module only)
field 3D 3-vector 3-space float (optional; from vector curl or similar)
field 3D scalar 3-space float (optional; scalar to control colors)
colormap (optional; to apply colors to scalar field)

Outputs geometry

Parameters Name Type Default Min Max
width float dial 0.5 unbounded unbounded
length int dial 128 4 128
texture float dial 0.0 0.0 1.0
Mode choice none
flip orientation boolean off

DESCRIPTION
The ribbons module generates a set of geometric ribbons by taking the polyline out-
put of the stream lines module and replacing them with finite width, colored, and
textured polytriangle ribbons. The orientation is optionally controlled by a secon-
dary vector field, usually derived from the streamline field by the vector curl
module. This allows the ribbon orientation to show field vorticity. If an optional
scalar field and associated colormap are connected, and the choice button is set to
scalar field, the ribbon color will reflect the values in the field. The ribbon output can
also contain u-v texture coordinate information, so that the ribbons can be overlayed
with a meaningful texture image.

The ribbon representation can be animated by moving the stream lines base position,
altering the length parameter, or by changing the texture offset dial to make the tex-
ture "crawl" along the ribbon.

The access to the vorticity and scalar fields uses tri-linear interpolation. If the fields
are irregular, a block table is built within the ribbons module, which may take some
time when these fields change.

The texture mode requires several things to be set up. First, select texture on the
Mode control list. Second, connect an image source, such as read image, to the
second optional field port on the geometry viewer module. Next, select an image
that will "tile" vertically. The u-v coordinate specifications generated by the ribbons
module only shows half of the image at a time. The image is scrolled vertically,
across each facet of the ribbon, by using the texture offset dial. If the input image has
the same picture on both the top and bottom halves, and is tall and narrow in aspect,
then animation cycles can be constructed by animating the texture dial.

INPUTS
Geometry (required; geometry)

This should receive the geometry output of the stream lines module.

Data Field (optional; field 3D 3-vector 3-space float)
This optional port is used to control ribbon surface orientation. The 3D
float field is typically generated by the vector curl module.

33333333333333333333333333
410 AVS Module Reference Manual

ribbons3333333333333333333
Data Field (optional; field 3D scalar 3-space float)

This scalar field can optionally be connected to map a second field value
onto the ribbons using the colormap input to determine local ribbon
color. If a field is present, a colormap must also be present. The vector
mag module, for example, can be used here to map vector magnitude
onto the ribbons.

Colormap (optional; colormap)
This optional colormap is used with the scalar field input. If the color-
map is connected, a scalar field must also be connected. The lower and
upper values in the colormap control the scalar field mapping. Either set
these manually with generate colormap, or use the color range module
to set them automatically.

PARAMETERS
Width The width of each ribbon, centered on the stream line. This float dial is

unbounded; the default is 0.5.

Length How much of the stream line to show. This matches the Length control
on stream lines, but allows a shorter ribbon to be selected. This can be
animated from 4 to the current stream line length to show ribbon
growth, without having to re-calculate the stream lines. The default is
128.

Texture Determines the u-v texture offset factor for which part of the image
should appear on each ribbon panel. This can be animated to make a
"crawl" effect.

mode (radio buttons)
With the default none, the ribbon has no color (white). If color is
selected, a separate color is assiged to each edge, so the number of rota-
tions of a ribbon can be seen. In checker mode, every other panel along
the ribbon gets a different color. In texture mode, color is deferred to the
renderer, so that a texture image can be used. In scalar field mode, the
ribbon color is by data sampled in the input scalar field.

flip orientation
This choice button determines if the ribbon orientation is controlled by
the input field vorticity vector, or a cross product of this and the velocity
vector. It has the visual effect of flipping the ribbon 90 degrees.

OUTPUTS
Ribbons (geometry)

A set of polytriangles with colors, normals, and u-v coordinates.

EXAMPLE
The following network reads in a 3D vector field and calculates streamlines for the
field. ribbons generates ribbon representations and volume bounds shows the field
extent. Set the stream line object to Hide in the geometry viewer, leaving it selected,
so that the base positions can be moved.

33333333333333333333333333
AVS Module Reference Manual 411

ribbons3333333333333333333
READ FIELD

|

|-------------------|

| |

STREAM LINES |

| VOLUME BOUNDS

|------------| |

| | |

| RIBBONS |

| | |

|------------| |

|-------------------|

|

|

GEOMETRY VIEWER

RELATED MODULES
animated float
hedgehog
particle advector
stream lines
tube
ucd streamlines
vector curl

SEE ALSO
The example script RIBBONS demonstrates the ribbons module.

33333333333333333333333333
412 AVS Module Reference Manual

samplers3333333333333333333
NAME

samplers – extract a subset of locations from a 3-vector 3D field

SUMMARY
Name samplers

Availability UCD, FiniteDiff module libraries

Type data

Inputs field 3D float any-coordinates
upstream transform (optional, invisible, autoconnect)

Outputs field 3D irregular (locations)

Parameters Name Type Default Min Max
Choice choice point
N Segment integer dial 16 2 64

DESCRIPTION
The samplers modules extracts a subset of coordinates from a 3D AVS field of float-
ing point data, producing an output field that is "3-space irregular," i.e., it contains a
series of coordinates (also called "scattered data") in 3-space (which can correspond
to a uniform, rectilinear, or irregular grid) but without any data values associated
with them.

samplers’s main purpose is to simultaneously control two or three of the
hedgehog/particle advector/stream lines modules. For example, you can show the
streamlines and hedgehog vectors for the same sample set of points together.

samplers can extract a single location coordinate point, a series of points along a line
through the 3D field, a series of points along a circle in a 3D field, a series of points
on a plane in a 3D field, or a series of points in a volume of a 3D field.

How many points samplers extracts (the sample resolution) depends upon the N
Segment dial setting.

When the output "field of locations" is connected to the left input port of the three
volume-of-vectors mapping modules (hedgehog, particle advector, and stream
lines), these modules will calculate and display only the subset of points in the input
field.

If you don’t connect samplers to the left input port on hedgehog/particle
advector/stream lines, these modules create their own internal parameters that func-
tion identically to the samplers module, like the other parameters-as-data modules
(integer, etc.),

When samplers and geometry viewer coexist in a network, the two are connected
automatically through an invisible "upstream transform" port. "samplers" becomes a
selectable object in the Geometry Viewer. If you select and move the "samplers"
geometry object, geometry viewer informs the samplers module of the new location
of the sample subset, samplers recalculates the "field of locations" and the
hedgehog/particle advector/stream lines module redraws the data at the new loca-
tion. The effect is direct mouse-manipulation control over a line, circle, plane, or
volume sampling subset.

If you want less than a whole plane or whole volume sample, use the crop module on
the input to samplers, while letting the full field through to hedgehog/particle
advector/stream lines’s right input port. You can then move the subset volume
around the whole volume of the field.

33333333333333333333333333
AVS Module Reference Manual 413

samplers3333333333333333333
INPUTS

Data Field (required; field 3D 3-vector any-data any-coordinates)
The input field is a 3D 3-vector of any coordinate type and any data type.

Upstream Transform (optional, invisible, autoconnect)
When the samplers module coexists with the geometry viewer module
in a network, geometry viewer feeds information on how the "samplers"
object has been moved in the Geometry Viewer back to this input port on
the samplers module. The information is relayed through the hedgehog,
particle advector, or stream lines module. The modules connect
automatically, through a data pathway that is normally invisible. This
gives direct mouse manipulation control over the samplers sample set.

PARAMETERS
point
line
circle
plane
space A set of radio button choices that determines what type of geometric

construct the sample locations will be taken from. You can move each of
the structures listed below around the volume of data using the
Geometry Viewer’s transformations.

point causes a single data location to be output, no matter what the N
Segment parameter value is. This is the default.

line causes N Segment sample locations to be taken along a line through
the volume.

circle causes N Segment sample locations to be taken around a "ring"
within the volume space.

plane causes N∗N Segment sample locations to be taken along a plane
slice through the volume space.

space causes N∗N∗N segment sample locations to be taken throughout
the whole volume space. The only way to subset the volume is to pass it
through the crop module before it reaches samplers.

N Segment An integer dial that determines how many sample locations to extract
from the volume. It is ignored for point. The default is 16, the minimum
is 2, and the maximum is 64.

OUTPUTS
Data Field (field 3D irregular)

The output field is a 3D lattice of locations from the original input field,
with no data values at each node. It is passed down to the hedgehog,
particle advector, or stream lines left input port, telling them what sub-
set of their complete data to map.

EXAMPLE 1
The following network reads in a 3-vector field, extracts a sample subset, then maps
it as both a hedgehog and stream lines representation, finally displaying it sur-
rounded by volume bounds.

33333333333333333333333333
414 AVS Module Reference Manual

samplers3333333333333333333
READ FIELD

|

|

|-------------------------|

| |

SAMPLERS |

| |

| |

|-------------------| |

| --------------|-----|-------------------|

| | | | |

| | | | |

HEDGEHOG STREAM LINES VOLUME BOUNDS

| | |

|---------------------|---------------------|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read field
Modules that can process sampler output:

hedgehog
particle advector
stream lines

Modules that can be used instead of samplers:
create geom/generate grid

SEE ALSO
The example script PARTICLE ADVECTOR demonstrates the sampler module.

33333333333333333333333333
AVS Module Reference Manual 415

scatter dots3333333333333333333
NAME

scatter dots – generate spheres at points in 3D space

SUMMARY
Name scatter dots

Availability Volume, FiniteDiff module libraries

Type mapper

Inputs field 1D real 3-space irregular (a "scatter" field)

Outputs geometry

Parameters Name Type Default Min Max Choices
Connect the dots toggle off on, off
Radius Real 0.0 0.0 1.0

DESCRIPTION
The scatter dots module generates spheres of various radii at the coordinate locations
in a specified field. For a scalar field, each sphere’s radius is proportional to the scalar
value, and the sphere is always colored white. If the field is a 4-vector float (such as
that produced by the bubbleviz module), only the first element of the vector deter-
mines the sphere’s radius. The other three elements are interpreted as red-green-blue
color values (normalized to the range 0..1).

Sphere rendering is both compute and memory intensive. Use the downsize module
to reduce the amount of data to render. Also, use the Geometry Viewer’s Subdivi-
sion slider to render spheres as less demanding polygonal shapes.

INPUTS
Point List (required; field 1D 3D float irregular)

The input field must be a list of points in 3D space, with a float value
specified at each point.

PARAMETERS
Connect the dots (toggle)

d If OFF, a sphere is drawn at each point in the field. The radius of the
sphere is specified by the field element’s scalar data value. (If the
field has vector data, the value of the first vector element is used and
the other values determine the sphere’s color.

d If ON, the points are represented as dots, connected with a single
polyline (in the order specified by the 1D array). If the input field
has 4-vector float data, the last three vector elements are ignored.
No spheres are drawn in this case.

Radius (real)
Radius is a floating-point multiplier factor for the sphere radii.

OUTPUTS
Geometry (geometry)

The output is an AVS geometry.

EXAMPLE 1
The scatter dots module can be used in combination with the dot surface module as
follows:

33333333333333333333333333
416 AVS Module Reference Manual

scatter dots3333333333333333333
READ VOLUME

|

DOT SURFACE

|

SCATTER DOTS

|

GEOMETRY VIEWER

EXAMPLE 2
The scatter dots module is required to make bubbleviz work properly:

GENERATE COLORMAP READ VOLUME

| |

|---------| |-----------|

| |

| |

BUBBLEVIZ

|

|

SCATTER DOTS

|

|

GEOMETRY VIEWER

RELATED MODULES
scatter to ucd, read geom, tube, wireframe, geometry viewer, render geometry

SEE ALSO
The example scripts BUBBLEVIZ, and DOT SURFACE demonstrate the scatter dots
module.

33333333333333333333333333
AVS Module Reference Manual 417

scatter to ucd3333333333333333333
NAME

scatter to ucd – convert a scatter field to a tetrahedral UCD structure

SUMMARY
Name scatter to ucd

Availability UCD module library

Type filter

Inputs field 1D irregular 3-space n-vector any-data

Outputs ucd structure

Parameters none

DESCRIPTION
The scatter to ucd module converts a scatter field to a single UCD structure of
tetrahedral cells using a Delauney tesselation algorithm. The scatter data points
become the nodes of the tetrahedral UCD cells. Each vector element becomes a node
data component in the output structure.

AVS, as shipped, contains only a few modules useful for visualizing scatter fields
(bubbleviz/scatter dots, for example). If you convert scatter data to a UCD structure,
you can then use all of the UCD modules to visualize the data.

INPUTS
Data Field (required; field 1D irregular 3-space n-vector any-data)

The input is a scattered field of any data type. A scattered field is a 1D
array of scalar or vector data values, where each array element has an X,
Y, Z location specified for it in space.

OUTPUTS
UCD Structure

The output is a UCD structure composed of tetrahedral cells..

EXAMPLE 1
This is the most basic UCD visualization network. The scatter field is converted to a
UCD structure, and then to a colorized geometry.

READ FIELD

|

|

SCATTER TO UCD

GENERATE COLORMAP |

| |

| |----------|

| | |

UCD CONTOUR |

| |

|------| |

| |

UCD TO GEOM

|

|

GEOMETRY VIEWER

EXAMPLE 2
The following network reads in a field and converts it to a UCD structure of
tetrahedral cells. This structure is then passed to ucd tracer to produce a ray traced
volume rendering. The module euler transformation allows you to rotate the

33333333333333333333333333
418 AVS Module Reference Manual

scatter to ucd3333333333333333333
volume to produce views from any angle.

READ FIELD

|

|

SCATTER TO UCD

EULER TRANSFORMATION |

|--------| |

GENERATE COLORMAP | |

|---------| | |

| | |

UCD TRACER

|

|

DISPLAY IMAGE

RELATED MODULES
Modules that could provide the field input:

read field
any other module which outputs a field.

Modules that can process scatter to ucd’s output:
any module that inputs a UCD field.

SEE ALSO
The example script SCATTER TO UCD demonstrates the scatter to ucd module.

33333333333333333333333333
AVS Module Reference Manual 419

set view3333333333333333333
NAME

set view – view objects in geometry viewer from fixed orthogonal orientations

SUMMARY
Name set view

Availability Imaging, UCD, Volume, FiniteDiff module libraries

Type data input

Inputs none

Outputs none

Parameters Name Type Default
User oneshot
Top oneshot
Bottom oneshot
Front oneshot
Back oneshot
Right oneshot
Left oneshot
Bounds boolean off
Persp boolean off

DESCRIPTION
The set view module provides simplified, push-button control of the user’s view of
the top-level object in the geometry viewer module’s output window. It is intended
primarily to be used by the AVS Data Viewer. When used in a network by the Data
Viewer module, it surrounds the geometry viewer’s display window with its push
button controls. When used without the Data Viewer, it places its controls on the
control panel like all other modules.

The set view module does not connect to other modules in a network through stan-
dard data flow connections. Rather, it performs its functions by sending CLI com-
mands to the geometry viewer module through the AVS kernel.

PARAMETERS
User A oneshot control. The first time this is selected, it remembers the

current orientation of the top-level object in the view window. Subse-
quently, it will return the top-level object to this orientation from wher-
ever the user has moved it with the buttons below. The User value is
cleared when the top-level object is next directly transformed with the
mouse.

Top/Bottom
Front/Back
Right/Left A series of oneshot controls that instantly transform the top-level object

to a fixed orientation orthogonal to the scene’s X, Y, and Z axis. The
top-level object is also normalized, if necessary, to fit entirely within the
field of view.

Top/Bottom produce views looking directly along the Z axis.

Front/Back produce views looking directly along the Y axis.

Right/Left produce views looking directly along the X axis.

Bounds A switch that turns on Bounding Box mode for efficiently rendering
object transformations.

33333333333333333333333333
420 AVS Module Reference Manual

set view3333333333333333333
Persp A switch that turns on a perspective view of the scene.

EXAMPLE
The following network reads an AVS field, then maps it as an orthogonal slice in the
Geometry Viewer. The set view module, though not connected to any other module
in the network, can be used to control the view of the object in the Geometry
Viewer’s display window.

READ FIELD

|

GENERATE COLORMAP |---------------|

| | |

| ORTHOGONAL SLICER |

| | |

|--------------| | |

FIELD TO MESH VOLUME BOUNDS

| |

|---------------|

GEOMETRY VIEWER

SET VIEW

RELATED MODULES
geometry viewer
data viewer

33333333333333333333333333
AVS Module Reference Manual 421

shrink3333333333333333333
NAME

shrink – make polygons of a geometry object smaller

SUMMARY
Name shrink

Availability FiniteDiff module library

Type filter

Inputs geometry

Outputs geometry

Parameters Name Type Default Min Max
offset float 1.0 0.0 1.0

DESCRIPTION
The shrink module transforms an AVS geometry, so that each vertex of each polygon
is translated towards (or away from) the polygon’s centroid (center of gravity). This
has the effect of creating spaces between polygons, and is useful for visualizing the
internal geometry of an object.

INPUTS
Geometry (required; geometry) An AVS geometry, created with the libgeom library

or by another AVS module.

PARAMETERS
offset The amount by which each vertex is translated. Positive values collapse

the geometry inward. Negative values create a "blow-up" of the
geometry.

OUTPUTS
Geometry A geometry that represents the same object(s) as the input data.

EXAMPLE
READ GEOM

|

SHRINK

|

GEOMETRY VIEWER

RELATED MODULES
read geom, flip normal, tube, geometry viewer, render geometry

LIMITATIONS
This module works only for polytriangle strips and meshes; it does not work for
polyhedra.

This module doesn’t copy UV data, used in texture mapping.

This module can increase the size of the data: it can generate up to five times the
number of triangles for polytriangle objects, and up to three times the number of ver-
tices for meshes.

SEE ALSO
The example script SHRINK demonstrates the shrink module.

33333333333333333333333333
422 AVS Module Reference Manual

sketch roi3333333333333333333
NAME

sketch roi – create a region of interest field

SYNOPSIS
Name sketch roi

Availability Imaging module library

Type data input

Inputs field [2D|3D] uniform [byte|short|float] n-vector
image viewer id structure (invisible, autoconnect)
mouse info structure (invisible, autoconnect)

Outputs field 2D uniform scalar byte (region of interest)
image draw structure

Parameters Name Type Default
inside boolean on
accumulate boolean off
invert oneshot
clear region oneshot
set pick mode oneshot

DESCRIPTION
sketch roi creates the region of interest (ROI) field that modules such as ip edge, ip
twarp, and ip convolve use to restrict their operation to a subset of their input image.

Creating a ROI involves an interaction between sketch roi and the image viewer
module. sketch roi must be receiving the same image input as the image viewer
module. sketch roi’s left image draw structure output must be connected to the
image viewer module’s leftmost image draw structure input. sketch roi’s right ROI
output is connected to the ROI input of the image processing module that wants the
ROI. (See "Example" below).

To draw the region of interest in the Image Viewer window:

1. The sketch roi module must have control of the left mouse button in the Image
Viewer window. When sketch roi is first connected and data first passes
through it, it should have control of the left mouse button.

2. Press and hold down the left mouse button, moving the cursor over the image
to sketch the region of interest. Release the left mouse button when you are
done.

If there are multiple images in the Image Viewer window, and/or multiple sketching
modules, then some other module or the Image Viewer itself may have control of the
left mouse button. To get control back to sketch roi,

1. Make the image the current image (use shift-left mouse button or left mouse
button).

2. Press set pick mode on sketch roi’s control panel.

Some points to note:

d sketch roi will close an open area by creating a line between the end of the
sketched area and its beginning by the shortest distance.

d ROI boundaries are de-composed into line segments, not smooth curves.

d Part of a sketch can be outside of an image’s boundaries to create ROIs that
include edge areas.

33333333333333333333333333
AVS Module Reference Manual 423

sketch roi3333333333333333333
d With accumulate on, ROIs can overlap. If thought of as a Venn diagram, the

areas are treated as "or’s".

INPUTS
Data Field (required; field [2D|3D] uniform [byte|short|float] n-vector)

This input is a 2D or 3D uniform field of type byte, short, or float. It can
be any vector length. sketch roi uses this input field for only one pur-
pose: to extract the X and Y extent information it needs to create a ROI
that is the same size as the image that the image processing module
wants masked.

image viewer id structure (required; invisible, autoconnect)
This input port is invisible by default. It connects automatically to the
image viewer module’s image viewer id structure output. The two
modules communicate the image viewer module’s scene id on this con-
nection. Normally, you can ignore its existance.

mouse info structure (required; invisible, autoconnect)
This input port is invisible by default. It connects automatically to the
image viewer module’s mouse info structure output. The two modules
communicate image name, mouse pointer location and button up/down
information on this connection. Normally, you can ignore its existance.

PARAMETERS
inside This is a boolean switch. When on, the space "inside" the area is the ROI.

When off, the space "outside" the area is the ROI. The default is on.

accumulate
This is a boolean switch. When on, subsequent areas that one draws are
added to the ROI. When off, each area that one draws is a new ROI, and
the previous area is deleted.

clear region
This is a oneshot. It erases the existing ROI.

invert This is a oneshot. When pressed, the ROI is inverted--the area formerly
inside the ROI is now outside, and the area outside the ROI is now the
ROI.

set pick mode
A oneshot that sets the image viewer’s upstream mouse picking focus to
this module.

OUTPUTS
Data Field (field 2D uniform scalar byte)

The left output field is a 2D uniform scalar byte field that is the region of
interest. The ROI has the same XY extents as the input field. All byte
values are either 0 (not part of ROI) or 1 (part of ROI). This field should
be connected to the ROI input port of the imaging module that needs the
ROI.

image draw structure (required)
The left output port contains the image draw structure that connects to
the image viewer module’s leftmost input port. It is required.

EXAMPLE
This example shows a simple network to define a region of interest that is used with
the ip arithmetic module. The invisible upstream connections coming from image
viewer to sketch roi are not shown. Note that sketch roi must take the same image
as input that image viewer is receiving.

33333333333333333333333333
424 AVS Module Reference Manual

sketch roi3333333333333333333
READ IMAGE

|

|

|---------| |

| |--|---| |

SKETCH ROI | | IP ARITHMETIC

| |-----| |----|

| |

|--------| |

| |

IMAGE VIEWER

RELATED MODULES
ip threshold
image viewer
any module with a region of interest input
image measure
image probe

SEE ALSO
The example script Imaging/SKETCH ROI demonstrates this module.

The upstream feedback mechanism that makes sketch roi work is described in the
AVS 5 Update document.

33333333333333333333333333
AVS Module Reference Manual 425

sobel3333333333333333333
NAME

sobel - apply an edge detecting filter to 2D field

SUMMARY
Name sobel

Availability Imaging mobule library

Type filter

Inputs field 2D n-vector any-data any-coordinates ("image")

Outputs field of same type as input

Parameters none

DESCRIPTION
sobel uses the "sobel operator" for finding edges in a 2D byte field. The typical use is
to find edges in images prior to some segmentation operation, such as dividing the
image into regions that correspond to the individual objects in the picture. The Sobel
operator consists of two 3x3 filters. One detects changes in an image in the x direc-
tion; thus detecting vertical edges. The other detects changes in the y direction, and
thus is used to detect horizontal edges.

sobel takes the two sobel filters and applies them to a source field to produce a des-
tination field. Both the source and destination fields must be 2D. Typically, the source
and destination fields will be AVS images, but they might also be 2D slices of 3D
fields.

sobel accepts vectors of any size containing data of any type. In the case of an image,
which is a 2D field of 4-byte vectors, sobel disregards the alpha bytes and separates
the red, green and blue bytes. Then it applies the filter separately to each color byte,
before reassembling the bytes into 4-vector image format.

In the case of non-image data, for example a 2D field of 5-vector floats, sobel handles
one component of the vector at a time. All data-types are converted to floats during
computation and then converted back in sobel’s output.

In order to handle edge effects, a border around the perimeter of the source field is
not operated on. The border is one pixel wide.

INPUTS
Data Field (required; field 2D n-vector any-data any-coordinates)

A 2D AVS field, typically an image, to be operated on.

OUTPUTS
Output Field

The output field is the same type as the input data field.

EXAMPLE 1
The following network reads in an image, applies the sobel operation to it, and
displays the resulting image:

READ IMAGE

|

|

SOBEL

|

|

IMAGE VIEWER

33333333333333333333333333
426 AVS Module Reference Manual

sobel3333333333333333333
RELATED MODULES

Modules that could provide the Data Field input:
read image
pixmap to image
orthogonal slicer
any other module which outputs a 2D field

Modules that can process sobel’s output:
display image
image viewer
any other module which takes a 2D field as input

Also related:
ip edge
generate filters
convolve
local area ops

SEE ALSO
The example script SOBEL demonstrates the sobel module.

33333333333333333333333333
AVS Module Reference Manual 427

statistics3333333333333333333
NAME

statistics – display statistics on AVS field contents including min and max values

SUMMARY
Name statistics

Availability Imaging, Volume, FiniteDiff module libraries

Type data output

Inputs field any-dimension n-vector any-data any-coordinates

Outputs none

Parameters Name Type Default
Compute

Median switch off

DESCRIPTION
The statistics module displays global statistical information about field data. statis-
tics scans the input field and produces a small output table like the following:
Field Statistics

================

Dimensions: 628 184 (x4)

Min/Max: 0.000000 255.000000

Mean: 58.934429

Median:

Standard Deviation: 76.030327

Skewness: 1.328104

Kurtosis: 0.686514

The output is displayed in an output text widget. Calculating the Median value is
compute-intensive; it is only calculated if the Compute Median switch is turned on.

Use the statistics module when you need to know what a field’s min/max are. This
information is often useful if you wish to scale the dials in downstream modules
which are operating on the same input field. The output values mean:

Dimensions
The dimensions of the field, with vector length, if applicable.

Min/Max
The lowest and highest values in the data set.

Mean
The average of the data.

Median
The center value of a sorted list of the data.

Standard Deviation
The square root of the sum of the squares of the deviations.

The next two values are derived from comparing the distribution of the values to an
ideal Gaussian "standard" distribution.

Skewness
When positive, the right side of the distribution curve is "steeper" than the left.
When negative, the left side is "steeper."

Kurtosis
When positive, the data is more "spikey" than a standard distribution. When
negative, the data is more broadly-distributed than a standard distribution.

33333333333333333333333333
428 AVS Module Reference Manual

statistics3333333333333333333
INPUT

Data Field (required; field any-dimension n-vector any-data any-coordinates)
The input AVS field can be any dimension, with any vector length, and
of any data type.

PARAMETERS
Compute Median

A toggle switch that makes statistics also go through the compute-
intensive calculation of the field’s median. It is off by default.

EXAMPLE 1
The following network computes statistics on an image.

READ IMAGE

|

|

STATISTICS

EXAMPLE 2
The following network shows how you might use the statistics module to determine
the min and max values in a 3Dfield, so that you could scale the dials on the thres-
holded slicer module accordingly.

READ VOLUME

GENERATE COLORMAP |

| |-------------------|

|--------| | |

THRESHOLDED SLICER STATISTICS

|

|

GEOMETRY VIEWER

RELATED MODULES
ip statistics
print field
compare field

SEE ALSO
The example script STATISTICS demonstrates the statistics module.

33333333333333333333333333
AVS Module Reference Manual 429

stream lines3333333333333333333
NAME

stream lines – generate stream lines for a vector field

SUMMARY
Name stream lines

Availability FiniteDiff module library

Type mapper

Inputs field 3D 3-vector float any-coordinates
field irregular (optional, from samplers module)
upstream transform (optional, invisible, autoconnect)
field 3d scalar (optional, for coloring streamlines)
colormap (optional, for coloring arrows)

Outputs geometry

Parameters Name Type Default Min Max
width integer dial 12 4 32
length integer dial 12 4 128
step float dial 0.02 0.0 1.0
N segment integer dial 16 2 64
Sample radio point
Mode radio lines
Method radio Euler
Show Bounds toggle on off on

DESCRIPTION
The stream lines module generates streamlines based on a field that is a volume of 3D
vectors. It places a "sample" of points at a parameter-controlled starting location in
the volume. The number of points is also parameter-controlled; their orientation is
mouse-controlled, using the same "virtual trackball" paradigm as the Geometry
Viewer.

Then, for every time step, stream lines advances each sample point through space,
based on the interpolated value of the vector field at its present position. The result is
a set of stream lines showing the progress of massless particles through a vector field.

This module is similar to the particle advector module, except that the result is a
static set of lines (or a surface) instead of a dynamically updated set of spheres.

A bounding diagram is generated to show you the region in which the samples are
generated. For the point sample, this bounds is represented as a 3-dimensional
cross-hair. For other representations, it is represented as a line, a circle, a rectangle,
and a retangular prism, depending on which sampling option is chosen. This bound-
ing hull is generated by default, but may be turned off using the Show Bounds but-
ton.

INPUTS
Data Field (required; field 3D 3-vector float any-coordinates)

The input field must be a 3D 3-vector field. The data for each field ele-
ment must be a 3D vector of type float, representing the components of a
velocity vector.

Sample Field (optional; field irregular)
This leftmost input port is meant to connect to the output of the
samplers module. samplers creates a field that is nothing but a series of
locations. stream lines will take these locations and use them as the
sample of starting for points for the stream lines.

33333333333333333333333333
430 AVS Module Reference Manual

stream lines3333333333333333333
Note that, when the stream lines module receives input locations from
samplers, stream lines’s N segments dial, and its Sample buttons disap-
pear from the control panel.

Upstream Transform (optional, invisible, autoconnect)
When the stream lines and geometry viewer modules coexist in a net-
work, they communicate through a normally-invisible data port.
"streamline" shows up as an object in the Geometry Viewer. When you
select the streamline object and move it, geometry viewer informs the
stream lines module what the sample’s new location is, and stream lines
recalculates the location and streamlines it is displaying, accordingly.
This module connection occurs automatically. The effect is to give you
direct mouse manipulation control over the stream lines module’s sam-
ple of locations.

Scalar Field (optional)
This is the port you fill when you want to color the streamlines by a
second, scalar field. This field must be topologically identical to the
required vector field (i.e. it must have the same dimensions, n-space,
etc.). If this port is used, then a colormap must be supplied as well.

Colormap (optional)
If a scalar field is provided to color the streamlines with, then a colormap
must also be provided to act as a mapping from data space to color
space. In order for this to happen, it is important that the range of the
colormap be related to the range of the scalar data. This is most easily
accomplished by using the color range module which adjusts the effec-
tive range of the colormap to the field.

PARAMETERS
Width The density of points in the sample set.

Length A scale factor, which multiplies the length of the streamline segments
generated during each time step.

Step Determines the time step for the interactive computation. The larger the
value, the greater the interval.

N segments
An integer value which determines the number of points for which
stream lines are computed. This controls the density of the stream lines
output by stream lines.

Sample (radio buttons) Specifies the configuration of points from which stream
lines will be drawn: point, line, circle, plane, or space.

mode (radio buttons) The default mode, lines, causes a stream line to be pro-
duced from each point in the sample set. The mesh mode applies only to
line and circle samples. In this mode, a sample line or circle sweeps out a
surface (manifold or cylinder) instead of a set of stream lines. If plane or
space is selected as the sample, the lines, and mesh buttons disappear
from the control panel. This is true even when the sample is received
from the samplers module.

method (radio buttons) The buttons Euler and Runge-Kutta select the method
used to calculate the next position of a sample particle. The Euler
method is faster, involving a single vector in the input field. The Runge-
Kutta method involves an interpolation, and produces considerably
more accurate results.

33333333333333333333333333
AVS Module Reference Manual 431

stream lines3333333333333333333
Show Bounds

A bounding hull for the sample points is typically produced so that you
can easily see the extent of the sample positions. This can be disabled
with the Show Bounds toggle. When on (the default mode), this option
causes the bounding hull to be generated as a wireframe geometry.
When off, no hull is generated.

OUTPUTS
Streamlines (geometry)

A set of disjoint lines.

EXAMPLE 1
The following network reads in a 3D vector field, and calculates streamlines for the
field. animate lines is used to dynamically represent the output of stream lines.

READ FIELD

|

|-------------------|

| |

STREAM LINES |

| VOLUME BOUNDS

| |

ANIMATE LINES |

| |

|-------------------|

|

GEOMETRY VIEWER

EXAMPLE 2
The following network uses the READ PLOT3D module to read in a 5-vector CFD
(Computational Fluid Dynamics) field. Three of these componants are extracted to
generate the stream lines and another is extracted to color the streamlines.

GENERATE COLORMAP READ PLOT3D

| |-------------|

| EXTRACT SCALAR |

|_____ ________| |

| | | EXTRACT VECTOR

COLOR RANGE | |

|_______ | ___________|

| | | |

STREAMLINES VOLUME BOUNDS

|______________|

|

GEOMETRY VIEWER

RELATED MODULES
animate lines
hedgehog
particle advector
samplers

SEE ALSO
The example script STREAMLINES demonstrates the stream lines module.

33333333333333333333333333
432 AVS Module Reference Manual

stream lines3333333333333333333
NAME

3D bar chart – 3D bar chart with average statistics and annotation

SUMMARY
Name 3D bar chart

Availability Imaging, Volume, FiniteDiff module libraries

Type mapper

Inputs field 2D uniform scalar float
colormap

Outputs geometry

Parameters Name Type Default Min Max
Z scale float dial 1.0 unbounded unbounded
width float dial 0.8 0.0 1.0
offset float dial 0.1 0.0 1.0
threshold float dial 0.0 unbounded unbounded
tic scale float dial 1.0 unbounded unbounded

DESCRIPTION
The 3D bar chart module converts a two-dimensional floating point field into a
group of 3D blocks, represented as a geometry. Each element in the field is mapped
to a 3D bar. The height of each bar above each point is proportional to the scalar
value of the field.

Side panels show the Min, Max and Average along each row and column in the 2D
data.

A threshold transparent sheet can be moved through the graph to highlight specific
values. Only values above the threshold will protrude above the sheet.

Line tic marks and text labels show the row and column numbers, and the vertical
scale.

This module does not normalize the Z-height. The XY plane is approximately 0.0 to
1.0 on each side. Use the Z scale dial to set the vertical scale. The dials are
unbounded to allow any data range. If the dials prove too sensitive for small
numbers, press the blue dot in the center of the dial to bring up the Dial Editor, and
either type in a specific value, or reset the dial resolution with the Min and Max
typeins.

INPUTS
Data Field (required; field 2D scalar uniform float)

The input data must be a 2D field with a scalar float data value at each
element.

Colormap Colors each bar in the chart a specific color according to the data value at
that point.

PARAMETERS
Z scale Floating point dial that controls the height scale for the entire chart. The

default is 1. This often needs to be reset. For example, byte data ranging
from 0 to 255 displays well with a Z scale value of .001.

width Floating point dial that controls the relative width of each bar, or the
"space" between the bars. The default is .8.

offset Floating point dial that controls how far away the shadow planes that
display each row/column’s minimum, maximum and average are from
the main bar chart. The default is .1.

33333333333333333333333333
AVS Module Reference Manual 433

3D bar chart3333333333333333333
threshold Floating dial that controls the height of the threshold sheet in the chart.

The default is 0.0.

tic scale Floating dial that controls the vertical scale tic marks. There are ten tic
marks. tic scale specifies the interval between tic marks, scaled by Z
scale. The default is 1.

OUTPUTS
Geometry (geometry)

The output is an AVS geometry.

EXAMPLE
The following network inputs a 3D uniform vector field (such as
$AVS_PATH/data/field/radm/hour011.fld, downsizes it, extracts one vector element,
then removes one 2D plane (orthogonal slicer) from the volume and sends it to 3D
bar chart to be converted into a 3D geometric bar graph. The bars are colored by a
colormap that is scaled to the data range. If the input field were byte or integer data,
there would be a field to float module inserted between extract scalar and color
range and orthogonal slicer.

READ FIELD

|

DOWNSIZE

|

GENERATE COLORMAP |

| EXTRACT SCALAR

| |

| |-----------|-----------|

| | |

COLOR RANGE ORTHOGONAL SLICER

| |

|-----------| |---------|

| |

3D BAR CHART

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that can provide the Data Field input:

any module that outputs a field
Modules that can provide the Colormap input:

generate colormap
color range

Modules that can process the output:
geometry viewer

SEE ALSO
The example script 3D BAR CHART demonstrates the 3D bar chart module.

33333333333333333333333333
434 AVS Module Reference Manual

threshold3333333333333333333
NAME

threshold – restrict values in data field

SUMMARY
Name threshold

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field any-dimension n-vector any-data any_coordinates

Outputs field of same type as input

Parameters Name Type Default Min Max
thresh_min float 0.0 none none
thresh_max float 255.0 none none

DESCRIPTION
The threshold module transforms the values of a field as follows:

d Any value less than the value of the threshold_min parameter is set to 0.

d Any value greater than the value of the threshold_max parameter is set to 0.

d All values within the threshold_min-to-threshold_max range are not changed.

After being threshold’ed, a data set’s values are all either zero, or in this range:
thresh_min ≤ value ≤ thresh_max

Note the difference between the clamp and threshold modules:

d threshold sets values outside the specified range to be zero.

d clamp sets values outside the specified range to be the range’s minimum and
maximum values.

INPUTS
Data Field (required; field any-dimension n-vector any-data any_coordinates)

The input data may be any AVS field.

PARAMETERS
thresh_min

The minimum threshold value.

thresh_max
The maximum threshold value.

OUTPUTS
Field Data The output field has the same dimensionality as the input field.

Appropriate new values of the min_val and max_val attributes are writ-
ten to the output field.

RELATED MODULES
Modules that could provide the Data Field input:

read volume
any other filter module

Modules that could be used in place of threshold:
ip threshold
clamp

Modules that can process threshold output:
colorizer
any other filter module

33333333333333333333333333
AVS Module Reference Manual 435

threshold3333333333333333333
SEE ALSO

The example scripts CONTOUR GEOMETRY, and THRESHOLDED SLICER demon-
strate the threshold module.

33333333333333333333333333
436 AVS Module Reference Manual

thresholded slicer3333333333333333333
NAME

thresholded slicer – slice through volume data with high/low values invisible

SUMMARY
Name thresholded slicer

Availability Volume, FiniteDiff module libraries

Type mapper

Inputs field 3D scalar any-data any-coordinates (volume)
upstream transform (optional, invisible, autoconnect)
colormap (required)

Outputs geometry

Parameters Name Type Default Min Max
Resolution int dial 12 12 64
Distance float dial 0.0 unbounded unbounded
Low Threshold float dial 0.0 unbounded unbounded
High Threshold float dial 255.0 unbounded unbounded
Sampling Style choice point point,trilinear
Refine choice coarse coarse, fine

DESCRIPTION
The thresholded slicer module extracts a 2D slice from a 3D volume of data. It
differs from the arbitrary slicer, orthogonal slicer, and brick modules in that one can
establish that numerical values below a Low Threshold value and above a High
Threshold value will not be mapped—they will be given zero values in the output
2D slice. One can thus "edit out" or "crop" high and low values from a volume
rendering.

thresholded slicer’s slice plane is moveable through the Z axis with its Distance
parameter dial.

It is also possible to move the slice plane arbitrarily within the volume using the
mouse or the Geometry Viewer’s transformation panel This is because thresholded
slicer has an invisible "Upstream Transform" input port that allows it to automati-
cally receive information from the geometry viewer module about how the "thres-
holded slice" object has moved,

The mapping technique for thresholded slicer is the same as arbitrary slicer. That is,
the volume of data is represented as a 3D scalar field, defining a lattice within the
volume. The slice plane is represented as a 2D grid, with parameter-controlled reso-
lution. The intersection of the volume and the grid is a mesh of vertices in 3D space.

Each vertex in the mesh is assigned a color (with the input from generate colormap
or the colormap manager) that corresponds to one or more values of the scalar field.
Values below and above the Low Threshold and High Threshold settings are set to
zero. Since, in general, the mesh vertices do not coincide with the original lattice
points, an interpolation method can be used — see the trilinear input parameter
below.

By default, the volume is placed at the origin and the slice plane is an X-Y plane
placed midway through the Z dimension of the data.

You can control the resolution of the mesh using the Resolution parameter. At lower
resolutions, fewer original data points are used in the computations; at higher resolu-
tions, more points are used.

33333333333333333333333333
AVS Module Reference Manual 437

thresholded slicer3333333333333333333
The optimal way to use this module is to start off with a low resolution mesh, posi-
tion it as desired, then increase the resolution and turn on trilinear mapping and the
Fine level of refinement.

INPUTS
Data Field (required; field 3D scalar any-data any-coordinates)

The input data must be a 3D field, with a byte value at each location in
the field. The field must be uniform.

Upstream Transform (optional, invisible, autoconnect)
When the thresholded slicer module coexists with the geometry viewer
module in a network, geometry viewer feeds information on how the
"thresholded slice" object has been moved in the Geometry Viewer back
to this input port on the thresholded slicer module. The two modules
connect automatically, through a data pathway that is normally invisible.
This gives direct mouse manipulation control over thresholde slicer’s
slice plane.

Colormap (required; colormap)
By default, the value computed for each vertex of the mesh is used as the
hue in HSV space. The values are transformed to the range 0..255, and
are then used as indexes into the colormap.

PARAMETERS
Resolution An integer dial that controls how many sampling points are taken

through each dimension of the volume data. The default is a fairly low
resolution 12. The maximum value is 64.

Distance A floating point dial widget that controls the movement of the slice sur-
face in the Z direction. The 0.0 initial value is defined to be midway
through the volume. Hence, a volume with a Z dimension of 64 has 0.0
in the middle, with +32.0 and -32.0 in either direction. The dial itself is
unbounded. If you enter a value outside the actual volume, the slice sur-
face disappears.

Low Threshold
A floating point dial, set by default to 0.0. Values in the volume below
this dial setting do not generate any polygons.

High Threshold
A floating point dial, set by default to 255.0. Values in the volume above
this dial setting do not generate any polygons.

Refine The intersection of the contour with the voxel is computed in a
refinement loop. This selection chooses how many levels of refinement
are performed. coarse is 2; fine is 8. Fine gives more accurate contours.

Sampling Style
A choice of two styles that control how each vertex in the output mesh is
assigned a color:

d If Point, a nearest-neighbor algorithm is used. Each mesh vertex is
assigned the byte value of the nearest point in the lattice.

d If Trilinear, a trilinear interpolation is performed. The value at each
vertex depends on the byte values at the eight lattice points that are
the corners of the "enclosing cube".

33333333333333333333333333
438 AVS Module Reference Manual

thresholded slicer3333333333333333333
The trilinear interpolation method is more accurate but takes longer to compute, par-
ticularly with larger meshes.

OUTPUTS
Geometry (geometry)

The output is an AVS geometry.

EXAMPLE
This example shows the typical usage of the thresholded slicer module for byte data
in the range 0-255:

READ VOLUME

|

|

GENERATE COLOR |------------------|

| | |

|----------| | |

| | |

| | |

THRESHOLDED SLICER VOLUME BOUNDS

| |

| |---------------|

| |

GEOMETRY VIEWER

The volume bounds modules gives a reference frame for orienting the slice plane.
Often, an isosurface is also input to the geometry viewer module.

SEE ALSO
The example script THRESHOLDED SLICER demonstrates the thresholded slicer
module.

33333333333333333333333333
AVS Module Reference Manual 439

time sampler3333333333333333333
NAME

time sampler – extract 3D time slices from 4D time series field with interpolation

SUMMARY
Name time sampler

Availability Volume, FiniteDiff module libraries

Type filter

Inputs field 4D n-vector any-data any-coordinates

Outputs field 3D same-vector same-data same-coordinates

Parameters Name Type Default Min Max
time step float dial 0.0 0.0 number of slices
choice choice slice

DESCRIPTION
time sampler extracts two sequential 3D fields from a 4D field and interpolates
between their computational data values by one of three techniques, producing a sin-
gle 3D field as output. (time sampler does not interpolate coordinate data.) The
input field is intended to be a time series of 3D fields packed into a single 4D field.
Using time sampler’s time step parameter, it is possible to generate the data interpo-
lations that are required to animate time series data with the AVS Animator module.

INPUTS
Data Field (required; field 4D n-vector any-data any-coordiates)

The input is a 4D field of any type. Such fields can be created, for exam-
ple, by concatenating a time series of data and coordinate files together
and then using the read field module’s data input parsing option to pro-
duce a single 4D field.

PARAMETERS
time step time step is a floating point dial that specifies which time slices to inter-

polate between. When slice (below) is selected, time step only accepts
whole integer values; intermediate floating point values are floored. The
range is from 0.0 to the number of 3D time-steps in the 4D input field
(counting from 0). The default is 0.0.

choice A set of radio buttons that determines the interpolation method. slice is
the default.

slice No interpolation is performed. Instead, just the 3D slice
specified by time step is extracted and output.

linear Interpolate linearly between adjacent 3D slices. The formula
used to generate the output value is:

((slice2 - slice1) ∗ (time step - floor(time step)) + slice1
Where slice2 and slice1 are the data values in the adjacent
slices, time step is the value selected by the time step parame-
ter, and floor(time step) is the integer portion of time step.

For example, if the slice1 value were 10, and the slice2 value
were 1, selecting a time step of 1.33 would yield an interpo-
lated value of:

((1 - 10) ∗ (1.33 - 1)) + 10

= (-9 ∗ .33) + 10

= -2.97 + 10

= 7.03

or the difference between 10 and 1 occurring 1/3 (1.33) of the

33333333333333333333333333
440 AVS Module Reference Manual

time sampler3333333333333333333
way between the adjacent data values.

cubic Interpolate between adjacent 3D slices using cubic splines.
This produces a non-linear, smoothed curve between the
actual data values. The input field must have at least four
time steps to compute cubic interpolation because cubic
smooths using the two previous and two following data
values. At the first and last time slices interpolation is linear.

OUTPUTS
Data Field (field 3D same-vector same-data same-coordinates)

The output is a 3D field of the same type as the input field.

EXAMPLE 1
The following network animates time series data using the AVS Animator module.
Select one time step in the time sampler module, then set a keyframe in the AVS
Animator. Select a second time step in time sampler, then set the next keyframe in
the Animator. You can also use animated float to send data values to the time step
parameter to create an animation without the AVS Animator.

Note that the color range module is connected to the field before it is time sampled.
READ FIELD

|

|

GENERATE COLORMAP | AVS ANIMATOR

| -------|-------

| | |

COLOR RANGE TIME SAMPLER

| |-------------|

| | |

|-----------| | |

| | |

BUBBLEVIZ VOLUME BOUNDS

| |

SCATTER DOTS |

| |

|---------------|

|

GEOMETRY VIEWER

RELATED MODULES
orthogonal slicer

33333333333333333333333333
AVS Module Reference Manual 441

tracer3333333333333333333
NAME

tracer – perform ray-traced volumetric rendering on volume data

SUMMARY
Name tracer

Availability Volume, FiniteDiff module libraries

Type mapper

Inputs field uniform 3D byte, scalar or 4-vector
field 2D scalar float (transformation matrix, optional, autoconnect)
colormap (optional; used with scalar input)

Outputs field 2D 4-vector byte (image)

Parameters Name Type Default Min Max
alpha scale float dial 1.0 0.0 1.0
perspective float dial 0.0 0.0 1.0
width int typein 64
height int typein 64
interpolate toggle off

DESCRIPTION
tracer belongs to a family of modules (along with x-ray and cube) that render volume
data. tracer takes a volume, which can be visualized as a block of cubic "voxels"
(volume elements), and generates a 2D image using ray tracing. Each voxel in the
volume has color and opacity values associated with it.

The ray tracing method is as follows. For each pixel in the output image a ray is
"shot" into the volume. Each voxel the ray passes through makes some contribution
to the color of the pixel. How much a voxel contributes depends on its opacity. The
ray travels through the volume until the opacity of all the cubes it has passed
through adds up to 1.0. This is an "additive light model", because the rays accumu-
late voxel color contributions as they travel through a volume.

For example, if a ray were to hit a completely opaque red voxel then it would travel
no further, and the pixel associated with that ray would be colored red. On the other
hand, if the voxel were nearly transparent, then it would confer only a fraction of its
color to the pixel, and the ray would pass deeper into the volume, summing the color
values of the other voxels it intersects.

Volumetric rendering such as this allows you to penetrate beneath the surface of 3D
data, and see depths surrounded by "translucent" outer layers. The degree of opacity
of the volume can be controlled by changing the alpha scale parameter, or by using
generate colormap’s widget’s opacity control to edit the opacities associated with the
data.

tracer has two input field options. Both are required to be uniform 3D byte fields.
However, the byte fields can be either a scalar (a single byte of data at each node), or
a 4-vector of bytes.

If the input field is scalar, then each 8-bit data value represents itself. The 0 to 255
data range will be interpreted as transparency and gray scale values (0 =
transparent/white, 255 = opaque/black). To add color, connect a generate colormap
module to tracer’s optional leftmost input port.

If the input field is a 4-vector of bytes, then the original data value (byte, integer,
float, or double) has been translated into an alpha (transparency), red, green, blue
"field of colors" by a module such as colorizer or compute shade.

33333333333333333333333333
442 AVS Module Reference Manual

tracer3333333333333333333
The scalar byte field uses less memory than the 4-vector of bytes. Thus, for a given
system memory size, it is possible to render a larger dataset.

On the other hand, 4-vector byte fields can be gradient-shaded with compute shade
while scalar byte fields cannot.

The method used by tracer avoids the image anomalies that alpha blend displays
when volumes are rotated.

tracer includes a "Performance Stats" output widget that reports the number of vox-
els and pixels rendered, and the wall-clock seconds required to produce them.

INPUTS
Data field (required; field 3D byte, scalar or 4-vector)

The input data must be a 3D uniform byte field. It may be either a scalar
byte field, or a 4-vector of bytes in the alpha-red-green-blue format used
in AVS images. Scalar byte fields use less memory. 4-vector alpha-red-
green-blue input data is produced by passing 3D field data through the
module colorizer or compute shade before it enters tracer. While using
more memory, 4-vector fields can be gradient-shaded.

The tracer network structures differ slightly between the two input
types. See the examples below.

Transformation matrix (optional; field 2D scalar float, autoconnect)
The center port on tracer can receive a 4x4 transformation matrix
describing rotations and translations to apply to the volume data. This
matrix (field 2D scalar float) can come from an appropriate downstream
module such as display tracker, or from the euler transformation or
track ball modules. These mechanisms allow you to rotate the volume
in 3-space.

For example, when the tracer module is connected to the display tracker
module in a network, display tracker sends a transformation matrix
back to this port on tracer. This allows you to directly manipulate the
volume by moving the mouse in display tracker‘s window, using the
"virtual spaceball" paradigm. For a more detailed description of direct
manipulation see the section titled "Transforming Objects" in the
"Geometry Viewer" chapter of the AVS User’s Guide.

Colormap (optional; colormap)
Use this optional input port to colorize scalar data. If unused, the scalar
byte data is rendered in gray scale. This port is ignored with 4-vector
data.

PARAMETERS
alpha scale (float dial)

A floating point value between 0.0 and 1.0 which is multiplied by the
alpha byte of every voxel in the volume. This determines how tran-
sparent the the volume will seem. The default of 1.0 results in all the vox-
els’ alpha bytes remaining unchanged. As the value of alpha scale
approaches 0.0 the volume becomes more transparent, allowing rays to
penetrate deeper into the volume, and making inner regions visible.

The generate colormap module’s opacity channel also controls tran-
sparency. It produces the "alpha byte" that alpha scale scales.

perspective (float dial)
With perspective set to the default 0.0, the rays sent into the volume
emanate from an "eye point" at infinity. This means that when a ray

33333333333333333333333333
AVS Module Reference Manual 443

tracer3333333333333333333
passes through the image plane it is orthogonal to that plane, resulting in
a parallel projection (i.e. non-perspective) view of the volume. As the
perspective value increases the point from which rays emmanate moves
closer to the image plane, resulting in an increase in perspective. Select-
ing a high value for perspective may result in part of the volume moving
outside the bounds of the image window.

width (integer typein)
Value which determines the width in pixels of the output image.
Another way of thinking of this is the width determines the number of
rays that will be projected into the volume along the x direction. This
changes the shape of the window through which you view the volume.
With perspective on, changing the width can bring clipped regions of
the window back into view.

Note: Downstream modules such as display tracker have controls that
will enlarge the image in the output window without computing at
higher resolution.

height (integer typein)
Value which determines the height in pixels of the output image.
Another way of thinking of this is the height determines the number of
rays that will be projected into the volume along the y direction. This
changes the shape of the window through which you view the volume.
With perspective selected, changing the height can bring clipped regions
of the window back into view.

interpolate (toggle)
Allows you to choose between two ray-tracing algorithms:

Voxel approximation (default)
This is the default. The 3D field is broken into cells, or voxels, as
described above, i.e. the volume is decomposed into blocks, each
with eight corners. Each voxel has a single opacity—and, with 4-
vector, a color—and set of shading parameters. These values are
taken from the vertex at the voxel’s upper lefthand corner, and are
assumed to be uniform throughout the voxel.

The length of a ray’s path through a voxel is computed. Thus if a ray
just nicks the corner of a green voxel, only a little green is added to
the ray’s accumulated color. This method is faster than the trilinear
interpolation method. Use it to get a quick look at the data.

Trilinear Interpolation
In this algorithm it is not assumed that each voxel has a uniform
color and opacity. Rather, the field values of the voxel’s eight corners
are interpolated. These interpolated values are then used to deter-
mine the actual opacity and color values of the points at which a ray
enters and exits a voxel. As in the voxel approximation method, the
length of the ray’s path through the voxel affects that voxel’s contri-
bution to the ray’s color. This method produces a more accurate
rendering of the volume.

OUTPUTS
Data Field (field 2D 4-vector byte)

The output field is an AVS image.

33333333333333333333333333
444 AVS Module Reference Manual

tracer3333333333333333333
EXAMPLE 1

The following network reads a scalar 3D uniform byte field (a volume) and ray traces
it. generate colormap colors the otherwise gray scale bytes. The module euler
transformation allows you to rotate the volume to produce views from any angle. If
the input was not originally byte values, it could be converted with the field to byte
module.

READ VOLUME

EULER TRANSFORMATION |

| |

|----------------------------| |

| |

GENERATE COLORMAP | |

|--------------------------| | |

| | |

TRACER

|

|

DISPLAY IMAGE

EXAMPLE 2
The following network is identical to the previous, except the uniform input field has
been translated into a 4-vector field of colors prior to entering tracer.
GENERATE COLORMAP READ FIELD

| |

|-------------------------------| |

| |

COLORIZER

EULER TRANSFORMATION |

| |

|----------------------------| |

| |

TRACER

|

|

DISPLAY IMAGE

EXAMPLE 3
Another interesting technique is to apply a light source to the data. In order to do
this the gradient of the data (which approximates the "surface normal") must be com-
puted. Note that the compute shade module has been modified to accept a transfor-
mation matrix. This prevents the light source from rotating relative to the data, when
the object is rotated using display tracker, euler transformation, or track ball.
Without connecting display tracker (or euler transformation, etc.) to compute
shade, the light source would appear "attached" to any object transformations. A
network for doing this gradient shading is:

33333333333333333333333333
AVS Module Reference Manual 445

tracer3333333333333333333
READ VOLUME

|

GENERATE COLORMAP |

| |

| |

|-----------| | |

| COMPUTE SHADE

| |

|----------------| |

| TRACER

| |

| |

| DISPLAY TRACKER

|----------|

Note that this network uses the module display tracker, which allows you to directly
manipulate the volume being viewed by moving the mouse. display tracker feeds
information on the mouse’s movements back to tracer through its lefthand data port.

RELATED MODULES
Modules that could be used in place of tracer:

x-ray
cube

Modules that could provide the Data Field input:
read volume
read field
colorizer
compute shade
any other module which outputs a 3D byte field, scalar or 4-vector.

Modules that could provide the Transformation Matrix input:
euler transformation
track ball
display tracker (using upstream data)

Modules that can process tracer’s output:
display tracker
display image
image viewer
image to postscript
any other module which takes an AVS image as input.

SEE ALSO
Garrity, M., "Raytracing Irregular Volume Data," (Proceedings of the 1990 San Diego
Workshop on Volume Visualization), Computer Graphics, Volume 24, Number 5,
November 1990, pp. 35-40. ACM SIGGRAPH.

The example scripts TRACER and COMPUTE SHADE demonstrate the tracer
module.

33333333333333333333333333
446 AVS Module Reference Manual

track ball3333333333333333333
NAME

track ball - send object transformation matrix to other modules

SUMMARY
Name track ball

Availability Imaging, Volume, FiniteDiff module libraries

Type data (coroutine)

Inputs none

Outputs field uniform 2D scalar float (transformation matrix)
geometry

Parameters Name Type
track field

DESCRIPTION
track ball generates a 4x4 transformation matrix. It produces the same transforma-
tion output as euler transformation. The difference is that you specify the transfor-
mation with a direct manipulation trackball widget, rather than with dial values.
Thus, track ball is a kind of hybrid between euler transformation and the direct
manipulation facilities of display tracker.

track ball produces its output transformation matrix in two forms: as a transforma-
tion matrix that can be sent to modules like tracer; and as a geometry edit list
transformation that can be sent to the geometry viewer module to control its objects.

track ball is particularly useful when you want to apply the same transformation to
objects in two or more downstream modules.

PARAMETERS
track A trackball widget. To generate the transformation, move the trackball

with the mouse and cursor. track ball uses the same buttons as the
Geometry Viewer:

rotate center button
translate right button
scale shift-middle button

OUTPUTS
Transformation Matrix (field 2D uniform scalar float)

The output is a 4x4 array of floating point values which specifies rota-
tions and scaling operations that can be applied to transform an object
around the origin of its own coordinate system.

geometry (geometry)
This output is a geometry edit list containing the transformation.

EXAMPLE 1
The following network performs volumetric ray-tracing using tracer. track ball is
used to move the object.

33333333333333333333333333
AVS Module Reference Manual 447

track ball3333333333333333333
TRACK BALL READ VOLUME

| |

| |

GENERATE COLORMAP | |

|------| | |

TRACER

|

|

DISPLAY IMAGE

RELATED MODULES
Modules that accept track ball’s output:

tracer
compute shade
gradient shade
geometry viewer

33333333333333333333333333
448 AVS Module Reference Manual

transform pixmap3333333333333333333
NAME

transform pixmap – perform 3D transformation on pixmap (hardware texture map-
ping systems only)

SUMMARY
Name transform pixmap

Availability this module is in the unsupported library
requires texture mapping and other hardware support

Type data output

Inputs pixmap

Outputs pixmap

Parameters Name Type
image transform 4x4 matrix
transform image toggle
reset toggle
refine toggle

DESCRIPTION
The transform pixmap module maps its pixmap input onto a rectangle that has been
arbitrarily transformed in three dimensions. The resulting pixmap is then output.
The transformation allows for rotation, scaling, translation, or shearing of the image
(or any combination thereof).

A benefit of using transform pixmap in a network is that it automatically scales its
output pixmap size to fit the output window of a display pixmap module down-
stream. For example, if you read in a 512x512 pixmap, you can display the entire
pixmap in any size window.

AVAILABILITY
For transform pixmap to work, and for it to appear in the module palette, the system
it is running on must support texture mapping in both graphics software and
hardware. (See the release note information that accompanies AVS on your plat-
form). The software renderer does not support transform pixmap.

INPUTS
pixmap The input can be any AVS pixmap.

PARAMETERS
image transform

Controls the 3D transform to be applied to the pixmap. The control
widget is a window containing a colored cube, annotated with coordi-
nate axis information. Transforming this cube with the following mouse
buttons causes the pixmap to be transformed accordingly:

Mouse Transform
left cycle among three views:

along X-axis, along Y-axis, along Z-axis
middle rotate
right translate in plane of screen
middle with SHIFT key scale
right with SHIFT key translate perpendicular to plane of screen

The mouse button mapping is the same as in the Geometry Viewer.

transform image (toggle)
This toggle parameter controls whether you can transform the image
directly (i.e. in its window), or must use the transformation widget

33333333333333333333333333
AVS Module Reference Manual 449

transform pixmap3333333333333333333
described above.

d If ON: The transform pixmap module "grabs" button press events
in the associated output window, allowing you to transform the
image directly.

NOTE: For pixmaps generated by a render geometry module, button
clicks in the window will no longer transform the geometry, but will
transform the pixmap instead.

d If OFF: The mouse buttons have the same meanings, but you cannot
"grab" the image in the output window directly. Instead, you must
transform the cube in the transform control widget, which appears in
the module’s control panel.

refine (toggle)
Controls the use of point sampling to improve the quality of the output
pixmap.

d If ON, A "successive refinement" algorithm is used to improve pic-
ture quality. When there is no other work left to do, transform pix-
map applies nine refinement passes, each of which incrementally
improves the picture. This is especially useful when small images
are to be displayed in very large windows, or vice-versa.

d If OFF, the transformation applied to the image uses a "point sam-
pling" algorithm.

reset (one-shot)
Resets the transformation of the image to be the identity transformation.

OUTPUTS
pixmap The output is a pixmap containing a scene that includes all the input

objects.

EXAMPLE
READ IMAGE

|

IMAGE TO PIXMAP

|

TRANSFORM PIXMAP

|

DISPLAY PIXMAP

RELATED MODULES
image to pixmap, transform pixmap, display pixmap

LIMITATIONS
When you transform an image directly (transform image toggle) or use the Reset
function, the transform control widget is not updated.

SEE ALSO
The example script CONTOUR GEOMETRY demonstrates the pixmap to image
module.

33333333333333333333333333
450 AVS Module Reference Manual

transpose3333333333333333333
NAME

transpose – exchange dimensions in a 2D or 3D data set

SUMMARY
Name transpose

Availability Imaging, Volume, FiniteDiff module libraries

Type filter

Inputs field 2D/3D n-vector any-data any-coordinates

Outputs field of same type as input

Parameters Name Type Default Choices
axis choice Original Original, YZ, XZ, XY

DESCRIPTION
The transpose module exchanges the data in two dimensions of a 2D or 3D field. It
can be used to change the orientation of the data for display and/or processing pur-
poses.

INPUTS
Data Field (required; field 2D/3D n-vector any-data any-coordinates)

The input data may be any 2D or 3D AVS field.

PARAMETERS
axis The choices for exchanging the data are:

Original Copies the input to the output; no transformation is per-
formed.

YZ Swaps the Y and Z dimensions. (Equivalent to "Original" for
a 2D field.)

XZ Swaps the X and Z dimensions. (Equivalent to "Original" for
a 2D field.)

XY Swaps the X and Y dimensions.

OUTPUTS
Data Field (field 2D/3D n-vector any-data any-coordinates)

The output field has the same dimensionality and type as the input field.

EXAMPLE 1
The following network reads in an image and then swaps the XY dimensions:

READ IMAGE

|

TRANSPOSE

|

DISPLAY IMAGE

EXAMPLE 2
These drawings illustrate the transposition choices:

33333333333333333333333333
AVS Module Reference Manual 451

transpose3333333333333333333

11
1
1
1
1
1
13333333311

1
1
1
1
1
133333333

11
1
1
1
1
1
1

33333333

Y = 3

X = 2

Z = 4

Original Data

11
1
1
1
1
1
1
13333333311

1
1
1
1
1
1
133333333

11
1
1
1
1
1
1
1

33333333

Y = 4

X = 2
Z = 3

After YZ Transpose

11
1
1
1
1
1
13333333333311

1
1
1
1
1
133333333333

11
1
1
1
1
1
1

33333333333

Y = 3

X = 4
Z = 2

After XZ Transpose

11
1
133333333333333311

1
1333333333333333

11
1
1

333333333333333

Y = 2

X = 3

Z = 4

After XY Transpose

RELATED MODULES
This module combined with mirror can re-orient the data in any desired way. See
also ip reflect.

33333333333333333333333333
452 AVS Module Reference Manual

tristate3333333333333333333
NAME

tristate - send a tristate value to one or more module(s) tristate parameter port(s)

SUMMARY
Name tristate

Type data

Inputs none

Outputs tristate

Parameters Name Type Default Min Max
tristate tristate 0 0 2

DESCRIPTION
The tristate module sends a single user-specified tristate value to one or more tristate
parameter ports on one or more receiving modules. Its purpose is to make it possible
for a user to simultaneously control tristate parameter input to more than one
module using only a single tristate input widget.

The tristate data-type is a variant of the boolean data-type. A tristate variable has
three possible values: 0, 1 or 2. It is used to make selections when there are only three
possible choices.

Before you can connect tristate to the receiving module, you must make that receiv-
ing module’s parameter port visible. To make a parameter port visible, call up the
module’s Editor Window panel by pressing the middle or right mouse button on the
module icon dimple. Next, look under the "Parameters" list to find the parameter
you want to plug into. Position the mouse cursor over that parameter’s button and
press any mouse button. When the Parameter’s Editor Window appears, click any
mouse button over its "Port Visible" switch. A white parameter port should appear
on the module icon. Connect this parameter port to the tristate module icon in the
usual way one connects modules.

PARAMETERS
tristate (integer)

The single tristate value (0, 1, or 2), specified through a tristate widget, to
be sent to the receiving module(s) tristate parameter port(s). The default
value is zero.

OUTPUTS
tristate (integer)

The tristate value (0, 1, or 2) is sent to all modules with tristate-type
parameter ports that are connected to the tristate module.

RELATED MODULES
Modules that can process tristate’s output:

modules with tristate-type parameter ports

33333333333333333333333333
AVS Module Reference Manual 453

tube3333333333333333333
NAME

tube – convert lines to cylindrical tubes

SUMMARY
Name tube

Availability UCD, FiniteDiff module libraries

Type filter

Inputs geometry

Outputs geometry

Parameters Name Type Default Min Max
radius float 0.1 0.0 4.0

DESCRIPTION
The tube module transforms an AVS geometry, replacing a set of disjoint lines with
"tubes" constructed out of eight polygons.

INPUTS
Geometry (required; geometry) An AVS geometry, created with the libgeom library

or by another AVS module.

PARAMETERS
radius The radius to be used for the tube. Only values in the range 0.0 – 0.4 pro-

duce an acceptable result.

OUTPUTS
Geometry (geometry)

The output is an AVS geometry, representing each input line as a set of
polygons.

EXAMPLE
In this example, the original geometry includes no disjoint lines. The wireframe
module is used to add disjoint lines, which are then converted to tubes.

READ GEOM

|

WIREFRAME

|

TUBE

|

GEOMETRY VIEWER

RELATED MODULES
read geom, offset, shrink, flip normal, wireframe, render geometry

LIMITATIONS
Only radius values in the range 0.0 – 0.4 produce acceptable results.

The cylinders are not capped and adjacent line segments are not joined. For thick
cylinders, there may be quite a bit of surface intersections at the joins.

SEE ALSO
The example script TUBE demonstrates the tube module.

33333333333333333333333333
454 AVS Module Reference Manual

ucd anno3333333333333333333
NAME

ucd anno – show data values of cells or nodes of a UCD structure

SUMMARY
Name ucd anno

Availability UCD module library

Type mapper

Inputs ucd structure
upstream geometry (optional, invisible, autoconnect)

Outputs geometry

Parameters Name Type Default Min Max
Node Data boolean on
components choice coords
Cell Data boolean off
components choice coords

label id boolean on
label value boolean off
cell nodes boolean off
title boolean off
Text Size integer dial 2 1 5
Text Offset float dial 0.0 -10.0 10.0

DESCRIPTION
ucd anno makes it possible to see the values of specific cells and nodes of a UCD
structure simply by clicking on the structure. The cell or node values of the cell that
is clicked on are output as geometry labels, and can be viewed along with the UCD
structure using the geometry viewer module. The ucd anno module thus provides a
way to directly view data values contained in a UCD structure.

In a UCD structure, nodes and cells may have an arbitrary number of data com-
ponents associated with them. ucd anno displays the values of one data component
at a time, whether it is a scalar or a vector.

1. Use the node data and cell data choice buttons to select which type of data, node
or cell, you wish to view.

2. Use the radio buttons beneath node data and cell data to select the data com-
ponents you want ucd anno to display. Both may be selected. Note that the first
choice is coord, which selects the coordinates of the node or cell rather than its
component data values.

3. Choose the values you wish to see from the Label Options menu: any combina-
tion of the label’s id, value, and cell nodes.

4. If necessary, use the Text Size and Text Offset parameters to size and position
the text annotations so that you can read them.

ucd anno takes two inputs: a UCD structure, and an upstream geometry which it
receives when it is in a network with geometry viewer. When you click the left
mouse button on the image of the UCD structure the geometry viewer module sends
information upstream telling ucd anno where on the structure the mouse was
clicked. From this information ucd anno calculates which cell or node is being
selected, and displays the data for that cell or node.

The labels that ucd anno outputs appear as geometry objects in 3-space attached to
the nodes they are associated with. If the UCD structure is rotated the node and cell
labels will rotate along with it. As they rotate they remain oriented parallel to

33333333333333333333333333
AVS Module Reference Manual 455

ucd anno3333333333333333333
geometry viewer’s window. This may cause a label to intersect the volume of the
UCD structure and be partly or wholly hidden by the structure. Rotating the struc-
ture further will usually bring the label above the structure’s surface. Alternatively:

d Use the Text Offset parameter to move the label;

d Use the ucd to geom module’s External Edges parameter to display the ucd
structure as a wireframe box;

d Or use the Transparency slider on the Geometry Viewer’s Edit Property panel to
make the structure semi-transparent and let the annotations show through. If
your platform does not support hardware transparency, switch to Software
Renderer on the Cameras menu.

INPUTS
UCD Structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

upstream geometry (optional, invisible, autoconnect)
When the ucd anno module coexists with the geometry viewer module
in a network, geometry viewer feeds information on where the mouse
has been clicked back to this input port on the ucd anno module. The
two modules connect automatically, through a data pathway that is nor-
mally invisible. This makes it possible to see the values of specific cells
and nodes simply by clicking on them.

PARAMETERS
Node Data Selects node data display. This is the default. Once this is selected, you

may use the radio buttons to choose one data value to display, either the
coordinates of the node, or one of its data components.

coords
Displays the coordinates of the node.

<component...>
Selects which of the node’s data components to display. The but-
tons show the label attached to each node data component. Before
the module receives data, the default "<data 1>, <data 2>, ..." is
displayed. If there is no node data in the structure "<no data>" is
displayed on the button.

Cell Data Selects cell data display. Once this is selected, you may use the radio
buttons to choose one data value to display, either the coordinates of the
cell, or one of its data components.

coords
Displays the coordinates of the midpoint of the cell. This choice is
present only if there is cell based data associated with the UCD
structure.

<component...>
Selects which of the cell’s data components to display. The buttons
show the label attached to each cell data component. Before the
module has received data, the default "<data 1>, <data 2>, ..." is
displayed. If there is no cell based data in the structure "<no data>"
is displayed on the button.

Label Options

33333333333333333333333333
456 AVS Module Reference Manual

ucd anno3333333333333333333
label id

When label id is selected the integer or string that identifies a cell or
node is displayed.

label value
When label value is selected the floating point value associated with
one data component of a cell or node is displayed.

cell nodes
When cell nodes is selected, ucd anno displays the data for all the
nodes of the cell that has been clicked on. Thus, for a hexadehron,
ucd anno would display the node data at each of the cell’s 8 nodes.

title
When title is selected, if the UCD structure has a title, it is displayed
in the top-left corner of display pixmap’s window.

Text Size An integer dial that controls the font size of the output strings.

Text Offset
A floating point dial that offsets the text from the UCD node or cell, mak-
ing it easier to read. The default is 0.0 (no offset); the min is -10.0 and the
max is 10.0.

OUTPUTS
Geometry ucd anno’s outputs consist of the selected UCD structure values output

as a geometry.

EXAMPLE
The following network reads in a UCD structure and annotates it. The selected
values are displayed by geometry viewer along with the UCD structure itself:

READ UCD

|

|-------------|

| |

UCD TO GEOM UCD ANNO

| |

|-------------|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

field to ucd
ucd crop
ucd threshold
ucd extract
ucd hex to tet
Any module that outputs a UCD structure.

Modules that can process ucd anno’s output:
geometry viewer

SEE ALSO
The example script UCD ANNO demonstrates the ucd anno module.

33333333333333333333333333
AVS Module Reference Manual 457

ucd cell color3333333333333333333
NAME

ucd cell color – color ucd structure based on cell or material id values

SUMMARY
Name ucd cell color

Availability UCD module library

Type mapper

Inputs ucd structure
colormap

Outputs field 1D 3-vector real

Parameters Name Type Default
cell data choice <data 1>

DESCRIPTION
ucd cell color is used to color a UCD structure based upon either the cell data values,
or the data values of the structure’s material ids. It is thus almost identical in func-
tion to ucd contour, except that the latter colors a UCD structure based upon node
data values.

Its output is passed to ucd to geom’s leftmost input port to produce a colored
representation of a UCD structure. Essentially, ucd cell color associates colors with
the values at each cell of a UCD structure—either the cell data values or the cell’s
material id.

A UCD structure has a number of cells. Each of these cells may have an arbitrary
number of data components associated with it. Furthermore, each of these com-
ponents itself can be a vector or a scalar. ucd cell color can only color the values of
scalar cell components.

Use the cell data radio buttons to select one of the scalar data components, or the
material id. The labels associated with the data components will be displayed on the
radio buttons.

If the UCD structure has no cell data, then only Materials is displayed.

ucd cell color takes each cell or material id value and colors it in proportion to the
range of values in the structure using the formula:

cell_value - min_cell_value

color_index = ------------------------------- ∗ max_colormap_value

max_cell_value - min_cell_value

The "color index" is an index into the input colormap, and is used to compute the 3-
vector real value for a given color.

Thus, ucd cell color scales the colormap to the range of values of the cell component
or material id that has been selected. In other words, the lowest cell or material id
value present in the structure will get colored with the lowest colormap value, and
the highest cell or material id value will get colored with the highest colormap value.
Of course you may change the input colormap using generate colormap’s colormap
widget. The Color Field output by ucd cell color does not include the "alpha" or opa-
city information contained in an AVS colormap.

It should be noted that the Color Field output by ucd cell color is not an AVS color-
map.

INPUTS

33333333333333333333333333
458 AVS Module Reference Manual

ucd cell color3333333333333333333
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

Colormap (required; colormap)
An AVS colormap. ucd cell color maps node values in the input struc-
ture to colors in the colormap.

PARAMETERS
cell data Selects which of the cell’s data components to display. A set of radio but-

tons shows the label attached to each cell data component. Before the
module receives data, the default "<data 1>, <data 2>, ..." is displayed. If
there is no cell data in the structure, then only Materials is displayed as a
choice, indicating colorization by material ids.

OUTPUTS
Color Field (field 1D 3-vector real)

The output field is a 1 dimensional array of color values. There is one
color for each node in the input UCD structure. Each color value is a tri-
ple of floating point numbers representing red, green, and blue. This
should be connected to ucd to geom’s leftmost input port. (ucd contour
uses the center input port.)

Note: if ucd contour or ucd legend is connected to ucd to geom’s center
input port, by default it will be used instead of ucd cell color to color the
output geometry. To override this, press the Color Cells button on ucd
to geom’s control panel.

EXAMPLE 1
The following network reads in a UCD structure, colors each cell based on the cell’s
value, and displays the result. The sample ucd file cell_data.inp illustrates the func-
tionality with cell data, and shock.inp illustrates the functionality with material ids.
GENERATE COLORMAP READ UCD

| |

| |-------------|

UCD CELL COLOR |

| |

|-----| |

| |

UCD TO GEOM

|

|

GEOMETRY VIEWER

RELATED MODULES
ucd contour

Modules that could provide the UCD Structure input:
read ucd
ucd crop
ucd threshold
Any module that outputs a UCD Structure.

Modules that could provide the Colormap input:
generate colormap

Modules that can process ucd cell color’s output:
ucd to geom

33333333333333333333333333
AVS Module Reference Manual 459

ucd cell color3333333333333333333
SEE ALSO

The example script UCD CELL COLOR demonstrates the ucd cell color module.

33333333333333333333333333
460 AVS Module Reference Manual

ucd cell to node3333333333333333333
NAME

ucd cell to node – convert ucd cell-based data into node data

SUMMARY
Name ucd cell to node

Availability UCD module library

Type filter

Inputs ucd structure

Outputs ucd structure

Parameters Name Type Default Choices
Method choice Average Average, Interpolate

DESCRIPTION
The ucd cell to node module accepts a ucd structure with cell-based data com-
ponents as input and computes node data components based on the cell data values.
This module is necessary to visualize ucd cell-based data, since almost no other
currently-implemented AVS ucd modules access cell data.

ucd cell to node uses one of two Methods to compute node values: Average or Inter-
polate. If the Average parameter is selected, a node value is computed by averaging
values at all adjoining cells. If the Interpolate parameter is selected, then a node
value is computed by interpolating values using distances from the node to the
adjoining cell centroids. The output is a ucd structure containing only node data.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

PARAMETERS
Method (choice)

Selects method of converting cell-based data into node-based data:
Average or Interpolate.

OUTPUTS
UCD structure

The output UCD structure contains node-based values.

EXAMPLE
The following network reads in a UCD structure that has cell-based components,
converts cell-based components into the node data, and colors each node based on
the value of that component:

33333333333333333333333333
AVS Module Reference Manual 461

ucd cell to node3333333333333333333
READ UCD

|

|

GENERATE COLORMAP UCD CELL TO NODE

| |

| |---------|

UCD CONTOUR |

| |

|-----| |

| |

UCD TO GEOM

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd

Modules that can process ucd cell to node’s output:
ucd to geom, ucd crop, ucd threshold, ucd hex to tet, ucd anno,
ucd contour, ucd hog, ucd iso, ucd offset, ucd rslice, ucd slice2d,
ucd legend, ucd probe, ucd streamline, write ucd.

SEE ALSO
The example script UCD CELL TO NODE demonstrates the ucd cell to node
module.

33333333333333333333333333
462 AVS Module Reference Manual

ucd contour3333333333333333333
NAME

ucd contour – generate list of color values associated with unstructured cell data

SUMMARY
Name ucd contour

Availability UCD module library

Type mapper

Inputs ucd structure
colormap

Outputs field 1D 3-vector real

Parameters Name Type Default
node data choice <data 1>

DESCRIPTION
ucd contour is used to create a color contour of a UCD structure. Its output is passed
to ucd to geom to produce a colored representation of a UCD structure. Essentially,
ucd contour associates colors with the values at each node of a UCD structure.

Typically a UCD structure has a number of nodes. Each of these nodes may have an
arbitrary number of data components associated with it. Furthermore each of these
components itself can be a vector or a scalar.

ucd contour can only color the values of scalar node components. By using the node
data radio buttons you can select a scalar data component for ucd contour to color. If
a UCD structure has both scalar and vector components, only the scalar components
will be displayed. The labels associated with the data components will be displayed
on the radio buttons.

ucd contour takes each node value and colors it in proportion to the range of values
in the structure using the formula:

node_value - min_node_value

color_index = ------------------------------- ∗ max_colormap_value

max_node_value - min_node_value

The "color index" is an index into the input colormap, and is used to compute the 3-
vector real value for a given color.

Thus ucd contour scales the colormap to the range of values of the node component
that has been selected. In other words, the lowest node value present in the structure
will get colored with the lowest colormap value, and the highest node value will get
colored with the highest colormap value. Of course you may change the input color-
map using generate colormap’s colormap widget. The Color Field output by ucd
contour does not include the "alpha" or opacity information contained in an AVS
colormap.

It should be noted that the Color Field output by ucd contour is not an AVS color-
map.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

Colormap (required; colormap)
An AVS colormap. ucd contour maps node values in the input structure
to colors in the colormap.

33333333333333333333333333
AVS Module Reference Manual 463

ucd contour3333333333333333333
PARAMETERS

node data Selects which of the node’s data components to display. A set of radio
buttons shows the label attached to each node data component. Before
the module receives data, the default "<data 1>, <data 2>, ..." is
displayed. If there is no node data in the structure "<no data>" is
displayed on the button.

OUTPUTS
Color Field (field 1D 3-vector real)

The output field is a 1 dimensional array of color values. There is one
color for each node in the input UCD structure. Each color value is a tri-
ple of floating point numbers representing red, green, and blue.

EXAMPLE
The following network reads in a UCD structure, colors each node based on the
node’s value, and displays the result:
GENERATE COLORMAP READ UCD

| |

| |---------|

UCD CONTOUR |

| |

|-----| |

| |

UCD TO GEOM

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD Structure input:

read ucd
ucd crop
ucd threshold
Any module that outputs a UCD Structure.

Modules that could provide the Colormap input:
generate colormap

Modules that can process ucd contour’s output:
ucd iso
ucd probe
ucd rslice
ucd to geom
ucd slice 2D

SEE ALSO
The example scripts UCD ISO, UCD PROBE, UCD EXTRACT, as well as others
demonstrate the ucd contour module.

33333333333333333333333333
464 AVS Module Reference Manual

ucd crop3333333333333333333
NAME

ucd crop – subset UCD structure data using slice plane or box

SUMMARY
Name ucd crop

Availability UCD module library

Type filter

Inputs ucd structure
upstream transform (invisible, optional, autoconnect)

Outputs ucd structure
geometry

Parameters Name Type Default
Crop Tool choice plane
Crop Direction choice inside
Do Crop boolean off

DESCRIPTION
ucd crop allows you to cut away portions of a ucd structure leaving behind the cells
you are interested in. You can use either a slice plane or a wireframe box as your tool
for subsetting UCD structures. Two notes: First, before cropping a UCD structure,
the subsetting tool must be moved from its default location. Second, to initiate the
actual cropping operation, you must press the "Do Crop" button.

The slice plane is initially oriented in the xy plane. If you rotate the slice plane, you
will see that one side has a highlighted area. The highlighted surface is on the side
that will be cropped if the Crop Direction is set to inside. If the Crop Direction is set
to outside, the unhighlighted side of the plane will be cropped. In other words, any
cells in the input structure which lie on the highlighted (or unhighlighted) side of the
slice plane will not appear in the structure output by ucd crop. If a cell has even one
node lying on the outside of the slice plane, that cell will be cropped from the output.
Similarly, when using the cubic space tool, any cells that are inside or outside the
bounds of the wireframe box are cropped from the output structure.

The ucd crop module is similar to the module ucd threshold. ucd crop, however,
eliminates nodes from a UCD structure based on their x, y, z coordinates—ucd thres-
hold eliminates nodes based upon their values.

ucd crop outputs both the cropped ucd structure and a geometry that represents the
subsetting tool currently selected. Typically, the ucd to geom module is used to con-
vert the structure output by ucd crop to a geometry so it can be visualized using the
geometry viewer module.

Since ucd crop outputs the slice plane and box subsetting tools as geometry objects,
they can be sent directly to geometry viewer, and they can be manipulated directly
using the mouse just like any other geometry objects; simply enter the Geometry
Viewer and select the crop tool object as the current object. When ucd crop is linked
in a network to geometry viewer, manipulating the subsetting tools with the mouse
causes geometry viewer to send an upstream transform to ucd crop. This tells ucd
crop how the slice plane or box tool has been reoriented relative to the input struc-
ture. Then ucd crop can recalculate what portions of the structure to cut away.

INPUTS
Structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

33333333333333333333333333
AVS Module Reference Manual 465

ucd crop3333333333333333333
Upstream Transform (invisible, optional, autoconnect)

When the ucd crop module coexists with the geometry viewer module in
a network, geometry viewer feeds information on how the "plane" or
"space" subsetting object has been moved in the Geometry Viewer back
to this input port on the ucd crop module. The two modules connect
automatically, through a data pathway that is normally invisible. This
gives direct mouse manipulation control over ucd crop’s subsetting
tools.

PARAMETERS
plane A radio button that selects the slice plane as the subsetting tool.

space A radio button that selects the wireframe box as the subsetting tool.

inside A radio button that selects the inside side of croping tool.

outside A radio button that selects the outside side of croping tool.

Do Crop A boolean switch that initiates the cropping function. This button allows
you to manipulate the subsetting tool until you are satisfied with its
position, and only then perform the cropping.

OUTPUTS
Structure The output structure is the cropped AVS unstructured cell data (UCD).

Geometry The geometry object that ucd crop outputs represents the subsetting tool
currently selected, i.e., either the slice plane or the box tool.

EXAMPLE 1
The following network reads in a UCD structure and crops it. The ucd crop module
outputs a geometry (the cropping tool) which gets passed directly to geometry
viewer; it also outputs the cropped UCD structure from which a geometry is formed.
This cropped UCD structure is both colored with generate colormap and ucd con-
tour, and converted into a geometry with ucd to geom. Both the cropping tool and
the cropped UCD structure are displayed together in the geometry viewer. Again,
you must first move the cropping tool, then press Do Crop before the cropping will
occur.

READ UCD

|

| GENERATE COLORMAP

| |

UCD CROP |

| | |

| --------|-------------------|

| | | |

| | UCD CONTOUR

| | |

| |--|-------------------|

| | |

| UCD TO GEOM (1)

| |

GEOMETRY VIEWER

EXAMPLE 2
This network is the same as the first, with two changes. First, the colorizing clause
has been eliminated for clarity. Second, read ucd also sends the original UCD struc-
ture to a second ucd to geom module labelled (2). You can use this second geometry

33333333333333333333333333
466 AVS Module Reference Manual

ucd crop3333333333333333333
of the original, uncropped UCD structure to act as a wireframe volume bounds
around the structure. To do this, either switch to the geometry viewer and specify a
wireframe representation mode for the geometry output by this module, or press this
second ucd to geom module’s External Edges button. (Until you "wireframe" this
second, overlapping UCD structure’s representation, it will obscure the cropped ver-
sion of the UCD.)

READ UCD

|---------------|

| |

| UCD CROP

| | |------|

| | |

UCD TO GEOM (2) | UCD TO GEOM (1)

| |---| |

|------------------|------|

|

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
ucd_extract
Any module that outputs a UCD structure.

Other modules that subset UCD structures:
ucd threshold
ucd rslice

Modules that can process the cropped UCD structure output:
ucd to geom
Any module that inputs a UCD structure.

Modules that can process the subsetting tool output:
geometry viewer

SEE ALSO
The example script UCD CROP demonstrates the ucd crop module.

33333333333333333333333333
AVS Module Reference Manual 467

ucd curl3333333333333333333
NAME

ucd curl – compute the curl of a vector UCD structure

SUMMARY
Name ucd curl

Availability UCD module library

Type filter

Inputs ucd structure

Outputs ucd structure

Parameters Name Type Default
Node Data choice <data 1>

DESCRIPTION
The ucd curl module accepts a UCD structure with vector node data components as
input and computes the curl of that structure as output.

To reach the final result, ucd curl traverses the structure by cells, calculating the curl
for each node in the cell, as affected by the other nodes in the cell. Because nodes are
members of multiple cells, during this pass they accummulate an array of n curl
values, one value coming from each cell of which the node is a member. Finally, ucd
curl traverses the structure by nodes, averaging the array of results at each node to
produce the final curl value for the node.

A UCD structure with only scalar data components should first be converted to con-
tain vector components with ucd extract vector. The Node Data choice selects
among multiple vector node data components.

Computation is a finite difference approximation based on a central difference
scheme. Where the input is the vector function:

{Fx ,Fy ,Fz}(i, j,k)

The equation used to compute the curl is:

curl =

 ∂y

∂Fz3333−
∂z

∂Fy3333

,

 ∂z

∂Fx3333−
∂x

∂Fz3333

,

 ∂x

∂Fy3333−
∂y

∂Fx3333

INPUTS
UCD Structure (required)

The input is a UCD structure containing 3-vector node data components.

PARAMETERS
Node Data Radio buttons to select which of the node’s vector data components to

display. The buttons show the label attached to each vector node data
component. Before the module receives data, the default "<data 1>,
<data 2>,..." is displayed. If there are no vector components in the node
data, ucd curl complains. If there are several vector data components,
these buttons let you select which componenet to use in calculating the
curl. If there is no node data in the structure, "<no data>" is displayed
on the button.

OUTPUTS
UCD Structure

The output structure has a single 3-element vector node data component
representing the curl at each node.

33333333333333333333333333
468 AVS Module Reference Manual

ucd curl3333333333333333333
EXAMPLE

READ UCD

|

UCD EXTRACT VECTOR

|

UCD CURL

|

GENERATE COLORMAP |-------------|

| |-------| |

| | | |

| | UCD VECMAG |

| | | |

|---|----| | |

| | | | |

| | UCD ISO |

| | | UCD TO GEOM

UCD HOG | |

|-------|-------------|

|

GEOMETRY VIEWER

RELATED MODULES
ucd div
ucd grad
ucd hog
ucd streamlines

SEE ALSO
The example script UCD CURL demonstrates the ucd curl module.

33333333333333333333333333
AVS Module Reference Manual 469

ucd div3333333333333333333
NAME

ucd div – compute the divergence of a vector UCD structure

SUMMARY
Name ucd div

Availability UCD module library

Type filter

Inputs ucd structure

Outputs ucd structure

Parameters Name Type Default
Node Data choice <data 1>

DESCRIPTION
The ucd div module accepts a UCD structure containing 3-vector node data com-
ponents as input and computes the divergence of the vector component as output.

Divergence is computed at each given node by averaging the divergences computed
for surrounding cells at the given node.

To reach the final result, ucd div traverses the structure by cells, calculating the
divergence for each node in the cell, as affected by the other nodes in the cell.
Because nodes are members of multiple cells, during this pass they accummulate an
array of n divergence values, one value coming from each cell of which the node is a
member. Finally, ucd div traverses the structure by nodes, averaging the array of
results at each node to produce the final divergence value for the node.

A UCD structure with only scalar data components should first be converted to con-
tain vector components with ucd extract vector. The Node Data choice selects
among multiple vector node data components.

The equation used to compute the divergence is:

divergence =
∂x

∂Fx3333+
∂y

∂Fy3333+
∂z

∂Fz3333

where (Fx ,Fy ,Fz) is a vector node data component.

INPUTS
UCD Structure (required)

The input is a UCD structure containing 3-vector node data components.

PARAMETERS
Node Data Radio buttons to select which of the node’s vector data components to

display. The buttons show the label attached to each vector node data
component. Before the module receives data, the default "<data 1>,
<data 2>,..." is displayed. If there are no vector components in the node
data, ucd div complains. If there are several vector data components,
these buttons let you select which component to use in calculating the
divergence. If there is no node data in the structure, "<no data>" is
displayed on the button.

OUTPUTS
UCD Structure

The output structure has a single floating-point value for each input
structure node.

EXAMPLE
The following network reads in a UCD structure with vector node data components
and computes its divergence. The divergence is then displayed as an isosurface.

33333333333333333333333333
470 AVS Module Reference Manual

ucd div3333333333333333333
READ UCD

|

|-------------|

UCD EXTRACT VECTOR |

| |

UCD DIV |

GENERATE COLORMAP | UCD TO GEOM

| | |

|---------| | |

| | |

UCD ISO |

|-------------|

|

GEOMETRY VIEWER

RELATED MODULES
ucd curl
ucd grad
ucd streamlines
ucd hog

SEE ALSO
The example script UCD DIV demonstrates the ucd div module.

33333333333333333333333333
AVS Module Reference Manual 471

ucd extract3333333333333333333
NAME

ucd extract – extract single node component from a UCD structure

SUMMARY
Name ucd extract

Availability UCD module library

Type filter

Inputs ucd structure

Outputs structure

Parameters Name Type Default
node data choice <data 1>

DESCRIPTION
The ucd extract module takes a ucd structure that has several data components at
each node and outputs a structure that has only one data component at each node.
The output UCD structure is identical to the input structure, except for the extrac-
tion.

Each node in a UCD structure may have an arbitrary number of data components
associated with it. Furthermore each of these components itself can be a vector or a
scalar. For example, a UCD structure may have 100 nodes. Each node consists of 3
components, labeled "temperature", "pressure", and "velocity". The first two com-
ponents are scalar float values, but velocity is represented as a vector of three values.

ucd extract will extract any single component of the node data, whether that com-
ponent is a vector or a scalar. If ucd extract takes a vector component, it extracts the
entire vector of values. This means that ucd extract does not let you take a single ele-
ment from a vector component. (Use ucd extract scalars instead.)

Note that if the input ucd structure has only one component, the ucd extract module
will pass it to its output automatically.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

PARAMETERS
node data Selects which of the node’s data components to extract. A set of radio

buttons shows the label attached to each node data component. Before
the module receives data, the default "<data 1>, <data 2>, ..." is
displayed. If there is no node data in the structure, "<no data>" is
displayed on the button.

OUTPUTS
UCD structure

The output structure is the same as the input structure, except that the
node data is reduced to one component.

EXAMPLE
The following network reads in a UCD structure, extracts one component of the node
data, and colors each node based on the value of that component:

33333333333333333333333333
472 AVS Module Reference Manual

ucd extract3333333333333333333
READ UCD

|

|

GENERATE COLORMAP UCD EXTRACT

| |

| |---------|

UCD CONTOUR |

| |

|-----| |

| |

UCD TO GEOM

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
Any module that outputs a UCD structure.

Modules that can be used in place of ucd extract:
ucd extract scalars, ucd extract vector

Modules that can process ucd extract’s output:
ucd to geom, ucd crop, ucd threshold, ucd hex to tet, ucd anno,
ucd contour, ucd hog, ucd iso, ucd offset, ucd rslice, ucd slice2d,
ucd legend, ucd probe, ucd streamline, write ucd.

SEE ALSO
The example script UCD EXTRACT demonstrates the ucd extract module.

33333333333333333333333333
AVS Module Reference Manual 473

ucd extract scalars3333333333333333333
NAME

ucd extract scalars – extract scalar node components from scalar and vector com-
ponents of a UCD structure

SUMMARY
Name ucd extract scalars

Availability UCD module library

Type filter

Inputs ucd structure

Outputs ucd structure

Parameters Name Type Default
Channel 0 boolean off
Channel 1 boolean off
Channel 2 boolean off

.

.

.
Channel 24 boolean off

DESCRIPTION
The ucd extract scalars module takes a ucd structure that has scalar and/or vector
data components at each node, extracts a specified subset of the components, produc-
ing an output structure that has only scalar data components at each node. Each ele-
ment of a selected vector component becomes an individual scalar component.

Each node in a UCD structure may have an arbitrary number of data components
associated with it. Furthermore, each of these components itself can be a vector or a
scalar. The ucd extract scalars module allows you to select both scalar and vector
components and it converts all the selected components into scalar components. It is
useful when you want to operate on a scalar component of a dataset that has vector
components.

ucd extract scalars can handle up to 25 components. You can extract any number of
them.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

PARAMETERS
Channel 0
Channel 1
Channel 2 ...

A series of on/off switches that specify which of the input scalar or vec-
tor node components to extract into the output ucd structure. If the
input components have been labelled, then their labels will appear
instead of the default "Channel n". Only as many switches will appear as
there are input data components. By default, all of the switches are "off".
There is no way to change the order of scalar components in the output
structure; if X preceded Y in the input ucd structure, it will do so in the
output ucd structure.

OUTPUTS

33333333333333333333333333
474 AVS Module Reference Manual

ucd extract scalars3333333333333333333
UCD structure

The output structure is the same as the input structure, except that the
node data consists of the selected scalar components and selected vector
components converted into scalars.

Labelled input components that were vectors (e.g. vect), will have each
output component automatically labelled (e.g., vect1, vect2, vect3).

EXAMPLE
The following network extracts the x, y, and z momentum scalar components from a
ucd dataset that has a momentum vector component. It then colors each node based
on the value of one of the components:

READ UCD

|

|

GENERATE COLORMAP UCD EXTRACT SCALARS

| |

| |---------|

UCD CONTOUR |

| |

|-----| |

| |

UCD TO GEOM

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
ucd extract vector
field to ucd
Any module that outputs a UCD structure.

Modules that can process ucd extract’s output:
ucd to geom, ucd crop, ucd threshold, ucd hex to tet, ucd anno,
ucd contour, ucd hog, ucd iso, ucd offset, ucd rslice, ucd slice2d,
ucd legend, ucd probe, ucd streamline, write ucd.

SEE ALSO
The example script UCD EXTRACT SCALARS demonstrates the ucd extract scalars
module.

33333333333333333333333333
AVS Module Reference Manual 475

ucd extract vector3333333333333333333
NAME

ucd extract vector – extract single vector node component from scalar components of
a UCD structure

SUMMARY
Name ucd extract vector

Availability UCD module library

Type filter

Inputs ucd structure

Outputs structure

Parameters Name Type Default Min Max
Vector Length integer dial 3 1 25
Channel 0 boolean off
Channel 1 boolean off
Channel 2 boolean off

.

.

.
Channel 24 boolean off

DESCRIPTION
The ucd extract vector module takes a ucd structure that has several scalar data com-
ponents at each node and extracts a structure that has only one vector data com-
ponent at each node.

Each node in a UCD structure may have an arbitrary number of data components
associated with it. Furthermore each of these components itself can be a vector or a
scalar. For example, a UCD structure may have 100 nodes. Each node consists of 5
scalar components, labelled "temperature", "pressure", "velocity_x", "velocity_y", and
"velocity_z". The components "velocity_x", "velocity_y", and "velocity_z" are scalar
values, but they can be represented as a vector of three values to be used as an input
for ucd modules accepting only vector components, such as ucd hog, ucd streamline,
ucd vecmag.

ucd extract vector can handle up to 25 scalar components. You can extract any sub-
set of the components.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

PARAMETERS
Vector Length

An integer dial that specifies the vector length of the output ucd struc-
ture. The default is 3, the minimum is 1, and the maximum is 25.

Channel 0
Channel 1
Channel 2 ...

A series of on/off switches that specify which of the input scalar node
components to extract into the output ucd structure. If the input scalar
components have been labelled, then their labels will appear instead of
the default "Channel n". Only as many switches will appear as there are
input scalar components. By default, all of the switches are "off". There
is no way to change the order of vector elements; if X preceded Y in the
input ucd structure, it will do so in the output ucd structure.

33333333333333333333333333
476 AVS Module Reference Manual

ucd extract vector3333333333333333333
OUTPUTS

UCD structure
The output structure is the same as the input structure, except that the
node data is reduced to one vector component.

EXAMPLE
The following network extracts the x, y and z momentum vector elements from a ucd
dataset, then plots their sum vector using ucd hog

READ UCD

|

|

UCD EXTRACT VECTOR

|

|

UCD HOG

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
Any module that outputs a UCD structure.

Modules that can process ucd extract vector’s output:
ucd hog, ucd streamline, ucd vecmag, ucd extract scalars, ucd anno,
ucd offset, ucd probe, ucd streamline

SEE ALSO
The example script UCD EXTRACT VECTOR demonstrates the ucd extract vector
module.

33333333333333333333333333
AVS Module Reference Manual 477

ucd grad3333333333333333333
NAME

ucd grad – compute the vector gradient of a UCD structure

SUMMARY
Name ucd grad

Availability UCD module library

Type filter

Inputs ucd structure

Outputs ucd structure

Parameters Name Type Default
Node Data choice <data 1>

DESCRIPTION
The ucd grad module computes the gradient of a UCD structure. The input structure
should contain scalar node data components. Vector node data components should
be convert to scalar with ucd extract scalars prior to entering this module.

The output structure has a 3-vector float data component at each node that
represents the gradient.

gradient(F) =

 ∂x

∂F333 ,
∂y
∂F333 ,

∂z
∂F333

This module does not normalize the output.

ucd grad is designed for input into the other vector UCD modules.

INPUTS
UCD Structure (required)

The input is a UCD structure containing scalar node data components.

PARAMETERS
Node Data Radio buttons to select which of the node’s scalar data components to

use in the computation. The buttons show the label attached to each
scalar node data component. Before the module receives data, the
default "<data 1>, <data 2>,..." is displayed. If there are no scalar com-
ponents in the node data, ucd grad complains. If there are several scalar
data components, these buttons let you select which componenet to use
in calculating the gradient. If there is no node data in the structure, "<no
data>" is displayed on the button.

OUTPUTS
UCD Structure

The output structure has a 3-vector node data component for each input
structure node.

EXAMPLE
The following network reads a UCD structure with scalar node data components,
computes its gradient and then uses the ucd hog module to display the resulting vec-
tor structure, together with an isosurface:

33333333333333333333333333
478 AVS Module Reference Manual

ucd grad3333333333333333333
READ UCD

|

|----------|-------------|

| | |

UCD GRAD | |

GENERATE COLORMAP | | |

|------|-----| | | |

| UCD HOG | UCD TO GEOM

| | | |

|--------|-------| | |

| UCD ISO |

| | |

|----------|-------------|

|

|

GEOMETRY VIEWER

RELATED MODULES
ucd curl
ucd div
ucd hog
ucd streamlines

SEE ALSO
The example script UCD GRAD demonstrates the ucd grad module.

33333333333333333333333333
AVS Module Reference Manual 479

ucd hex to tet3333333333333333333
NAME

ucd hex to tet– convert a UCD structure from hexahedral cells to tetrahedral cells

SUMMARY
Name ucd hex to tet

Availability UCD module library

Type filter

Inputs ucd structure

Outputs ucd structure

Parameters Name Type Default
24 Tet boolean off
Node Data choice <data 1>

DESCRIPTION
The module ucd hex to tet takes a UCD structure with hexahedral cells and converts
it to a structure with tetrahedral cells.

To perform the conversion, ucd hex to tet must recompute the structure’s node con-
nectivity list. Hexahedral cells can be subdivided into 5 tetrahedra or into 24 tetrahe-
dra. When data cannot be properly decomposed into 5 tetrahedra, it needs to be
divided into 24 by adding a new node at the center of each face in the cell. These new
nodes are added to the UCD structure, and data for them is computed by averaging
the values at the corners of the face they are in.

ucd hex to tet is designed to work with the module ucd tracer, which performs ray-
traced rendering on UCD structures. ucd tracer requires that its input structure con-
tain tetrahedral cells.

INPUTS
Structure (required)

The input is a UCD structure which has cells that are hexahedral.

PARAMETERS
24 Tet (boolean)

When 24 Tet is selected, hexahedral cells are decomposed into 24
tetrahedra, instead of the default, which is 5.

node data Selects which of the node’s data components to use . A set of radio but-
tons shows the label attached to each node data component. Before the
module receives data, the default "<data 1>, <data 2>, ..." is displayed. If
there is no node data in the structure "<no data>" is displayed on the
button. When the 24 Tet option is being used to subdivide hexahedral
cells into 24 tetrahedra, the node data parameter determines which com-
ponent is used to compute the data associated with the new nodes.

OUTPUTS
Structure The output is a UCD structure which has cells that are tetrahedral.

EXAMPLE 1
The following network reads in a UCD structure, which is converted from hex-
ahedral cells to tetrahedal cells. This structure is then passed to ucd tracer. The
module euler transformation allows you to rotate the volume to produce views from
any angle:

33333333333333333333333333
480 AVS Module Reference Manual

ucd hex to tet3333333333333333333
READ UCD

|

|

UCD HEX TO TET

EULER TRANSFORMATION |

|--------| |

GENERATE COLORMAP | |

|---------| | |

| | |

UCD TRACER

|

|

DISPLAY IMAGE

EXAMPLE 2
The following network shows how ucd hex to tet can be used with modules other
than ucd tracer.

READ UCD

|

|

UCD HEX TO TET

GENERATE COLORMAP |

| |

| |----------|

| | |

UCD CONTOUR |

| |

|------| |

| |

UCD TO GEOM

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the ucd structure input:

read ucd
any other module which outputs a hexahedral UCD structure.

Modules that can process ucd hex to tet’s output:
ucd tracer

33333333333333333333333333
AVS Module Reference Manual 481

ucd hog3333333333333333333
NAME

ucd hog – show UCD node vector values as line segments in 3D space

SUMMARY
Name ucd hog

Availability UCD module library

Type mapper

Inputs ucd structure
colormap
upstream transform (optional, invisible, autoconnect)

Outputs geometry

Parameters Name Type Default Min Max
node data choice <data 1>
scale float 0.2 0.0 10.0
arrows boolean off
N segment integer dial 16 2 64
Sample choice point
Normalize
Vectors boolean off

DESCRIPTION
ucd hog takes in a ucd structure whose node values include a 3-vector float com-
ponent. ucd hog interprets the 3 values of the vector as the x, y, z components of a
vector in space and then displays these 3D vectors as small line segments with a par-
ticular length, direction and color. "hog" is short for "hedgehog", a reference to the
bristly appearance of the output geometry vectors.

ucd hog gives you a sample probe, which you can manipulate in the object space of
the UCD structure. Vector lines are displayed at a number of sample points (not
node points) along the sample line, circle, plane, or space.

Since arbitrarily oriented sample locations do not, in general, coincide with the posi-
tion of the UCD structure’s nodes in space, an interpolation method is used to deter-
mine which nodes are nearest to the sample locations.

To move the sample probe, select it by clicking on it with the left mouse button. You
can get the same effect by entering the Geometry Viewer, and making the probe
object the current object. Then the probe can be moved like any other geometry
object. As it moves, ucd hog will recompute the line segments it outputs.

Alternatively, you can display hedgehog vectors at each real node location by select-
ing node.

ucd hog only operates on vector components, thus it complains if the input structure
has only scalar values at the nodes. If the nodes of a structure have more than one 3-
vector component, use the node data radio buttons to select which component to use
in calculating the hedgehog.

By default, ucd hog does not display the vector for every node in the structure.
Instead ucd hog takes an arbitrarily-oriented (user-controlled) sample of locations
within the bounds of the UCD structure. You can choose this sample to be:

d A single point

d A set of points on a line segment

33333333333333333333333333
482 AVS Module Reference Manual

ucd hog3333333333333333333
d A set of points on a circle

d A set of points on a plane

d A volume of points

The module outputs the line segment(s) representing the node value at the sample
location(s).

To see vectors at every actual node point, select node.

ucd hog uses the input colormap to associate a color with each line segment vector
based on the magnitude of the vector. The colormap is scaled to the range of values
in the structure.

INPUTS
UCD structure (required)

The input data must be a UCD structure. The structure must include a
node data component which is a 3-vector of floats to be interpreted as
vectors in 3-space.

colormap (required; colormap)
An AVS colormap which is used by ucd hog to associate colors with vec-
tor values. Note that this is a regular AVS colormap, and not the color
field output by ucd contour and ucd field legend.

Upstream Transform (optional, invisible, autoconnect)
When the ucd hog module coexists with the geometry viewer module in
a network, geometry viewer feeds information on how the point, circle
or other sampling probe has been moved back to this input port on the
ucd hog module. The two modules connect automatically, through a
data pathway that is normally invisible. This gives direct mouse mani-
pulation control over ucd hog’s sampling probe.

PARAMETERS
node data Selects which of the node’s data components to represent as vectors. A

set of radio buttons shows shows the label attached to each node data
component. Before the module receives data, the default "<data 1>,
<data 2>, ..." is displayed. If there is no node data in the structure "<no
data>" is displayed on the button.

Vector Scale
The lengths of the line segments output by this module are proportional
to this value.

arrows When arrows is selected the line segments are drawn with arrows at
their heads, indicating their direction.

N segment An integer value which determines the number of points sampled by the
line, circle, plane, or space sampling probe. This controls the density of
line segments output by ucd hog.

Sample (radio buttons) Specifies the type of sample taken from the vector field:
point, line, circle, plane, or space. If the last choice, node, is selected,
the structure is not sampled. Rather, vectors are drawn at each real node
location.

Normalize Vectors
When Normalize Vectors is selected the magnitude of the vectors is not
indicated by the length of their line-segment representation. Instead, the
vectors are all the same length, and only their color indicates their mag-
nitude.

33333333333333333333333333
AVS Module Reference Manual 483

ucd hog3333333333333333333
OUTPUTS

hog (geometry)
The output geometry is a collection of line segments representing the 3-
vector component of nodes near the sample locations.

EXAMPLE
The following network reads in a UCD structure with a 3-vector float value as one of
the components of the node data. ucd hog displays the values as line segment vec-
tors. Note that the module ucd to geom is used to provide a frame within which to
view the hedgehog of vectors. To do this, use ucd to geom’s External Edges parame-
ter to convert the ucd structure’s representation to a wireframe. You can also edit the
color properties for this object to make it dimmer and more transparent. This will
improve your view of the line segments output by ucd hog. You may want to simi-
larly edit the properties of the sample probe, especially if it is a plane.
GENERATE COLORMAP READ UCD

| |

|--------------| |-------------|

| | |

UCD HOG UCD TO GEOM

| |

|-------------|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
ucd curl
ucd grad
Any module that outputs a UCD structure.

Modules that can process ucd hog’s output:
geometry viewer
Any module that inputs an AVS geometry.

Other related modules:
ucd curl
ucd div
ucd grad

SEE ALSO
The example script UCD HOG demonstrates the ucd hog module.

33333333333333333333333333
484 AVS Module Reference Manual

ucd iso3333333333333333333
NAME

ucd iso – generate an isosurface for a UCD structure with scalar node data

SUMMARY
Name ucd iso

Availability UCD module library

Type mapper

Inputs ucd structure
colormap (optional)
info (from ucd legend; optional)

Outputs geometry

Parameters Name Type Default Min Max
Node Data choice <data 1>
Iso Level float max+min/2 min val max val
map scalar boolean off

DESCRIPTION
The ucd iso module takes a UCD structure as input. The structure must have at least
one component of its node data that is a scalar value. It produces a geometry object
that represents an isosurface of this structure. An isosurface is a 3D generalization of
a 2D contour line — it connects all structure elements that have the same value. You
can use the Node Data buttons to select which component of the node data to use
when computing the isosurface.

The Iso Level value can be set in two ways. The value can be set using ucd iso’s
floating-point parameter dial. ucd iso also can accept an Info input from the module
ucd legend.

By default, the isosurface generated by ucd iso is not colored. To color the isosurface,
ucd iso must receive its optional colormap input, and the map scalar parameter must
be selected. If the input field has more than one scalar component of its node data,
you can use the buttons beneath map scalar to select which component’s values to
use in determining the isosurface’s color.

For example, if a structure’s node data consisted of three scalars, temperature, pres-
sure, and density, you might compute an isosurface for a given temperature
throughout the structure. It would be intuitive to color this isosurface based on the
temperature variable. However, it is also possible to color the temperature isosurface
using the values of the pressure or density node data, thus indicating the pressure or
density that hold for a fixed temperature.

Note: ucd legend outputs either a single float value or two float values representing
a range. ucd iso can only use ucd legend’s single float output. Also, when ucd iso is
connected to ucd legend, the selections of ucd legend’s node data buttons override
ucd iso settings.

INPUTS
UCD structure (required)

The input data must be a UCD structure. The structure must include a
scalar node data component.

colormap (optional)
An AVS colormap which is used by ucd iso to associate colors with the
output isosurface. Note that this is a regular AVS colormap, and not the
color field output by ucd contour and ucd field legend.

33333333333333333333333333
AVS Module Reference Manual 485

ucd iso3333333333333333333
Info ucd iso can receive input from the module ucd legend through its left-

most input port. This tells ucd iso what the value of the isosurface level
should be.

PARAMETERS
node data Selects which of the node’s scalar data components to use in constructing

the isosurface. A set of radio buttons shows the label attached to each
scalar node data component. Before the module receives any data, the
default "<data 1>, <data 2>, ..." is displayed. If there is no node data in
the structure, "<no data>" is displayed on the buttons.

Iso Level A floating-point value that specifies the common data value on the iso-
surface: for each point on the isosurface, the UCD structure’s data value
equals the Iso Level value. Before the module receives data, the dial
shows a minimum of 1.0 and a maximum of 9.0. Once data flows into
the module, these are reset to the minimum and maximum data values
of the selected scalar node data component.

map scalar When the "map scalar" parameter is selected, and the optional colormap
input is received, the isosurface that ucd iso outputs is colored using the
values of the selected node component. By default it is off, and the iso-
surface is uncolored.

OUTPUTS
Isosurface (geometry)

A shaded surface which represents the isosurface.

EXAMPLE
The following network reads in a UCD structure and generates an isosurface for
some node value. The generate colormap module provides a colormap to color the
isosurface.
GENERATE COLORMAP READ UCD

| |

|------| |-----------------|----------|

| | | | |

| UCD LEGEND | |

| | | |

|-------|-------------------| | |

| | | |

|----------------| | | UCD TO GEOM

| | | |

UCD ISO |

| |

|------------|

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
Any module that outputs a UCD structure.

Module that provides Color Field and Info inputs:
ucd legend

33333333333333333333333333
486 AVS Module Reference Manual

ucd iso3333333333333333333
Modules that can process ucd iso’s output:

geometry viewer

SEE ALSO
The sample script UCD ISO demonstrates the ucd iso module.

33333333333333333333333333
AVS Module Reference Manual 487

ucd isolines3333333333333333333
NAME

ucd isolines – generate isolines on the exterior boundary of a UCD structure

SUMMARY
Name ucd isolines

Availability UCD module library

Type mapper

Inputs ucd structure
colormap (optional)
Info (struct_ucd_legend. from ucd legend; optional)

Outputs geometry

Parameters Name Type Default Min Max
Node Data choice <data 1>
Low Level float dial
High Level float dial
Isoline Number integer dial 10 0 100

DESCRIPTION
The ucd isolines module takes a UCD structure as input. The structure must have at
least one component of its node data that is a scalar value. It produces a geometry
object that represents a set of isolines (lines of the constant data value) in the
specified range of values on the external boundary of the UCD structure. You can
use the Node Data buttons to select which component of the node data to use when
computing the isosurface.

The Low Level and High Level values can be set in two ways. The values can be set
using ucd isolines’s floating-point parameter dials, or ucd isolines can accept an Info
input from the module ucd legend.

By default, the isolines generated by ucd isolines are not colored. To color the iso-
lines, ucd isolines must receive its optional colormap input.

Note: ucd legend outputs either a single float value or two float values representing
a range. ucd isolines can only use ucd legend’s range output. Also, when ucd iso-
lines is connected to ucd legend, the selections of ucd legend’s node data buttons
override ucd isoline’s settings.

INPUTS
UCD structure (required)

The input data must be a UCD structure. The structure must include a
scalar node data component.

colormap (optional)
An AVS colormap which is used by ucd isolines to associate colors with
the output isolines. Note that this is a regular AVS colormap, and not the
color field output by ucd contour and ucd field legend.

Info ucd isolines can optionally receive input from the module ucd legend
through its leftmost input port. This tells ucd isolines what the low and
high value of the isolines levels should be.

PARAMETERS
Node Data Selects which of the node’s scalar data components to use in constructing

the isolines. A set of radio buttons shows the label attached to each
scalar node data component. Before the module receives any data, the
default "<data 1>, <data 2>, ..." is displayed. If there is no node data in
the structure, "<no data>" is displayed on the buttons.

33333333333333333333333333
488 AVS Module Reference Manual

ucd isolines3333333333333333333
Low Level A floating-point dial that specifies the low level value of the isolines

range.

High Level A floating-point dial that specifies the high level value of the isolines
range.

Isoline Number
An integer dial that specifies the number of isolines between low and
high levels. Note that if Isoline Number is set to 1, the isoline level is
controlled by the Low Level parameter.

OUTPUTS
Geometry (geometry)

A set of lines that represent isolines.

EXAMPLE
The following network reads in a UCD structure and generates an isolines for some
node value. The generate colormap module provides a colormap to color the iso-
lines.
GENERATE COLORMAP READ UCD

| |

|------| |-----------------|----------|

| | | | |

| UCD LEGEND | |

| | | |

|-------|-------------------| | |

| | | |

|----------------| | | UCD TO GEOM

| | | |

UCD ISOLINES |

| |

|------------|

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
Any module that outputs a UCD structure.

Modules that provide colormap and Info inputs, respectively:
generate colormap
ucd legend

Modules that can process ucd isolines’s output:
geometry viewer

SEE ALSO
The sample script UCD ISOLINE demonstrates the ucd isolines module.

33333333333333333333333333
AVS Module Reference Manual 489

ucd legend3333333333333333333
NAME

ucd legend - creates a color legend relating UCD data to a color scale

SUMMARY
Name ucd legend

Availability UCD module library

Type mapper

Inputs ucd structure
colormap

Outputs range (struct_ucd_legend)
color field (field 1D 3-vector real)

Parameters Name Type Default Min Max
node data choice <data 1>
range boolean off
value float 0.0 0.0 100.0
hi value float (not applicable)
lo value float (not applicable)

DESCRIPTION
The ucd legend module performs two functions. First it is used to color unstructured
cell data (UCD). To do this it takes in an AVS colormap, and outputs an array of
colors — one for each node in the UCD structure.

Second, ucd legend creates a "color legend" widget relating UCD data to a color
scale. This widget displays the input colormap as a horizontal spectrum. Beneath this
color table ucd legend prints the range of the node values of the UCD structure. Like
a "legend" on a map, the color legend shows you which color represents each value.
This widget is used, like a floating-point dial, to pick specific values.

ucd legend works with modules that take UCD structures and allow you to visualize
subsets of the data, or specific values in the data. Such modules include: ucd iso, and
ucd thresh. Typically, using a dial, you specify a single value, or a range of values,
say from 1.6 to 4.3. With ucd legend you can specify the subset by numerical value
or, by color range, for example, as ranging from green to blue. Manipulating colored
data using ucd legend’s color legend is often more intuitive than using a floating-
point parameter widget.

By dragging a "radio tuner" dial along the color legend you select a specific value for
ucd legend to output. If the range parameter is selected you can move two radio
tuner dials along the color legend to select both minimum and maximum values for
the range that ucd legend outputs. The middle mouse button controls the maximum
dial; the left controls the minimum dial.

Typically a UCD structure has a number of nodes. Each of these nodes may have an
arbitrary number of data components associated with it. Furthermore each of these
components itself can be a vector or a scalar.

ucd legend only works with scalar node components. By using the node data radio
buttons you can select a scalar data component for ucd legend to use in its color
legend. Before the module receives data, the default "<data 1>, <data 2>, ..." is
displayed. When data has been input the labels associated with the node com-
ponents are displayed on the buttons. If there is no node data in the structure "<no
data>" is displayed on the button.

33333333333333333333333333
490 AVS Module Reference Manual

ucd legend3333333333333333333
ucd legend prints the scale representing the range of values associated with the
selected node component, e.g. temperature, in scientific notation. The input color-
map is normalized to the range of values of the selected node component. The label
associated with the selected scalar is printed as title of the color legend.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

Colormap (required; colormap)
An AVS colormap. ucd legend uses the colormap to associate colors with
each node in the input UCD structure. The colormap is also used to gen-
erate the "color legend" widget.

PARAMETERS
node data Selects which of the node’s data components to display. A set of radio

buttons shows the label attached to each node data component. Before
the module receives data, the default "<data 1>, <data 2>, ..." is
displayed. If there is no node data in the structure "<no data>" is
displayed on the button.

range A boolean switch. If it is selected ucd legend outputs two values
representing the minimum and maximum of a range. If it is off, ucd
legend outputs a single floating point value. By default it is off.

value If the range parameter is not selected, a single floating-point dial
appears. This functions in an identical manner to the ucd legend’s color
widget; you can use it to select specific output values. In particular you
can use the dial to type in specific values, by opening the dial’s Dial Edi-
tor.

lo value
hi value If the range parameter is selected, two floating point dials appear. Using

them you can specify the minimum and maximum values of the range
that ucd legend outputs. The values shown on these dials are scaled to
the range of values present in the input structure.

OUTPUTS
Selection (struct_ucd_legend)

ucd legend outputs either a single floating-point value, or two values
representing the minimum and maximum of a range.

Color Field (field 1D 3-vector real; optional)
The color field is a 1 dimensional array of color values. There is one color
for each node in the input UCD structure. Each color value is a triple of
floating point numbers representing red, green and blue. Note that the
Color Field is not the same as an AVS colormap. This output is usually
connected to the ucd to geom module’s matching input port. ucd con-
tour can also be used to generate Color Fields.

EXAMPLE 1
The following network reads in a UCD structure. ucd legend’s leftmost output port
generates a structure specifying either a single isosurface level, or a range of
numbers. ucd iso can only use the single level value, not the range. The level can be
set using ucd legend’s dials, or with the mouse and ucd legend’s colored value selec-
tion widget. This structure is input to the ucd iso module. The resulting isosurface is
uncolored.

33333333333333333333333333
AVS Module Reference Manual 491

ucd legend3333333333333333333
GENERATE COLORMAP READ UCD

| |

| |------------|

| | |

UCD LEGEND |

| |

|--------------| |

| |

UCD ISO

|

|

GEOMETRY VIEWER

EXAMPLE 2
This example has the same structure as the previous example. Three elements have
been added. There is now a ucd to geom module. This will produce a picture of the
original ucd structure. Toggle External Edges on the ucd to geom control panel so
that the structure does not obscure the isosurface. Second, ucd legend now sends a
Color Field on its rightmost output port to ucd to geom’s leftmost input port. This
colors the ucd structure. Third, ucd iso takes a colormap input from generate color-
map. This will color the isosurface itself by the value of one of the node data com-
ponents, as selected with ucd iso’s Map Scalar controls.

GENERATE COLORMAP READ UCD

| |

| |---------------|-----------|

| | | |

|--------------| | |

| | | | |

UCD LEGEND | | |

| | | | |

| ------------|---|-------| |

|--------------| | | UCD TO GEOM

| | | |

UCD ISO |

| |

|--------------|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD Structure input:

read ucd
field to ucd
any other module which outputs a UCD structure

Modules that could provide the Colormap input:
generate colormap

Modules that can process ucd legend’s output:
ucd iso
ucd thresh
ucd to geom

33333333333333333333333333
492 AVS Module Reference Manual

ucd legend3333333333333333333
Modules that can produce Color Fields:

ucd contour

SEE ALSO
The example script UCD THRESHOLD, as well as others, demonstrates the ucd
legend module.

33333333333333333333333333
AVS Module Reference Manual 493

ucd math3333333333333333333
NAME

ucd math – perform math operations between UCD structures

SUMMARY
Name ucd math

Availability UCD module library

Type filter

Inputs ucd structure
ucd structure (optional)

Outputs ucd structure

Parameters Name Type Default Min Max
choice choice none
Constant float typein 0.0 unbounded unbounded

DESCRIPTION
The ucd math module performs unary and binary operations upon UCD structures.
It works with both node and cell data. It operates across all data components, scalar
or vector, that are present in the UCD structure.

The unary operations are +, -, ∗, /, Square, Sqrt, Pow(er), and Log. The binary opera-
tions are +, -, ∗, and /.

When the right input port is connected, the unary operations appear as choices, plus
a typein for a Constant. When the left input port is also connected, only the binary
operation choices appear.

The input structures must be identical: they must have the same number of cells and
nodes, and the cell and node data components must be the same length.

INPUTS
UCD structure (required)

The rightmost input field is used as the input to unary operations, or the
first operand for binary operations.

UCD structure (optional)
The left structure is the second operand in binary operations. It must
have the same number of cells, number of nodes, cell data component
length, and node data component length as the first UCD structure.

PARAMETERS
+
-
∗
/
Square
Sqrt
Pow(er)
Log
NONE A choice of operations. If the left port structure (struct2) is not provided,

the Constant parameter is used as the second operand. I.e., struct2 is
replaced by Constant.
+ struct1 + struct2

- struct1 - struct2

∗ struct1 ∗ struct2

/ struct1 / struct2 (result is 0 if struct2 is 0)

Square struct1 ∗ struct1

33333333333333333333333333
494 AVS Module Reference Manual

ucd math3333333333333333333
Sqrt sqrt(struct1)

Pow(er) struct1 ∗∗ Constant

Log log e (struct1)

Constant A floating point typein to specify the constant value to be used as the
second operand when there is just one input. If two structs are con-
nected to the module, Constant is ignored, and it disappears from the
control panel. The default is 0.0. There is no upper or lower limit.

OUTPUTS
UCD Structure

The output structure has the same form as the input structure.
EXAMPLE 1

This example performs a mathematical operation on a UCD structure. The result is
mapped as an isosurface superimposed upon the picture of the UCD structure pro-
duced by ucd to geom. The two ucd extract modules extract single components from
the node data. Without these modules, ucd math would operate across all of the
data in the input structures, not just the components of interest, thus using more
memory and computation time.

READ UCD

|

|--------|-----------|---------------|

| | |

UCD EXTRACT UCD EXTRACT |

| | |

|--------| |------| |

| | |

UCD MATH UCD TO GEOM

GENERATE COLORMAP | |

|----------| | |

| | |

UCD ISO |

|-------------------------|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure inputs:

Any module that outputs a UCD structure.
Modules that can process ucd math output:

Any module that inputs a UCD structure.
SEE ALSO

The UCD MATH example script demonstrates the ucd math module.

33333333333333333333333333
AVS Module Reference Manual 495

ucd minmax3333333333333333333
NAME

ucd minmax – set min and max values of a component in a UCD structure

SUMMARY
Name ucd minmax

Availability UCD module library

Type filter

Inputs ucd structure

Outputs ucd structure
min value (float)
max value (float)

Parameters Name Type Default Min Max
node data choice <data 1>
min value float typein 0.0 unbounded unbounded
max value float typein 0.0 unbounded unbounded

DESCRIPTION
The ucd minmax module modifies the minimum and maximum values of a selected
scalar node data component in a UCD structure. The output UCD structure is identi-
cal to the input structure, except for the new component minimum and maximum
values. ucd minmax also outputs the minimum and maximum values of the selected
component to its output ports.

The ucd minmax module has two main purposes:

d It can be used to provide min and max inputs to the generate colormap module’s
lo value and hi value parameters. These in turn will output a scaled colormap to
the color legend module, making color legend useable with UCD data.

d It can be used to set the mininum/maximum range for animating of a sequence of
datasets with different minimum and maximum values (such as a time-series). In
this application, setting a wide enough range will prevent modules such as ucd
iso, ucd legend, etc., from resetting their parameters every time a new dataset is
read.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

PARAMETERS
node data Selects which of the node’s data component’s min/max is being edited.

A set of radio buttons shows the label attached to each node data com-
ponent. Only scalar components are shown; vector components will
need to be converted to scalar with ucd extract scalars. Before the
module receives data, the default "<data 1>, <data 2>, ..." is displayed. If
components are labeled, the labels will appear on the buttons instead. If
there is no node data in the structure, "<no data>" is displayed on the
button. The first component is the default.

min value A floating-point typein value that specifies a new minimum value for a
selected node data component of an input ucd structure. By default it is
set to a "real" minimum value of the data component. If a new dataset
having the same component name is read the parameter value is not
updated.

33333333333333333333333333
496 AVS Module Reference Manual

ucd minmax3333333333333333333
max value A floating-point typein value that specifies a new maximum value for a

selected node data component of an input ucd structure. By default it is
set to a "real" maximum value of the data component. If a new dataset
having the same component name is read the parameter value is not
updated.

OUTPUTS
UCD structure

The output structure is the same as the input structure, except that the
component’s node data minimum and maximum values are reset to the
parameter minimum and maximum values.

EXAMPLE
The following network reads in a UCD structure, sets the min/max values for a data
component, which are used by generate colormap and ucd contour modules. gen-
erate colormap’s lo value and hi value parameter ports must be made visible before
they can be connected to ucd minmax. To do this, bring up generate colormap’s
Module Editor, click on the lo value parameter button, and then click on Port Visible
on the resultant Parameter Editor panel. Repeat for hi value.

READ UCD

|

UCD MINMAX

| | |

|---------| | |

| |-------| |

| | |

GENERATE COLORMAP |

| |-----|------|

| | |

|----------------| | |

| | | |

COLOR LEGEND UCD CONTOUR |

| | |

| | |

| UCD TO GEOM

| |

|-----------|-------------|

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
Any module that outputs a UCD structure.

Modules that can process ucd minmax’s output:
generate colormap, ucd contour, ucd legend, ucd iso, ucd isolines,
ucd rslice, ucd slice2d, write ucd

SEE ALSO
The example script UCD MINMAX demonstrates the ucd minmax module.

33333333333333333333333333
AVS Module Reference Manual 497

ucd offset3333333333333333333
NAME

ucd offset – deform a UCD structure based on vector values at each node

SUMMARY
Name ucd offset

Availability UCD module library

Type filter

Inputs ucd structure

Outputs ucd structure

Parameters Name Type Default Min Max
offset factor float 1.0 unbounded unbounded
Node Data choice <data 1>

DESCRIPTION
ucd offset "physically" deforms a ucd structure based upon the values at each of the
structure’s nodes.

The nodes of a UCD structure may contain several data components. Each of these
components may itself be either a vector or a scalar value. ucd offset only operates
on vector components, thus it complains if the input structure has only scalar values
at the nodes. If the nodes of a structure have more than one 3-vector component, then
use the node data radio buttons to select which component to use in calculating the
deformation.

ucd offset takes the selected 3-vector component of each node and uses the three ele-
ments of that vector to translate the node in space. The first element of the vector
translates the node’s x coordinate, the second translates the y coordinate, and the
third translates the z coordinate. The magnitude of each translation is proportional
to the values at the nodes scaled by an offset factor between 0.0 and 1.0.

For example, if an unstructured cell dataset has a node component which is a 3-
vector of values representing velocity in the x, y, z directions, ucd offset translates
the x, y, and z location of each node proportional to the velocity values at that node.

INPUTS
UCD Structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

PARAMETERS
offset factor

A floating point value that is used to scale the magnitude of the deforma-
tion.

Node Data A set of radio buttons shows the label attached to any vector components
of the node data. Before the module receives data, the default "<data 1>,
<data 2>,..." is displayed. If there are no vector components of the node
data ucd offset complains. If there are several vector data components,
these buttons let you select which component to use in calculating the
offset of the UCD structure.

OUTPUTS
UCD Structure

The output structure is the deformed UCD structure.

33333333333333333333333333
498 AVS Module Reference Manual

ucd offset3333333333333333333
EXAMPLE

The following network reads in a UCD structure and deforms it, then displays the
result:

READ UCD

|

|

UCD OFFSET

|

|

UCD TO GEOM

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
Any module that outputs a UCD structure.

Modules that can process ucd offset’s output:
ucd extract, ucd extract vector,
ucd to geom, ucd crop, ucd threshold, ucd anno,
ucd contour, ucd hog, ucd iso, ucd offset, ucd rslice, ucd slice2d,
ucd legend, ucd probe, ucd streamline, write ucd.

SEE ALSO
The example script UCD OFFSET demonstrates the ucd offset module.

33333333333333333333333333
AVS Module Reference Manual 499

ucd plot3333333333333333333
NAME

ucd plot – create a field to graph a linear sample through a UCD structure

SUMMARY
Name ucd plot

Availability UCD module library

Type mapper

Inputs ucd structure
colormap (optional)
upstream transform (optional, invisible, autoconnect)

Outputs field 2D scalar real uniform
geometry

Parameters Name Type Default Min Max
Node Data choice <data 1>
Abscissa

Mapping choice Dist
N Segment int dial 20 2 1000

DESCRIPTION
The ucd plot module samples the node data along a line through a UCD structure,
producing a 2D field that is used as input to the graph viewer module’s rightmost
(XY plot) port. The line is represented by a linear sampling object. The Y axis plots
the data values in the structure against an X axis that can be either the distance along
the linear sampling object, or the linear sampling object’s points projected upon the
UCD structure’s X, Y, or Z object coordinates.

ucd plot represents the linear sampling object as a line geometry that is output to the
geometry viewer module. The linear sampling object can be moved through the
volume of the UCD structure using geometry viewer direct manipulation.

INPUTS
UCD structure (required)

The input data is a UCD structure with scalar node data components.

colormap (optional)
An AVS colormap. This colormap colors the linear sampling object in
the geometry viewer by the data values encountered. Note that this is a
regular AVS colormap, and not the color field output by ucd contour
and ucd legend.

upstream transform (optional, invisible, autoconnect)
The upstream transform port receives the sampling object transforma-
tion (movement) information from the geometry viewer module, allow-
ing ucd plot to track the user’s placement of the sampling object. This
port is normally invisible.

PARAMETERS
Node Data Selects which of the node’s scalar data components to sample. This is a

set of radio buttons that shows the label attached to each scalar node
data component. Before the module receives any data, the default "<data
1>, <data 2>, ..." is displayed. If there is no node data in the structure,
"<no data>" is displayed on the buttons. Vector components should first
be converted to scalar components with ucd extract scalars.

33333333333333333333333333
500 AVS Module Reference Manual

ucd plot3333333333333333333
Abscissa Mapping

This controls which values are used to construct the X axis of the output
plot. Dist represents the simple distance of the linear sampling object
through the UCD structure. For example, a structure extending from 0,0
to 0,2 would produce an X axis extending from 0 to 2. If X, Y, or Z is
selected, then the N Segments along the linear sampling object are pro-
jected down to the UCD structure’s X, Y, or Z axis.

N Segment An integer dial that controls the resolution of the linear sampling object.
The range extends from 2 to 1000, with a default of 20.

OUTPUTS
Data Field (field 2D scalar real uniform)

This 2D field is the "Plot as XY" data input to the graph viewer module’s
rightmost input port. It can be viewed as a two-column table of X-Y
pairs that is N Segments long. The first column is location of a data
value as determined by Abscissa Mapping. It is used as the X values in
the output plot. The second column is the data values. It is used as the Y
values in the output plot.

geometry A geometry representing the linear sampling object, initially centered
within the extents of the UCD structure along the X axis.

EXAMPLE
The following network reads in a UCD structure and generates a plot of its data
values. ucd to geom creates a colored representation of the UCD structure. ucd plot
then produces the sampling object, which is superimposed over the UCD structure in
the geometry viewer window. The generate colormap module provides a colormap
that colors both the UCD structure and the sampling object. The graph viewer win-
dow displays the resulting plot.

READ UCD

|

GENERATE COLORMAP |

| |

|--------| |

| |----|----|

UCD TO GEOM | |

| | |

| UCD PLOT

| | |

|--------| |------|

| |

GEOMETRY VIEWER GRAPH VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
Any module that outputs a UCD structure.

Module that provides Colormap inputs:
generate colormap

Modules that can process ucd plot’s output:
graph viewer (field)
print field (field)

33333333333333333333333333
AVS Module Reference Manual 501

ucd plot3333333333333333333
statistics (field)
geometry viewer (geometry)

SEE ALSO
The example script UCD PLOT demonstrates the ucd plot module.

33333333333333333333333333
502 AVS Module Reference Manual

ucd print3333333333333333333
NAME

ucd print – create a readable format of a UCD structure.

SUMMARY
Name ucd print

Availability UCD module library

Type data output

Inputs ucd structure

Outputs none

Parameters Name Type Default Min Max
Output File typein /tmp
Component integer dial -1 -1 unbounded
Start node integer dial -1 -1 unbounded
Start cell integer dial -1 -1 unbounded
Display Mode choice none

DESCRIPTION
The ucd print module creates a human-readable version of the contents of an AVS
ucd structure. The information is displayed in a Node Browser widget on the AVS
control panel. ucd print is useful whenever you need to inspect the actual contents
of a ucd structure.

By default, ucd print displays UCD structure header information. The control panel
also contains a radio-button selector that allows you to display different additional
pieces of the ucd data in the Node Browser window. The selection possibilities are:
Node Data, Node positions, cell lists, node lists, and cell info. Each of these selec-
tions is explained under the Display Mode parameter below.

The header consists of the following information, as returned by the
UCDstructure_get_data routine (AVS Developer’s Guide, "Unstructured Cell Data
Library" appendix): ucd name, data vector length, name flag, number of cells, cell
vector length, cell mix, number of nodes, node vector length, node mix, util flag, XYZ
extents, and the ranges for each node component and cell component, if present.

The cell mix and node mix are the vector lengths of the individual components of the
cell or node data. The sum of these lengths will be the node data vector length (or
the cell data vector length). The util flag is the util_flag field in the ucd struct as
defined in ucd_defs.h. The X,Y, and Z extents are the extents of the mesh portion of
the ucd (node positions). The node component and cell component ranges are ranges
on the values stored either in the node or cell data sections of the ucd. ucd print does
not calculate the ranges; they appear only if some upstream module has calculated
them. In the language of analysis, the XYZ range can be thought of as the dimen-
sions of the smallest box that will contain the domain of the function represented by
the ucd, while the node/cell ranges are the dimensions of the smallest n-dimensional
box that contains the image of the function represented by the ucd.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format

PARAMETERS
Output File

A typein that determines the temporary file used by ucd print to cache
the browser info. This file can be changed by the user if storage on /tmp
is a problem for any reason.

33333333333333333333333333
AVS Module Reference Manual 503

ucd print3333333333333333333
Component

This parameter selects the data component to display. It is an integer
dial.

Start node Selects the starting node for which to display the data. The node selected
will be the first one placed in the browser window. Ten nodes are
displayed at a time.

Start cell Selects the starting cell for which to display the data. The cell selected
will be the first one placed in the browser window. Ten cells are
displayed at a time.

Display Mode
This parameter is a radio button that selects the display mode. The
choices are:

Node data
The Node data selection displays the data associated with the ucd
nodes. The component selected by the component dial will be
displayed in the browser along with the vector length of the com-
ponent, its units, and the data itself. If the ucd only contains cell
data, this information may not be available.

Node positions
The Node positions selection displays the node positions in XYZ
coordinates. This data is always present in a UCD.

cell list
The cell list is the connectivity information.

node list
The node list information is the list of nodes comprising each cell in
the ucd.

cell info
The cell info selection allows the user to display the material type,
individual cell names, cell types and mid_edge flag for each cell in
the ucd being examined.

EXAMPLE
The following network displays the contents of the ucd structure:

READ UCD

|

|--------------|

| |

UCD PRINT WRITE UCD

The Node Browser widget is usually too narrow. To resize it: enter the Network
Editor. Press Layout Editor on the Network Editor menu. The browser widget will
be bordered in red. Move the mouse into it. Use your window manager to move the
widget as though it were a window to outside the control panel. Release the mouse
buttons, then resize the Node Browser widget like any other window. Leave the
Layout Editor.

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
ucd extract
Any module that outputs a UCD structure.

33333333333333333333333333
504 AVS Module Reference Manual

ucd print3333333333333333333
The print field module performs a similar function for fields.

SEE ALSO
The example script UCD PRINT demonstrates the ucd print module.

33333333333333333333333333
AVS Module Reference Manual 505

ucd probe3333333333333333333
NAME

ucd probe – interactively show numeric data values in a geometry rendered UCD
structure

SUMMARY
Name ucd probe

Availability UCD module library

Type mapper

Inputs ucd structure
color field (field 1D 3-vector float; optional)
upstream transform (optional, invisible, autoconnect)
upstream geometry (optional, invisible, autoconnect)

Outputs geometry

Parameters Name Type Default Min Max
x float typein 0.0 min-extent max-extent
y float typein 0.0 min-extent max-extent
z float typein 0.0 min-extent max-extent
Node Data choice <data 1>
Probe Type choice Cursor
Pick Geometry boolean off
label nodes boolean off
label id boolean off
label value boolean off
label cell boolean off
Text Size integer dial 2 1 7
Text Offset float dial 0.0 -10.0 10.0

DESCRIPTION
The ucd probe module displays the numeric data values associated with the nodes of
a specific cell in a UCD structure. It works for structures that have been rendered as
AVS geometries.

ucd probe works by creating a cursor-like object titled "probe" that coexists in the
Geometry Viewer window with the rendered version of the UCD structure. Its initial
position is aligned with the first cell in the structure.

The ucd probe module lets you see the values in a UCD structure in three ways:

Typein values
You can specify an explicit x, y, and z cell location by typing into these parame-
ters. The probe object will move to this location within the UCD structure and
display the node data values for that cell.

Pick Geometry
If Pick Geometry is selected, then you simply point the mouse at the cell you are
interested in and click the left mouse button. The probe object will "snap" to the
UCD cell which is below the mouse cursor and display the node data values for
that cell. This is a "point the mouse and click" technique of data sampling.

Follow Mouse
In the third method, the probe must be the Geometry Viewer’s current object.
Then, with Pick Geometry off (not selected), you use the right and shift right
mouse buttons to move the probe object around the volume of the UCD struc-
ture. The probe "follows" the cursor around the display window, continuously
reporting its position and the specified values of cells it passes through.

33333333333333333333333333
506 AVS Module Reference Manual

ucd probe3333333333333333333
The Geometry Viewer tells the ucd probe module which UCD cell the mouse cursor
is over as the buttons are pressed. ucd probe then reports the data values of the
nodes which make up the vertices of the selected cell.

It is usually helpful to view the selected cell together with a wireframe rendering of
the structure it belongs to. This can be achieved by adding the module ucd to geom
to your network. ucd to geom outputs the entire UCD structure as a geometry object.
By setting ucd to geom’s Geometry Display Mode to External Edges, you can pro-
duce a wireframe representation of the structure. The example network below
demonstrates this. You can also use the ucd crop module to expose interior cells to
make them easier to click upon. You can use ucd probe’s Text Offset parameter to
move the labels away from the cell/node. If your platform supports transparency,
you can use the Geometry Viewer’s Edit Properties window’s Transparency slider to
make the UCD object semi-transparent.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

Color Field (field 1D 3-vector real; optional)
The color field is a 1 dimensional array of color values. There is one color
for each node in the input UCD structure. Each color value is a triple of
floating point numbers representing red, green and blue. The color field
input is used by ucd probe to render the geometry object which
represents the selected UCD cell. Two modules output the color field
data type, ucd contour and ucd legend. Note that the color field is not
the same as an AVS colormap.

Upstream Transform (optional, invisible, autoconnect)
Used by ucd probe’s continuous tracking technique, this normally invisi-
ble port is what the geometry viewer module uses to inform ucd probe
of the location of the probe in space so it can display the data value for it.
The module connection occurs automatically.

Upstream Geometry (optional, invisible, autoconnect)
Used by the ucd probe’s "point cursor and click" technique, this nor-
mally invisible port is what the geometry viewer module uses to inform
ucd probe of the geometry vertex selected so it can display the data
value for it. The module connection occurs automatically.

PARAMETERS
x
y
z Floating point typeins that specify where, in the coordinate system of the

UCD structure, the sampling should be taken. Setting these will move
the probe object to this location, or, alternatively, they will display the
location of the probe object if it is moved manually. The initial value is
0.0 in x, y, and z. The minimum and maximum values are restricted to
the extents of the UCD structure.

Node Data Selects which of the node’s data components to display. A set of radio
buttons shows the label attached to each node data component. Before
the module receives data, the default "<data 1>, <data 2>, ..." is
displayed. If there is no node data in the structure "<no data>" is
displayed on the button.

33333333333333333333333333
AVS Module Reference Manual 507

ucd probe3333333333333333333
Probe Type

A set of radio buttons that control what the probe object looks like in the
Geometry Viewer.

Cursor
creates a probe that looks like a miniature XYZ axis.

Crosshair
creates a probe that looks like half of a miniature XYZ axis. The
crosshair stays aligned with the axis, and its endpoints lie in the XY,
YZ, and XZ planes.

Probe
creates a probe that looks like an electronic probe or dissecting nee-
dle.

label nodes
Marks the nodes of a picked cell as small x’s.

label id When label id is selected, the integer or string node id which identifies
the nodes is displayed.

label value When label value is selected the floating point value associated with one
data component of a node, as determined by Node Data, is displayed.

label cell Displays the picked cell as a separate geomtry object colored by nodal
values using the color field input.

Text Size An integer dial that controls the font size of the output strings.

Text Offset
A floating point dial that offsets the text from the UCD node, making it
easier to read. The default is 0.0 (no offset); the min is -10.0 and the max
is 10.0.

OUTPUTS
Geometry (geometry)

The output geometry has three parts:

The rendering of the UCD cell that was selected,

The rendering of the "probe" object,

The rendering of the "Text for Probe" that lists the data values and coor-
dinate position.

EXAMPLE
The following network reads in a UCD structure with scalar component values, (e.g.,
$AVS_PATH/data/ucd/scalar.1000.inp) which is passed both to ucd to geom and to ucd
probe. The ucd probe outputs a geometry object representing the cell that has been
selected. The ucd to geom outputs the entire UCD structure. By setting the represen-
tation mode for the entire structure to External Edges, you can produce a rendering
of the selected cell within a wireframe model of the structure:

33333333333333333333333333
508 AVS Module Reference Manual

ucd probe3333333333333333333
GENERATE COLORMAP READ UCD

| |

| |-----------------|------------|

UCD CONTOUR | |

| | |

|-------------|--- | --------| |

| | | |

UCD TO GEOM UCD PROBE

| |

|-------|------|

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read ucd
field to ucd

Modules that could provide the Color Field input:
ucd contour
ucd legend

Modules that can process ucd probe output:
geometry viewer

SEE ALSO
ucd anno module

The example script UCD PROBE demonstrates the ucd probe module.

33333333333333333333333333
AVS Module Reference Manual 509

ucd reverse cell3333333333333333333
NAME

ucd reverse cell – repair topology of imported UCD structures; reverse cell normals

SUMMARY
Name ucd reverse cell

Availability UCD module library

Type filter

Inputs ucd structure

Outputs ucd structure

Parameters Name Type Default
choice choice Correct Topology
Reverse TRIANGLE boolean off
Reverse QUADS boolean off
Reverse TETRAS boolean off
Reverse HEXAS boolean off
Reverse PRISMS boolean off

DESCRIPTION
AVS’s UCD structure defines a particular ordering of the nodes that make up cells
(see "Unstructured Cell Data" appendix in the AVS Developer’s Guide). Other parties’
UCD structures, though they may support the same cell types, have a different node
ordering. When such a dataset is imported into an AVS UCD structure without
correcting the node ordering, the structure of the individual UCD cells and the
dataset’s overall structure appear correct. However, because the cell is effectively
inside-out, the cells’ normals will be wrong. That is, though the cell has the right
shape, it appears as a featureless gray outline of a cell in the structure that is unaf-
fected by coloring with ucd contour, or by Geometry Viewer lighting. The entire
structure may be incorrect, or just individual cells. The geometry output looks
"wrong"; it is full of gray "nothing" holes.

ucd reverse cell corrects these mistakes in cell topology. It will either traverse the
entire structure, reordering all incorrect cells to match AVS’s ordering (Correct
Topology), or it will reverse the normals on all cells of a particular type (Reverse
Cell). The repaired UCD structure can be saved permanently with write ucd.

ucd reverse cell has another use. Because it reverses cell normals, it can also be used
to make isolines that are obscured by cell surfaces visible.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

PARAMETERS
choice A set of radio buttons that chooses the basic operation of the module.

There are two choices.

Correct Topology
Causes ucd reverse cell to correct the ordering of nodes.
"Correcting" means swapping the node ordering by what is
most likely wrong with it, since only a few basic node order-
ings are in common use—they are never totally random. If
Correct Topology is selected, then ucd reverse cell uses the
Jacobian matrix determinant of each cell to determine if the
cell has the right topology. If it is wrong, it swaps the nodes:

33333333333333333333333333
510 AVS Module Reference Manual

ucd reverse cell3333333333333333333
hexahedral: 4567 0123 --> 0123 4567

tetrahedral: 0123 --> 0213

prism: 345 012 --> 012 345

Triangle and quadrilateral cells are not adjusted.

Reverse Cell
A switch that causes ucd reverse cell to change the node
ordering. You must select which types of cells to reverse.
More than one can be selected. No effort is made to deter-
mine correctness; all of the nodes are swapped.

Reverse TRIANGLE
210 --> 012

Reverse QUADS
3210 --> 0123

Reverse TETRAS
0123 --> 0231

Reverse HEXAS
4567 0123 --> 0123 4567

Reverse PRISMS
345 012 --> 012 345

OUTPUTS
UCD Structure

The output is a UCD structure identical to the input structure except for
its node ordering.

EXAMPLE 1
The following network corrects a UCD structure.

READ UCD

|

GENERATE COLORMAP |

| |

UCD CONTOUR UCD REVERSE CELLS

| |

|-----------| |------------|

| | |

UCD TO GEOM WRITE UCD

|

GEOMETRY VIEWER

EXAMPLE 2
This network makes the lines produced by ucd isolines visible if they are obscured
by the UCD structure because the "top" of the cell is away from the viewer.

33333333333333333333333333
AVS Module Reference Manual 511

ucd reverse cell3333333333333333333
GENERATE COLORMAP READ UCD

| |

|------| |-----------------|----------|

| | | | |

| UCD LEGEND UCD REVERSE CELL |

| | | |

|-------|-------------------| | |

| | | |

|----------------| | | UCD TO GEOM

| | | |

UCD ISOLINES |

| |

|------------|

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD Structure input:

read ucd
Any module that outputs a UCD Structure.

Modules that can process ucd reverse cell’s output:
any module that inputs a UCD structure

SEE ALSO
The example script UCD REVERSE CELL demonstrates the ucd reverse cell module.

33333333333333333333333333
512 AVS Module Reference Manual

ucd rslice3333333333333333333
NAME

ucd rslice – slice away portions of a UCD structure

SUMMARY
Name ucd rslice

Availability UCD module library

Type mapper

Inputs ucd structure
color field (field 1D 3-vector real)

Outputs geometry

Parameters Name Type Default Min Max
Do Slice boolean off
x-rot float 0.0 0.0 360.0
y-rot float 0.0 0.0 360.0
Distance float 0.0 -2.0 2.0

DESCRIPTION
The ucd rslice module cuts through a UCD structure along an arbitrarily positioned
slice plane. ucd rslice outputs the structure minus the portions that have been sliced
away. The slice plane can be rotated around the x and y axes, and moved back and
forth along the normal to the plane. Note that to initiate the slicing operation you
must press the "Do Slice" button.

ucd rslice is similar to the modules ucd crop and ucd threshold, which also subset
UCD structures. However, these two modules cut away the cells that make up the
UCD structure; they do not cut through cells. ucd rslice, on the other hand, slices
through any cells which the slice plane intersects. When you slice through hex-
ahedral cells, for example, you may produce cells that do not look like hexahedrons.
This is especially true if the UCD structure is being rendered as a wireframe.

By default, the UCD structure is placed at the origin and the slice plane is in the X-Z
plane. The orientation of the slice plane is controlled by two floating point parameter
dials, x-rot and y-rot. If you rotate the slice plane, you will see that one side has a
highlighted area. The highlighted surface is on the side that will be removed.

Each time the slice plane is reoriented the boolean parameter Do Slice is turned off.
This lets you adjust the slice plane until it is where you want, and only then perform
the slicing operation. The slice plane can be moved back and forth through the UCD
structure along the normal to the plane, using the Distance floating-point dial. This
lets you take a series of parallel slices through a UCD structure in any direction.

INPUTS
Structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

Color Field (field 1D 3-vector real)
This input field is a 1 dimensional array of color values. There is one
color for each node in the input UCD structure. Each color value is a tri-
ple of floating point numbers representing red, green, and blue. Note
that the color field is not a regular AVS colormap. Two modules output
color fields: ucd contour and ucd legend.

PARAMETERS
Do Slice A boolean switch that initiates the slicing operation. This button allows

you to manipulate the slice plane until you are satisfied with its position,
and only then slice the UCD structure.

33333333333333333333333333
AVS Module Reference Manual 513

ucd rslice3333333333333333333
x-rot A floating point value which rotates the slice plane around the UCD

structure’s x axis.

y-rot A floating point value which rotates the slice plane around the UCD
structure’s y axis.

Distance A floating point value between -2.0 and 2.0 which moves the slice plane
back and forth in the direction of the normal to the plane. This value is
scaled by the largest dimension of the UCD structure. Consequently, you
can move the slice plane along the normal from -(2 ∗ max dimension) to
(2 ∗ max dimension).

OUTPUTS
Geometry ucd rslice outputs a geometry which includes the slice plane, and the

portion of the UCD structure remaining after the slice operation is per-
formed.

EXAMPLE
The following network reads in a UCD structure and slices it. The ucd rslice module
outputs the sliced structure and the slice plane as geometries, which are rendered
using geometry viewer:
GENERATE COLORMAP READ UCD

| |

| |---------|

UCD CONTOUR |

| |

|-----| |

| |

UCD RSLICE

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
ucd_extract
Any module that outputs a UCD structure.

Other modules that subset UCD structures:
ucd threshold
ucd crop

Modules that can process ucd rslice’s output:
geometry viewer, render geometry

SEE ALSO
The example script UCD RSLICE demonstrates the ucd rslice module.

33333333333333333333333333
514 AVS Module Reference Manual

ucd rubber sheet3333333333333333333
NAME

ucd rubber sheet – map values as a 3D surface with height proportionate to value

SUMMARY
Name ucd rubber sheet

Availability UCD module library

Type mapper

Inputs ucd structure
colormap (optional)

Outputs geometry (sampling plane)
geometry

Parameters Name Type Default Min Max
Node Data choice <data 1>
Do Slice toggle off
x-rot float dial 0.0 0.0 360.0
y-rot float dial 0.0 0.0 360.0
Distance float dial 0.0 -1.0 1.0
Offset float dial 0.0 -1.0 1.0
Scale float dial 1.0 -10.0 10.0

DESCRIPTION
ucd rubber sheet maps node data component values as a 3D surface. ucd rubber
sheet produces a plane sampling object that can be positioned anywhere in the
volume of a UCD structure using x-rot, y-rot, and Distance dials. Once positioned,
pressing Do Slice creates a 3D output "rubber sheet" geometry surface. The output
surface is created by offsetting the points on the sampling plane by a distance that is
proportional to the data values (interpolated) through which the sampling plane
passes. The output surface reflects these values in two ways:

1. The surface’s color is mapped according to the optional colormap.

2. The surface’s offset from the sampling plane is scaled linearly to the data value
(hence the name "rubber sheet"). For example, a sampling plane passing through
these values:
10 5 10

5 0 5

10 5 10

would produce a squared-off concave "bowl" shape, with the bottom of the bowl
at 0, the bowl’s corners stretched 10x’s away from the bowl bottom, and the
centers of the edges of the bowl stretched half as far away from the bowl bottom
as the bowl corners.

ucd rubber sheet thus uses the third dimension to illustrate the magnitude of the
differences between node values. The height used is always scaled so that the output
surface will fit within the volume of the UCD structure. You may multiply the
resulting height by a dial-controlled Scale factor.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

Colormap (optional; colormap)
An AVS colormap. ucd rubber sheet maps node values in the input
structure to colors in the colormap.

33333333333333333333333333
AVS Module Reference Manual 515

ucd rubber sheet3333333333333333333
PARAMETERS

Node Data Selects which of the node’s data components to display. A set of radio
buttons shows the label attached to each node data component. Before
the module receives data, the default "<data 1>, <data 2>, ..." is
displayed. If there is no node data in the structure "<no data>" is
displayed on the button. Vector node data components should be con-
verted to scalar with ucd extract scalars.

Do Slice Once the sampling plane is positioned, press Do Slice to generate the 3D
surface.

x-rot A floating point dial that rotates the sampling plane around the
structure’s X axis. The range is 0.0 to 360.0; the default is 0.0.

y-rot A floating point dial that rotates the sampling plane around the
structure’s Y axis. The range is 0.0 to 360.0; the default is 0.0.

Distance A floating point dial that controls the Z axis position of the sampling
plane. The range is -1.0 to 1.0; the default is 0.0 (centered).

Offset A floating point dial that controls how far away the new 3D surface will
appear from the original sampling plane. The range is -1.0 to 1.0; the
default is 0.0 (on the original sampling plane).

Scale A floating point dial that controls the height distortion. Internally, ucd
rubber sheet creates a scaling factor (internal_scale) that will keep the
rubber sheet within the extents of the UCD structure. This Scale param-
eter is used to multiply the final result:

(internal_scale ∗ value) ∗ Scale
The range is -10.0 to 10.0; the default is 1.0.

OUTPUTS
geometry (geometry)

This is the sampling plane.

geometry (geometry)
This is the 3D "rubber sheet" surface. It is generated or re-generated
whenever Do Slice is pressed.

EXAMPLE
The following network reads in a UCD structure. This is fed to ucd contour, ucd to
geom and ucd rubber sheet. ucd to geom uses it to create a colorized picture of the
original UCD structure. ucd rubber sheet uses it to create its sampling plane and the
3D colorized surface. Both feed into the geometry viewer. In order to see the sam-
pling object and the 3D surface, you should toggle External Edges on ucd to geom’s
control panel.

33333333333333333333333333
516 AVS Module Reference Manual

ucd rubber sheet3333333333333333333
GENERATE COLORMAP READ UCD

| |

| |------|----------|

|-----|------|------| |

| | | | |

UCD CONTOUR | | |

| | UCD RUBBER SHEET

| | |

| | |

UCD TO GEOM |

|--------|

|

GEOMETRY VIEWER

RELATED MODULES
ucd rubber sheet is roughly the UCD equivalent to the field data module field to
mesh.

Modules that could provide the UCD Structure input:
read ucd
ucd crop
ucd threshold
Any module that outputs a UCD Structure.

Modules that could provide the Colormap input:
generate colormap

Modules that can process ucd rubber sheet’s output:
geometry viewer

SEE ALSO
The example script UCD RUBBER SHEET demonstrates the ucd rubber sheet
module.

33333333333333333333333333
AVS Module Reference Manual 517

ucd slice 2D3333333333333333333
NAME

ucd slice 2D – extract 2D slice from a UCD structure

SUMMARY
Name ucd slice 2D

Availability UCD module library

Type mapper

Inputs ucd structure
colormap

Outputs geometry
geometry

Parameters Name Type Default Min Max
node data choice <data 1>
Interaction

Mode choice Wait
Do Slice boolean off
x-rot float 0.0 0.0 360.0
y-rot float 0.0 0.0 360.0
Distance float 0.0 -1.0 1.0
Transform Slice boolean off

DESCRIPTION
The ucd slice 2D module extracts a 2D colored slice from a UCD structure. The slice
plane can be rotated around the X and Y axes, and moved back and forth along the
normal to the plane.

By default, the UCD structure is placed at the origin and the slice plane is in the X-Z
plane. The orientation of the slice plane is controlled by two floating point parameter
dials, x-rot and y-rot.

Interaction Mode offers a choice of Immediate and Wait.

Immediate generates output whenever a parameter or input port changes, such as
during an animation.

Wait causes the Do Slice button to appear. In this mode, ucd slice 2D only generates
output when Do Slice is pressed. This lets you adjust the slice plane until it is where
you want, and only then perform the slicing operation. Do Slice does allow for suc-
cessive automatic slices along one axis using the Distance parameter.

ucd slice 2D outputs two geometry objects. One is the slice plane, the other is the 2D
slice of the UCD structure.

There are two different ways to use ucd slice 2D, one with only the left output port
connected, and one with both output ports connected to different geometry viewer
modules. These two configurations are illustrated in the "Examples" sections below.

INPUTS
UCD Structure (required)

The input structure is in AVS unstructured cell data (UCD) format. The
structure can contain only scalar node data components.

Colormap (colormap)
This input colors the 2D slice according to an AVS colormap.

PARAMETERS

33333333333333333333333333
518 AVS Module Reference Manual

ucd slice 2D3333333333333333333
node data A set of radio buttons that selects which of the scalar node data com-

ponents to output. If the components are unlabelled, this displays
"<data 1>", "<data 2>", etc. If they are labelled, it displays the actual
labels. The default is the first component.

Interaction Mode
A pair of radio buttons. Immediate generates output whenever a
parameter or input port changes. Wait generates output whenever Do
Slice is pressed. Wait is the default.

Do Slice A boolean switch that initiates the slicing operation. This button appears
only when Wait is selected. It allows you to manipulate the slice plane
until you are satisfied with its position, and only then extract the slice.
Do Slice is off by default.

Each time the slice plane is reoriented the boolean parameter Do Slice is
turned off. Once the slice plane is oriented as desired, and Do Slice is
selected, the slice plane can be moved back and forth through the UCD
structure along the normal to the plane with Distance. Do Slice remains
"on" as you take successive slices along the normal. This lets you rapidly
take a series of parallel slices through a UCD structure in any direction.

x-rot A floating point value which rotates the slice plane around the UCD
structure’s X axis. The range is 0.0 to 360.0. The default is 0.0.

y-rot A floating point value which rotates the slice plane around the UCD
structure’s Y axis. The range is 0.0 to 360.0. The default is 0.0.

Distance A floating point value between -1.0 and 1.0 which moves the slice plane
back and forth in the direction of the normal to the plane. This value is
scaled by the largest dimension of the UCD structure. Consequently, you
can move the slice plane along the normal from - max dimension to + max
dimension.

Transform Slice (boolean)
When selected, the 2D slice of the UCD structure is transformed so that it
is parallel to the viewing plane. This must be turned off when ucd slice
2D is sending both its output geometries to a single geometry viewer
module. It must be turned on when ucd slice 2D is sending its slice plane
output to one geometry viewer module and its 2D slice output to
another geometry viewer module.

This boolean is off by default.

OUTPUTS
Geometry The geometry object that ucd slice 2D outputs from the left output port

represents the 2D slice of the UCD structure.

Geometry The geometry object that ucd slice 2D outputs from the right output port
represents the slice plane.

EXAMPLE 1
In the following network ucd slice 2D sends both the slice plane output and the 2D
slice output to a single geometry viewer module. This module also receives a model
of the entire UCD structure from the ucd to geom module. Use ucd to geom’s Exter-
nal Edges parameter to create a wireframe representation of the object. These
geometries are all rendered together. In this configuration, when you move the slice
plane, the 2D slice will move with it.

33333333333333333333333333
AVS Module Reference Manual 519

ucd slice 2D3333333333333333333
Note that for the 2D slice to be correctly oriented, the Transform Slice parameter
must be off. Note also that in this setup, ucd slice 2D’s lefthand output port is not
connected to anything. If this port is connected to geometry viewer the results will
be unpredictable.

GENERATE COLORMAP READ UCD

| |

| |-----------------|

| | |

| | |

| | |

|------------------| | |

| | |

UCD SLICE 2D UCD TO GEOM

| | |

|---|--------------|

|

GEOMETRY VIEWER

EXAMPLE 2
In the second configuration, two geometry viewer modules are used. ucd slice 2D
outputs both the 2D slice of the UCD structure and the slice plane. The 2D slice is
viewed alone using the lefthand geometry viewer module. The 2D slice is
transformed so that it is parallel to the view plane. This is done by turning ucd slice
2D’s Transform Slice parameter on.

The slice plane itself is sent to the righthand geometry viewer module, where it is
rendered along with the UCD structure as a whole. This lets you see the position of
the slice plane relative to the entire UCD structure. To display the structure as a
wireframe model, switch ucd to geom’s External Edges parameter on.

GENERATE COLORMAP READ UCD

| |

| |-----------------|

| | |

| | |

|--------------------| | |

| | |

UCD SLICE 2D UCD TO GEOM

| | |

| |-----------| |

| | |

GEOMETRY VIEWER GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
Any module that outputs a UCD structure.

Modules that could provide the Colormap input:
generate colormap

Modules that can process ucd slice2D’s output:
geometry viewer

33333333333333333333333333
520 AVS Module Reference Manual

ucd slice 2D3333333333333333333
Any module that inputs a geometry

SEE ALSO
The example script UCD SLICE 2D demonstrates the ucd slice2D module.

33333333333333333333333333
AVS Module Reference Manual 521

ucd streamline3333333333333333333
NAME

ucd streamline – generate stream lines or stream ribbons for a UCD structure

SUMMARY
Name ucd streamline

Availability UCD module library

Type mapper

Inputs ucd structure
colormap
field irregular 3-space float (optional, from create geom)
upstream transform (optional, invisible, autoconnect)

Outputs geometry

Parameters Name Type Default Min Max
Node Data choice <data 1>
N Segment integer dial 16 2 64
Sample Style choice point
N Steps integer dial 2 2 10
Integration choice 1st order
Backward boolean off
Color Streams boolean off
Ribbons boolean off
Ribbon Angle float dial 0.0 0.0 360.0
Ribbon Width float dial 0.1∗max dim 0.0 20∗default
Interaction
Mode choice Immediate

Start Streams boolean off

DESCRIPTION
The ucd streamline module generates colored stream lines or stream ribbons based
on the vector node data in a UCD structure.

The stream lines are generated at selected sample points. For every time step, ucd
streamline advances each sample point through space, based on the interpolated
value of the node vectors surrounding the point. The result is a set of stream lines
showing the progress of massless particles moving under the influence of the vector
field at the nodes of the UCD structure. Stream ribbons behave similarly, except that
their width and rotation also reflect the divergence and rotation of the flow at each
point.

The sample points can be any scatter field. Usually, they come from two sources:
from a sample probe generated by the ucd streamline module; or from arbitrarily-
placed points defined by a field generated interactively by the create geom module.

ucd streamline’s sample probe places a sample of points at a starting location in the
UCD structure. The number of points is parameter-controlled. The sample probe’s
points can be moved around in space like any other geometry object, using the "vir-
tual trackball" paradigm. To move the probe, select it by clicking on it, or by entering
the Geometry Viewer and making it the current object.

There are three different modes to initiate the calculation of stream lines: Immediate,
Wait, and Button Up. In Immediate mode, any change to a parameter or probe dis-
placement will cause stream lines to be calculated immediately. In Wait mode you
must press the Start Streams button to initiate streamlines calculation. This mode is
useful when the streamline calculation requires a long time and you want to change a
parameter or move the probe without immediate calculation. In Button Up mode,

33333333333333333333333333
522 AVS Module Reference Manual

ucd streamline3333333333333333333
you can move probe with the mouse, keeping the button down. When you set the
probe in a proper position and release the button, the module will then calculate
streamlines. This mode can be useful when the streamline calculation requires a long
time and you want to move the probe without immediate calculation.

A UCD structure consists of cells with nodes at their vertices. Each node may have
data associated with it. ucd streamline only works with structures that have a vector
component in their node data, thus it complains if the input structure has only scalar
values at the nodes. (Scalar components can be converted to vector components with
ucd extract vector.) If the nodes of a structure have more than one 3-vector com-
ponent, use the Node Data radio buttons to select which component to use in calcu-
lating the stream lines.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format. It
must have at least one node component which is a 3D vector, represent-
ing the components of a velocity vector.

colormap (required; colormap)
An AVS colormap that is used by ucd streamline to associate colors with
vector values. Note that this is a regular AVS colormap, and not the
color field output by ucd contour and ucd legend.

Data Field (optional, field irregular 3-space float)
ucd streamline generates its own data sampling probe that is manipu-
lated from the geometry viewer module. Optionally, one can also input
a field that defines an arbitrarily-placed set of sample points. This field is
usually created interactively with the create geom module, but can be
saved and reused as an AVS field.

Upstream Transform (invisible, optional, autoconnect)
When the ucd streamline module coexists with the geometry viewer
module in a network, geometry viewer feeds information on how the
point, circle or other sample probe has been moved back to this input
port on the ucd streamline module. The two modules connect automati-
cally, through a data pathway that is normally invisible. This gives
direct mouse manipulation control over ucd streamline’s sample probe.

PARAMETERS
Node Data Selects which of the node’s data components to display. A set of radio

buttons shows the label attached to each node data component. Before
the module receives data, the default "<data 1>, <data 2>, ..." is
displayed. If there are no vector components of the node data ucd
streamline complains. If there are several vector data components, these
buttons let you select which component to use in calculating the stream
lines. If there is no node data in the structure "<no data>" is displayed on
the button.

N Segment Integer dial that controls the density of points in the sample set.

Sample Style (radio buttons)
Specifies the configuration of points from which stream lines are drawn:
point, line, circle, or plane.

N Steps Integer dial that specifies the number of time steps for which stream lines
are computed within each cell of the UCD structure. As the number of
time steps increases, so does the accuracy of the stream lines.

33333333333333333333333333
AVS Module Reference Manual 523

ucd streamline3333333333333333333
Integration Method

Selects the integration method used to advance sample points through
space: 1st order uses an euler integration method, 2nd order uses a 2nd
order Runge-Kutta method, and 3rd order uses a 3rd order Runge-Kutta
method.

Backward (boolean)
If Backward is selected, stream lines are extrapolated in the opposite
direction that the UCD structure’s vectors are pointing. By default this
switch is off.

Color Streams (boolean)
If Color Streams is selected, the stream lines are colored based on the
magnitude of the interpolated vectors used to generate the stream lines.
By default this switch is off.

Ribbons (boolean)
A toggle switch that turns on stream ribbons rather than stream lines.
The default is off.

Ribbon Angle (float dial)
This control only appears if Ribbons is selected. It controls the initial
angle at which the ribbon is drawn. By default, ribbons are drawn with
their width parallel to the X axis. The range is 0 to 360; the default is 0.

Ribbon Width (float dial)
This control only appears if Ribbons is selected. It scales the width of
the ribbon. The range and default shown on the dial is calculated based
on the size of the UCD structure. The default is 0.1∗the maximum
dimension of the structure. The minimum is 0.0. The maximum is scaled
to be 20 times the default. (Ribbon width will vary along its length
according to the divergence of the flow at each node.)

Interaction Mode (radio buttons)
Selects a mode to initiate the calculation of stream lines: Immediate,
SWait or Button Up. In Immediate mode, any change to a parameter or
probe displacement will cause stream lines to be calculated immediately.
In Wait mode you must press the Start Streams button to calculate
streamlines. In Button Up mode you can move the probe with the
mouse, keeping the mouse button down. When you set the probe in a
proper position and release the button, the module will calculate stream-
lines.

Start Streams (boolean)
A boolean switch that initiates the calculation of stream lines in Wait
mode. This button allows you to manipulate the sample probe until you
are satisfied with its position, or change other parameters and only then
begin computing stream lines.

OUTPUTS
Stream Lines, Sampling Object (geometry)

ucd streamlines outputs two geometries: a set of colored disjoint lines
or ribbons, and the sampling object.

EXAMPLE 1
The following network reads in a UCD structure with a 3-vector float value as one of
the components of the node data. ucd streamline displays colored stream lines. Note
that the module ucd to geom is used to provide a frame within which to view the
streamlines. To do this, select the "External Edges" parameter in the ucd to geom

33333333333333333333333333
524 AVS Module Reference Manual

ucd streamline3333333333333333333
module
GENERATE COLORMAP READ UCD

| |

|---------------| |-----------|

| | |

UCD STREAMLINE UCD TO GEOM

| |

|-----------|

|

|

GEOMETRY VIEWER

EXAMPLE 2
This network is identical to the first, except that the sample points are taken from a
field that was originally generated with the create geom module. This field could
have been saved with write field, in which case read field would replace create geom
in the network.

GENERATE COLORMAP READ UCD

| |

|-------| |-----------|

| | |

CREATE GEOM | | |

| | | |

|----------| | | |

UCD STREAMLINE UCD TO GEOM

| |

|-----------|

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
scatter to ucd
ucd curl
ucd grad
Any module that outputs a UCD structure.

Modules that could provide the Colormap input:
generate colormap

Modules that could provide the Data field input:
create geom
read field

Modules that can process ucd streamline’s output:
geometry viewer

SEE ALSO
The example script UCD STREAMLINE demonstrates the ucd streamline module.

33333333333333333333333333
AVS Module Reference Manual 525

ucd threshold3333333333333333333
NAME

ucd threshold – get subset of UCD structure based on node values

SUMMARY
Name ucd threshold

Availability UCD module library

Type filter

Inputs ucd structure
info (required; from ucd legend)

Outputs ucd structure

Parameters Name Type Default
below boolean off
inclusive boolean off

DESCRIPTION
ucd threshold takes a subset of the cells in a ucd structure based on the values at cell
nodes. Input structure cells with nodes values that fall outside a user specified range
do not appear in the structure which ucd threshold outputs.

The input received from ucd legend tells ucd threshold what range to restrict values
to. This information can either be a single floating point number representing the cut-
off value, or it can be two floating point numbers representing both a high and a low
threshold.

The ucd threshold module is similar to the module, ucd crop. ucd crop, however,
eliminates nodes from a UCD structure based on their x, y, z coordinates — ucd
threshold eliminates nodes based upon their values.

INPUTS
Structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

Info (from ucd legend)
ucd threshold must receive input from the module ucd field legend
through its left input port. This tells ucd threshold what range to restrict
values to.

PARAMETERS
below A boolean switch, which has meaning only when the info input is a sin-

gle floating-point value. If it is selected, ucd threshold outputs the subset
of the UCD structure that is below the threshold value. If it is not
selected ucd threshold outputs the subset of the UCD structure that is
above the threshold value.

inclusive A boolean switch; if it is selected, then all the nodes of a given cell must
satisfy the threshold condition for that cell to be passed to the output. In
other words, if a cell has even one node whose value falls outside the
threshold range, that cell is eliminated from the output. If the inclusive
switch is turned off, only one node of a given cell needs to satisfy the
threshold condition for the cell to be included in the output structure.

OUTPUTS
Structure The output structure is the threshold filtered AVS unstructured cell data

(UCD).

33333333333333333333333333
526 AVS Module Reference Manual

ucd threshold3333333333333333333
EXAMPLE

The following network reads in a UCD structure. The structure is passed to the ucd
field legend module, which outputs a threshold value or range. It is also passed to
the ucd threshold module, which restricts the structure’s values to the threshold
range. Note that ucd legend also outputs a color field that gets passed to ucd to
geom so that the data is colored.
GENERATE COLORMAP READ UCD

| |

| |----------------|

| | |

UCD LEGEND |

| | |

|----|------------| |

| | |

| UCD THRESHOLD

| |

|-------------| |

UCD TO GEOM

|

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
Any module that outputs a UCD structure.

Modules that provides the info input:
ucd legend

Modules that can process ucd threshold’s output:
ucd to geom, ucd crop, ucd anno,
ucd hog, ucd iso, ucd offset, ucd rslice, ucd slice2d,
ucd probe, ucd streamline, write ucd.

SEE ALSO
The example script UCD THRESHOLD demonstrates the ucd threshold module.

33333333333333333333333333
AVS Module Reference Manual 527

ucd to geom3333333333333333333
NAME

ucd to geom – convert a UCD structure into an AVS geometry

SUMMARY
Name ucd to geom

Availability UCD module library

Type mapper

Inputs ucd structure
field 1D 3-vector real (color field from ucd contour/ucd legend)
field 1D 3-vector real (color field from ucd cell color)

Outputs geometry

Parameters Name Type Default Min Max
Shrink boolean off
Shrink Factor integer dial 10 0 100
Geometry

Display Mode choice External Faces
Explode

Materials boolean off
Explode

Factor integer dial 5 0 100
Save Geometry boolean on
Color Cells boolean off

DESCRIPTION
ucd to geom converts a ucd structure into an AVS geometry that can be rendered
using the geometry viewer module.

At the lowest level, unstructured cell data consists of nodes located in 3-space. These
nodes may have a vector of values associated with them. Nodes form the vertices of
polyhedral cells, which themselves may have cell based data associated with them.

ucd to geom takes the input structure’s node location data, as well as a node connec-
tivity list telling which nodes connect to form which cells. Each cell thus defined is
converted into geometry format and is added to the geometry object that the module
outputs.

A UCD structure may have hundreds of nodes and cells, many of which are likely to
be "interior" and thus hidden. You can select the External Faces Geometry Display
Mode to restrict ucd to geom’s output to the "exterior", visible faces of the UCD
structure’s cells. This makes converting the structure to a geometry and rendering it
much faster.

In some cases, you may want to see objects that are inside the ucd structure, such as
isosurfaces, streamlines, probes, and so on. In this case you can select the External
Edges Geometry Display Mode to restrict ucd to geom’s output to the exterior edges,
representing the wireframe boundary of the ucd structure. If this mode is selected,
the shrink factor parameter changes its meaning and becomes the Edge Angle
parameter which controls the accuracy of the boundary representation on the base of
the angle between two adjoining faces.

When All Faces is selected, all faces of all cells will be displayed.

The cells can be shrunk using the shrink factor parameter. If the cells in a structure
are packed close together, this creates gaps between cells and lets you see how cells
are really shaped.

33333333333333333333333333
528 AVS Module Reference Manual

ucd to geom3333333333333333333
The Explode Materials parameter is useful for displaying ucd structures containing
cells with different materials. For example, different materials can be assigned to dif-
ferent parts of an assembly. If the Explode Materials parameter is on, the module
will create different geometry objects for each of the materials. Each of the geometry
objects can be manipulated separately using the Geometry Viewer. The Explode Fac-
tor parameter controls how far apart these geometry objects are displayed initially.

The Save Geometry parameter is useful when you are changing the colors but not
the geometric coordinates of the structure. For example, selecting different com-
ponents of the data or animating time dependent data.

ucd to geom can receive optional color fields. A color field is an array of color
values—one color for each node or cell in the input UCD structure. This results in
the structure being rendered as a colored geometry object. The center input port is
used to color node data. Its input field is generated by the modules ucd contour or
ucd legend. The leftmost input port is used to color cells, either based upon the cell
data or the material id of the cell. Its input field is generated by the ucd cell color
module.

INPUTS
Structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

Color Field (field 1D 3-vector real; optional)
This is the center input port. The color field is a 1 dimensional array of
color values. There is one color for each node in the input UCD structure.
Each color value is a triple of floating point numbers representing red,
green and blue. The Color Field input is produced by the modules ucd
contour and ucd legend. Note that it is not the same as an AVS color-
map.

If both the center node color field input port and the leftmost cell color
field input port are connected, this center input port will be used to color
the data; the left cell color field will be ignored. Press the Color Cells
switch to switch to coloring by cells or material ids.

Color Field (field 1D 3-vector real; optional)
This is the leftmost input port. The color field is a 1 dimensional array of
color values. There is one color for each cell or material id in the input
UCD structure. Each color value is a triple of floating point numbers
representing red, green and blue. The Color Field input is produced by
the ucd cell color module. Note that it is not the same as an AVS color-
map.

If both the center node color field input port and this leftmost cell color
field input port are connected, the center input port will be used to color
the data and this left cell color field will be ignored. Press the Color
Cells switch to switch to coloring by cells or material ids.

PARAMETERS
Shrink (boolean)

When this is selected each cell in the UCD structure is shrunk by the fac-
tor specified by the shrink factor parameter. By default Shrink is off.

shrink factor
An integer is used to scale the cells of the UCD structure. Values of this
parameter range from 1 to 100, representing percentages. The default
shrink factor of 10 results in cells that are shrunk by 10 percent. If Exter-
nal Edges mode is selected, the shrink factor parameter changes its

33333333333333333333333333
AVS Module Reference Manual 529

ucd to geom3333333333333333333
meaning and becomes an Edge Angle parameter that controls the accu-
racy of the boundary representation on the base of the angle between
two adjoining faces.

Geometry Display Mode
A radio button that selects External Faces, External Edges or All Faces.
When External Faces 1 selected, ucd to geom only creates exterior, visi-
ble cell faces in the output geometry. This makes converting to a
geometry and rendering much faster than when All Faces is selected.
When External Edges selected, ucd to geom only creates exterior visible
edges, representing the "wireframe boundary" of the ucd structure. This
renders faster than All Faces or External Faces. It also allows any inte-
rior geometry, such as a cropped ucd structure or streamlines to show
through without being obscured by the faces. When All Faces selected,
all faces of all cells will be displayed.

Explode Materials
If the Explode Materials parameter is on, the module will create dif-
ferent geometry objects for each of the materials. Each of the geometry
objects can be manipulated separately using the Geometry Viewer.

Explode Factor
This parameter controls how far apart geometry objects with different
materials are initially displayed.

Save Geometry
This parameter allows you to store the geometry object in the module
and only update the geometry’s colors when the input data or "Color
Field" changes. This mode makes rendering faster but requires addi-
tional memory. Save Geometry is on by default.

Color Cells
When both the node and cell color field input ports are connected, ucd to
geom defaults to coloring by nodes. Press this boolean toggle to color by
cells or material ids instead.

OUTPUTS
Geometry The geometry that ucd to geom outputs represents the cells of the input

UCD structure colored according to the values of the input color field.

EXAMPLE
GENERATE COLORMAP READ UCD

| |

| |------------|

UCD CONTOUR |

| |

|----------| |

UCD TO GEOM

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD Structure input:

read ucd
field to ucd
ucd extract
Any module that outputs a UCD Structure.

33333333333333333333333333
530 AVS Module Reference Manual

ucd to geom3333333333333333333
Modules that could provide the Color Field input:

ucd contour
ucd legend
ucd cell color

Modules that can process ucd to geom’s output:
geometry viewer
Any module that takes an AVS geometry.

SEE ALSO
The example scripts READ UCD, UCD THRESHOLD, UCD CROP, as well as others,
demonstrate the ucd to geom module.

33333333333333333333333333
AVS Module Reference Manual 531

ucd tracer3333333333333333333
NAME

ucd tracer - perform ray-traced volumetric rendering on a UCD structure

SUMMARY
Name ucd tracer

Availability UCD module library

Type mapper

Inputs ucd structure
tracker info (field 2D scalar float)
colormap (required)

Outputs field 2D 4-vector byte (image)

Parameters Name Type Default Min Max
Size integer 128 0 1024
alpha scale float 1.0 0.0 10.0
exterior boolean on

DESCRIPTION
ucd tracer belongs to a family of modules that render volumetric data. ucd tracer
takes a UCD structure, consisting of tetrahedral cells, and generates a 2D image
using ray-tracing. Each cell in the structure has data values associated with its nodes.
These values are used to assign a color and opacity value to every node in the struc-
ture. Note that, by default, ucd tracer "exterior" parameter is on, and therefore only
an object’s surface is ray-traced.

The ray tracing method is as follows. For each pixel in the output image a ray is
"shot" into the UCD structure. Each cell the ray passes through makes some contribu-
tion to the color of the pixel. The color is calculated by interpolating between the
color of the point at which the ray enters the cell and the color of the exit point. How
much color a cell contributes depends on its opacity. The ray travels through the
volume until the opacity of all the cells it has passed through adds up to 1.0. This is
an "additive light model", because the rays accumulate cell color contributions as
they travel through a volume.

For example, if a ray hits a completely opaque red tetrahedron then it travels no
further, and the pixel associated with that ray is colored red. On the other hand, if the
tetrahedron is nearly transparent, then it confers only a fraction of its color to the
pixel, and the ray passes deeper into the volume, summing the color values of the
other cells it intersects.

Volumetric rendering such as this allows you to penetrate beneath the surface of 3D
unstructured cell data, and see depths surrounded by "translucent" outer layers. The
degree of opacity of the volume can be controlled by changing the alpha scale param-
eter, or by using generate colormap’s widget to edit the opacity values in the input
colormap.

ucd tracer only works with UCD structures that have tetrahedral cells. You can con-
vert hexahedral data to tetrahedral using the module ucd hex to tet.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format. The
structure’s cells must be tetrahedrons.

tracker info (field 2D scalar float)
The middle input port on the module ucd tracer can receive a 4x4
transformation matrix describing rotations and translations to apply to

33333333333333333333333333
532 AVS Module Reference Manual

ucd tracer3333333333333333333
the UCD structure. The matrix (field 2D scalar float) can come from the
module euler transformation or display tracker. This allows you to
rotate the structure in 3-space.

colormap (required; colormap)
An AVS colormap which is used by ucd tracer to associate colors with
UCD node values. Note that this is a regular AVS colormap, and not the
color field output by ucd contour and ucd legend.

PARAMETERS
Size (integer)

Value which determines the height and width of the output image meas-
ured in pixels. Another way of thinking of this is that the width deter-
mines the number of rays that are projected into the volume along the x
and y directions. This changes the size of the square window through
which you view the volume,.

alpha scale (float)
A floating point value between 0.0 and 10.0 which is multiplied by the
alpha value of every node in the structure. This determines how tran-
sparent the the structure will seem. As the value of alpha scale
approaches 0.0 the volume becomes more transparent, allowing rays to
penetrate deeper into the volume, and making inner regions visible.

exterior (boolean)
If exterior is selected, then only the surface of the UCD structure is ray-
traced. Note that this is the default.

OUTPUTS
Field (field 2D 4-vector byte)

The output field is an AVS image.

EXAMPLE
The following network reads in a UCD structure, which is converted from hex-
ahedral cells to tetrahedal cells. This structure is then passed to ucd tracer. The
module display tracker allows you to rotate the volume to produce views from any
angle. Objects are manipulated using the usual mouse buttons.

READ UCD

|

|

UCD HEX TO TET

GENERATE COLORMAP |

|-----------| |

| |

UCD TRACER

|

|

DISPLAY TRACKER

RELATED MODULES
Modules that could provide the ucd structure input:

read ucd
ucd hex to tet
any other module which outputs a tetrahedral UCD structure.

Modules that can process ucd tracer’s output:
display tracker

33333333333333333333333333
AVS Module Reference Manual 533

ucd tracer3333333333333333333
display image
image viewer
any other module which takes an AVS image as input.

SEE ALSO
Garrity, M., "Raytracing Irregular Volume Data," (Proceedings of the 1990 San Diego
Workshop on Volume Visualization), Computer Graphics, Volume 24, Number 5,
November 1990, pp. 35-40. ACM SIGGRAPH.

The example script UCD TRACER demonstrates the ucd tracer module.

33333333333333333333333333
534 AVS Module Reference Manual

ucd vecmag3333333333333333333
NAME

ucd vecmag – compute the magnitude of a vector ucd

SUMMARY
Name ucd vecmag

Availability UCD module library

Type filter

Inputs ucd structure

Outputs ucd structure

Parameters none

DESCRIPTION
The ucd vecmag module accepts a ucd structure having one 3-element vector com-
ponent (for example, x-momentum, y-momentum, z-momentum) as an input and
computes the magnitude of each vector data value. The output is a single scalar com-
ponent consisting of the vector magnitude.

INPUTS
UCD structure (required)

The input structure is a 3D AVS unstructured cell data (UCD) structure
with a single component that is a 3-element vector of floating point data
values for each node. (If your data consists of three scalar components,
you can convert them to the required format with the ucd extract vector
module.)

OUTPUTS
UCD structure

The output ucd structure has a single floating point value of a vector
magnitude for each input ucd node.

EXAMPLE
The following network reads in a 3D vector ucd and computes the magnitude of the
vectors:

READ UCD

|

UCD EXTRACT VECTOR

|

UCD VECMAG

_______|____

| |

GENERATE COLORMAP | |

| | |

UCD LEGEND |

| |

| ____________|

| |

UCD TO GEOM

|

|

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd

33333333333333333333333333
AVS Module Reference Manual 535

ucd vecmag3333333333333333333
ucd extract vector

Modules that can process ucd vecmag’s output:
ucd to geom, ucd crop, ucd threshold, ucd hex to tet, ucd anno,
ucd contour, ucd hog, ucd iso, ucd offset, ucd rslice, ucd slice2d,
ucd legend, ucd probe, ucd streamline, write ucd.

Other UCD vector modules:
ucd curl
ucd div
ucd grad

SEE ALSO
The example script UCD VECMAG demonstrates the ucd vecmag module.

33333333333333333333333333
536 AVS Module Reference Manual

ucd vol integral3333333333333333333
NAME

ucd vol integral – calculate the volume of a UCD structure and the volume integral of
a scalar data component

SUMMARY
Name ucd vol integral

Availability UCD module library

Type data output

Inputs ucd structure

Outputs none

Parameters Name Type Default
Node Data choice <data 1>
Output File typein none

DESCRIPTION
ucd vol integral performs two functions:

1. It calculates the total volume enclosed by the UCD structure’s cells.

2. It calculates the volume integral of any one of the scalar node data com-
ponents. Volume integrals are often useful in UCD analysis. For example,
the volume integral of a UCD structure with density node data is equal to the
mass of the UCD structure.

ucd vol integral writes its output to both a screen text browser, and to a user-
specified file.

INPUTS
UCD structure (required)

The input structure is in AVS unstructured cell data (UCD) format.

PARAMETERS
Node Data Selects which of the node’s data components to volume integrate. A set

of radio buttons shows the label attached to each cell data component.
Before the module receives data, the default "<data 1>, <data 2>, ..." is
displayed. Each data component must be scalar. (Convert vector com-
ponents to scalar with ucd extract scalars.)

Output File
A typein to specify where the integrated volume should be written. This
output is also always written to the Output Browser.

EXAMPLE 1
The following network reads in a UCD structure then calculates and displays its
volume and volume integral.

READ UCD

|

|

UCD VOL INTEGRAL

RELATED MODULES
read ucd
any module that outputs a UCD structure

SEE ALSO
The example script UCD VOL INTEGRAL demonstrates this module.

33333333333333333333333333
AVS Module Reference Manual 537

vector curl3333333333333333333
NAME

vector curl – compute the curl of a vector field

SUMMARY
Name vector curl

Availability FiniteDiff module library

Type filter

Inputs field 3D 3-vector float any-coordinates

Outputs field 3D 3-vector float any-coordinates

Parameters none

DESCRIPTION
The vector curl module accepts a vector field as input and computes the curl of that
field as output. Computation is a finite difference approximation based on a central
difference scheme.

Where the input is the vector function:

{Fx ,Fy ,Fz}(i, j,k)

The equation used to compute the curl is:

curl =

 ∂y

∂Fz3333−
∂z

∂Fy3333

,

 ∂z

∂Fx3333−
∂x

∂Fz3333

,

 ∂x

∂Fy3333−
∂y

∂Fx3333

INPUTS
Data Field (required; field 3D 3-vector float any-coordinates)

The input field must represent a volume of elements, with a 3D vector of
floating-point data values for each element.

EXAMPLE
The following network reads in a 3D vector field and computes its curl, then displays
the field vectors using hedgehog:

READ FIELD

|

|----------------------|

| |

VECTOR CURL |

| VOLUME BOUNDS

HEDGEHOG |

| |

|----------------------|

|

GEOMETRY VIEWER

OUTPUTS
Data Field (field 3D 3-vector float any-coordinates)

The output field is in the same format as the input field.

The min_val and max_val attributes of the output field are invalidated.

RELATED MODULES
gradient shade
tracer

33333333333333333333333333
538 AVS Module Reference Manual

vector curl3333333333333333333
LIMITATIONS

This module works only with 3D 3-vector float fields. This data type is widely used
in flow analysis, where each 3-vector of floats represents the components of a velo-
city or a gradient.

SEE ALSO
The example script VECTOR CURL demonstrates the vector curl module.

33333333333333333333333333
AVS Module Reference Manual 539

vector div3333333333333333333
NAME

vector div – compute the divergence of a vector field

SUMMARY
Name vector div

Availability FiniteDiff module library

Type filter

Inputs field 3D 3-vector float any-coordinates

Outputs field 3D scalar float any-coordinates

Parameters none

DESCRIPTION
The vector div module accepts a vector field as input and computes the divergence of
that field as output. This is related to the curl as follows:

div = (DEL d F)
curl = (DEL × F)

F the vector input field is:

{Fx ,Fy ,Fz}(i, j,k)

The equation used to compute the divergence is:

divergence =
∂x

∂Fx3333+
∂y

∂Fy3333+
∂z

∂Fz3333

INPUTS
Data Field (required; field 3D 3-vector float any-coordinates)

The input field must represent a volume of elements, with a 3D vector of
floating-point data values for each element.

OUTPUTS
Data Field (field 3D scalar float any-coordinates)

The output field has a single floating-point value for each input field ele-
ment.

The min_val and max_val attributes of the output field are invalidated.

EXAMPLE
The following network reads in a 3D vector field and computes its divergence:

READ VOLUME

|

VECTOR DIV

|

ARBITRARY SLICER

|

GEOMETRY VIEWER

RELATED MODULES
vector curl, vector div, vector norm, vector mag,
hedgehog, stream lines, stream mesh

LIMITATIONS
This module works only with 3D 3-vector float fields. This data type is widely used
in flow analysis, where each 3-vector of floats represents the components of a velo-
city or a gradient.

33333333333333333333333333
540 AVS Module Reference Manual

vector div3333333333333333333
SEE ALSO

The example script VECTOR DIV demonstrates the vector div module.

33333333333333333333333333
AVS Module Reference Manual 541

vector grad3333333333333333333
NAME

vector grad – compute the vector gradient of a 3D scalar field

SUMMARY
Name vector grad

Availability FiniteDiff module library

Type filter

Inputs field 3D scalar float any-coordinates

Outputs field 3D 3-vector float any-coordinates

Parameters none

DESCRIPTION
The vector grad module computes the gradient of a 3D field. The gradient is treated
by some other modules as a "pseudo-normal" to the "surface" for each data element.
A "nearest neighbor" algorithm is used to compute the gradient: the difference
between the next data value (in each direction) and the previous data value. In two
dimensions, this can be represented as follows:

11
1
13333333311

1
133333333

x,y-1
11
1
13333333311

1
1333333331
1
1
13333333311

1
133333333

x-1,y
11
1
13333333311

1
133333333

x,y
11
1
13333333311

1
133333333

x+1,y
11
1
13333333311

1
133333333

11
1
13333333311

1
133333333

x,y+1
11
1
13333333311

1
1333333331
1
1
13333333311

1
133333333

3333333333333333333333
positive X direction

1
1
1
1
1
1
1
1
1
1
1

positive
Y

direction

gradient(F) =

 ∂x

∂F333 ,
∂y
∂F333 ,

∂z
∂F333

The min_val and max_val attributes of the output field are invalidated.

This module is identical to the compute gradient module, except that it does not nor-
malize the output. compute gradient is designed for gradient shading fields, whereas
this module is designed for input into the other vector field modules: vector curl,
vector div, vector mag, and vector norm. Note that vector grad followed by vector
norm produces the same results as compute gradient.

INPUTS
Data Field (field 3D scalar float any-coordinates)

The input field must represent a volume of elements, with a single
floating-point value for each input field element.

OUTPUTS
Data Field (required; field 3D 3-vector float any-coordinates)

The output field has a 3D vector of floating-point data values for each
element.

EXAMPLE
The following network reads a 3D scalar field, computes its gradient and then uses
the hedgehog module to display the resulting vector field:

33333333333333333333333333
542 AVS Module Reference Manual

vector grad3333333333333333333
READ FIELD

|

|-----------------------|

| |

VECTOR GRAD |

| |

VECTOR NORM VOLUME BOUNDS

| |

HEDGEHOG |

| |

|-----------------------|

|

GEOMETRY VIEWER

RELATED MODULES
vector curl, vector div, vector norm, vector mag,
hedgehog, particle advector, stream lines, stream mesh

LIMITATIONS
There may be algorithms better than "nearest-neighbor" for computing the gradient.

This module produces 12 bytes per pixel (voxel). For example, a 128 x 128 x 128 byte
volume is about 2.1 MB before the gradient is computed. The compute gradient
module produces a 25.2 MB internal data set from this data. This will have an
adverse performance effect on systems whose physical memory is 32 MB or less.

This module works only with 3D 3-vector float fields. This data type is widely used
in flow analysis, where each 3-vector of floats represents the components of a velo-
city or a gradient.

SEE ALSO
The example script VECTOR GRAD demonstrates the vector grad module.

33333333333333333333333333
AVS Module Reference Manual 543

vector mag3333333333333333333
NAME

vector mag – compute the magnitude of a vector field

SUMMARY
Name vector mag

Availability FiniteDiff module library

Type filter

Inputs field 3D 3-vector float uniform

Outputs field 3D scalar float uniform

Parameters none

DESCRIPTION
The vector mag module accepts a vector field as input and computes the magnitude
of each vector data value. The output is a scalar field consisting of the magnitudes.

The magnitude equation is:
Magnitude[X][Y][Z] = sqrt((dx[X][Y][Z]∗dx[X][Y][Z]) +

(dy[X][Y][Z]∗dy[X][Y][Z]) +

(dz[X][Y][Z]∗dz[X][Y][Z]))

INPUTS
Data Field (required; field 3D 3-vector float uniform)

The input field must represent a volume of elements, with a 3D vector of
floating-point data values for each element.

OUTPUTS
Data Field (field 3D scalar float uniform)

The output field has a single floating-point value for each input field ele-
ment.

The min_val and max_val attributes of the output field are invalidated.

EXAMPLE
The following network reads in a 3D vector field and computes the magnitude of the
vectors:

READ VOLUME

|

VECTOR MAG

|

ARBITRARY SLICER

|

GEOMETRY VIEWER

RELATED MODULES
vector curl, vector div, vector norm, vector mag. hedgehog, particle advector, gra-
dient shade, stream lines, stream mesh

LIMITATIONS
This module works only with 3D 3-vector float fields. This data type is widely used
in flow analysis, where each 3-vector of floats represents the components of a velo-
city or a gradient.

SEE ALSO
The example script VECTOR MAG demonstrates the vector mag module.

33333333333333333333333333
544 AVS Module Reference Manual

vector norm3333333333333333333
NAME

vector norm – normalize a vector field

SUMMARY
Name vector norm

Availability FiniteDiff module library

Type filter

Inputs field 3D 3-vector float uniform

Outputs field 3D 3-vector float uniform

Parameters none

DESCRIPTION
The vector norm module accepts a vector field as input, and produces a normalized
version of that vector field as output. The normalization equation looks like:
Magnitude = sqrt((dx∗dx) + (dy∗dy) + (dz∗dz))
New_dx = dx / Magnitude

New_dy = dy / Magnitude

New_dz = dz / Magnitude

INPUTS
Data Field (required; field 3D 3-vector float uniform)

The input field must represent a volume of elements, with a 3D vector of
floating-point data values for each element.

OUTPUTS
Data Field (field 3D 3-vector float uniform)

The output field is in the same format as the input field.

The min_val and max_val attributes of the output field are invalidated.

EXAMPLE
The following network reads a 3D scalar field, computes its gradient and then uses
the hedgehog module to display the resulting vector field:

READ FIELD

|

|------------------------|

| |

VECTOR GRAD |

| |

VECTOR NORM VOLUME BOUNDS

| |

HEDGEHOG |

| |

|------------------------|

|

GEOMETRY VIEWER

RELATED MODULES
vector curl, vector div, vector norm, vector mag, hedgehog, particle advector, gra-
dient shade, stream lines, stream mesh

LIMITATIONS
This module works only with 3D 3-vector float fields. This data type is widely used
in flow analysis, where each 3-vector of floats represents the components of a velo-
city or a gradient.

33333333333333333333333333
AVS Module Reference Manual 545

vector norm3333333333333333333
SEE ALSO

The example script VECTOR NORM demonstrates the vector norm module.

33333333333333333333333333
546 AVS Module Reference Manual

volume bounds3333333333333333333
NAME

volume bounds – generate bounding box of 3D 3-vector field

SUMMARY
Name volume bounds

Availability Volume, FiniteDiff module libraries

Type mapper

Inputs field 3D n-vector any-data any-coordinates

Outputs geometry

Parameters Name Type
Hull toggle
Min I toggle
Max I toggle
Min J toggle
Max J toggle
Min K toggle
Max K toggle
Colored Bounds toggle

DESCRIPTION
The volume bounds module generates lines that indicate the "bounding box" of a 3D
data set (field). It is frequently used in conjunction with other geometry-based
volume-visualization modules (e.g. bubbleviz, isosurface, hedgehog, arbitrary
slicer), since it provides some volumetric context for the data.

Normally, the axes are colored Red for X (or I), Green for Y (or J), and Blue for Z (or
K). This can be disabled using the Colored Bounds toggle. When this button is
turned off, volume bounds produces uncolored (white) lines which can then be
colored using the Property Editor in the Geometry Viewer.

INPUTS
Data Field (required; field 3D n-vector any-data any-coordinates) The input data must

be a 3D field, but may have any kind of data at each location in the field.

OUTPUTS
Bounds (geometry) The output geometry consists of the lines that form the bound-

ing box.

PARAMETERS
Hull Draws lines for the perimeter of the data set.

Min I
Max I
Min J
Max J
Min K
Max K These toggle switches provide further help is visualizing the way the

computational space is mapped into physical space. Each one fills in one
of the six faces of the hull. For example, turning on Min I draws a mesh
showing the 2D slice of field elements with the minimum index value in
the first dimension; turning on Max K draws a mesh showing the 2D
slice of field elements with the maximum index value in the third dimen-
sion.

33333333333333333333333333
AVS Module Reference Manual 547

volume bounds3333333333333333333
Colored Bounds

The default behavior for this module is to produce Red, Green, and Blue
bounding lines corresponding to the X, Y, and Z axes for uniform and
rectilinear field data, or the I, J, and K bounds of irregular data. When
the Colored Bounds toggle is turned off, the lines are left uncolored
(they show up as white in the Geometry Viewer). They can now be set to
whatever color you like using the Geometry Viewer’s Property Editor.

EXAMPLE
The following network showing a typical usage of volume bounds:

READ VOLUME

______________|___________________

| | |

VOLUME BOUNDS BUBBLEVIZ ARBITRARY SLICER

|_____________|__________________|

|

GEOMETRY VIEWER

RELATED MODULES
read volume, read field, geometry viewer

SEE ALSO
The example scripts BRICK, HEDGEHOG, PROBE, as well as others demonstrate the
volume bounds module.

33333333333333333333333333
548 AVS Module Reference Manual

volume manager3333333333333333333
NAME

volume manager – share volumes among subnetworks

SUMMARY
Name volume manager

Unsupported this module is in the unsupported library

Type data

Inputs none

Outputs field 3D scalar byte

Parameters Name Type Choices
VOLUMGR select choice Select, Replace
Volume Manager browser
Volume Choices choice

DESCRIPTION
The volume manager module reads an volume file from disk and outputs the
volume as a "field 3D scalar byte". It works like the read volume module, except that
it has both a caching mechanism and a way of sharing data among volume manager
modules in separate subnetworks.

See the read volume manual page for a description of the volume format.

PARAMETERS
VOLUMGR Select

A choice that determines how newly-read volumes will be placed to the
list of currently active volumes:

d If Select is chosen, a new volume is added to the end of the list.

d If Replace is chosen, a new volume replaces the currently selected
member on this list.

In either case, the change is reflected in all the volume manager
modules in all active subnetworks.

Volume Manager
A file browser that allows you to select an volume file to read.

Volume Choices
A set of choices, listing each of the currently active volumes.

OUTPUT
Data Field (field 3D scalar byte)

The output is the byte data cast as the scalar data in a 3D field.

EXAMPLE
The following subnetworks might be used to display two volumes:

VOLUME MANAGER VOLUME MANAGER

| |

COLORIZER COLORIZER

| |

ORTHOGONAL SLICER ORTHOGONAL SLICER

| |

DISPLAY IMAGE DISPLAY IMAGE

In this case, both volume manager modules would contain "select/replace" choice
buttons, a file browser, and an area below the browser:

33333333333333333333333333
AVS Module Reference Manual 549

volume manager3333333333333333333
+--------------------------+ +--------------------------+

| Active Volumes | | Active Volumes |

+--------------------------+ +--------------------------+

| (no volumes) | | (no volumes) |

+--------------------------+ +--------------------------+

Once a volume (e.g. hydrogen.dat) was selected from the browser in the volume
manager on the left, these buttons would look like this:

+--------------------------+ +--------------------------+

| ∗ hydrogen.dat | | hydrogen.dat |

+--------------------------+ +--------------------------+

If a different file (e.g. benzene.dat) is chosen from the browser in the volume manager
on the right, the buttons would look like this:

+--------------------------+ +--------------------------+

| ∗ hydrogen.dat | | hydrogen.dat |

| benzene.dat | | ∗ benzene.dat |

+--------------------------+ ∗--------------------------+

By selecting the same active volume, you can have both networks display the same
volume:

+--------------------------+ +--------------------------+

| ∗ hydrogen.dat | | ∗ hydrogen.dat |

| benzene.dat | | benzene.dat |

+--------------------------+ +--------------------------+

Now, if you want to replace this volume with a new one, click on the Replace but-
tons above the browser, then select a new file (e.g. methane.dat) in just one of the
volume manager browsers. The result is that all volume manager modules with the
old volume (hydrogen) selected as their active volume will be automatically updated
with the new volume (methane.dat).

RELATED MODULES
Same as for read volume.

LIMITATIONS
The cached volumes are not freed until all volume manager modules are destroyed.
Because volume data can be large, caching multiple volume datasets can use a lot of
memory.

33333333333333333333333333
550 AVS Module Reference Manual

volume render3333333333333333333
NAME

volume render – volume render a uniform volume with geometry

SUMMARY
Name volume render

Availability Volume, FiniteDiff module libraries
requires 3D texture mapping, alpha transparency,
and volume rendering support

Type mapper

Inputs field 3D uniform n-vector any-data

Outputs geometry

Parameters none

DESCRIPTION
The volume render module is another way of visualizing 3D uniform volume data.
In this technique, the user assigns a color and an opacity for each volume cell (or
voxel) in the volume, usually using the generate colormap and colorizer modules.
The data is then rendered in the Geometry Viewer such that each voxel in the scene
occupies a particular 3D region. If the voxel is totally transparent, it will not be
displayed at all in the scene. If the voxel is completely opaque, it will be drawn with
its designated color and it will obscure all voxels (or fractions of voxels) that might be
behind it given the current viewing angle.

Other volume visualization techniques can be combined with the volume render
module, such as isosurface and arbitrary slicer. These objects will be properly com-
bined with the volume rendered objects.

The volume render module, when connected to the geometry viewer module pro-
duces an object in the Geometry Viewer that is set up to display the volume rendered
object. Volume rendering is based on the 3D texture mapping functionality. In
order to get the volume rendering to occur, a colorized version of the same input that
is connected to the volume render module’s input port should also be connected to
the left input port on the geometry viewer module.

This module can be effectively used in conjunction with the clip geom module to
allow the user to slice through the volume as it is being rendered to reveal detail on
the inside of the volume.

AVAILABILITY
volume render requires that the underlying graphics renderer support: 3D texture
mapping, alpha transparency, and volume rendering. Not all hardware renderers
support these rendering techniques (see the release note information that accom-
panies AVS on your platform). The AVS software renderer does support 3D texture
mapping, alpha transparency, and volume rendering.

If a renderer does not support 3D texture mapping, the object will appear a feature-
less white. If it does not support alpha transparency, the opacity settings on the gen-
erate colormap Colormap Editor will have no effect on the transparency of the object.
If a renderer does not support volume rendering in this narrow sense (a specific
option to the GEOMedit_texture_options call), the object will likely simply not be
drawn or will appear black.

On multi-renderer platforms, you can turn on the Software Renderer button under
the Geometry Viewer’s Cameras submenu. If no such choice appears, it is likely that
the software renderer is the only renderer available.

33333333333333333333333333
AVS Module Reference Manual 551

volume render3333333333333333333
INPUTS

Data Field (required; field 3D uniform)
The input field is a 3D uniform volume. A version of this volume that is
colors should be passed to the field input of the geometry viewer
module.

OUTPUTS
Geometry (geometry)

This module creates a volume render object through the geometry port.

EXAMPLE
The following network reads a byte volume. The volume is fed to colorizer to paint
the byte values as colors, to volume render to create the volume render object, and to
volume bounds to draw a box around the limits of the volume. The generate color-
map, colorizer, and geometry viewer parts of the network are vital; they create the
3D texture map that is needed for the volume rendering to work. All in turn feed
into geometry viewer.

READ VOLUME

|

GENERATE COLORMAP |

| |

| |--------------|---------------|

| | | |

COLORIZER VOLUME RENDER VOLUME BOUNDS

| | |

| | |

|----------| |---------------|

| |

GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read volume
read field
Any module that outputs a 3D uniform field

Modules that could be used in place of volume render:
tracer
arbitrary slicer
orthogonal slicer
thresholded slicer

Modules that can process volume render output:
geometry viewer

LIMITATIONS
The rendering process does not perform any lighting on the object. In order to get
lighting affects, you will need to do this by hand using the gradient shade module.

The rendering process is fairly slow when the volume rendered object is made large
on the screen. It is best to experiment with a small version of the object and only
zoom in on it when you have the proper view.

33333333333333333333333333
552 AVS Module Reference Manual

wireframe3333333333333333333
NAME

wireframe – convert object from surface to wireframe representation

SUMMARY
Name wireframe

Availability Volume, FiniteDiff module libraries

Type filter

Inputs geometry

Outputs geometry

Parameters none

DESCRIPTION
The wireframe module transforms an AVS geometry, replacing all surfaces defined as
polytriangle strips with wireframe representations. This is useful for constructing a
wireframe version of an object that has been defined as a shaded surface.

INPUTS
Geometry (required; geometry) Any AVS geometry, created with the libgeom library

or produced by another AVS module.

OUTPUTS
Geometry A geometry that represents the same object as the input data.

EXAMPLE
This example shows the use of the wireframe module to generate a wireframe ver-
sion of a polygonal object:

READ GEOM

|

WIREFRAME

|

GEOMETRY VIEWER

EXAMPLE 2
This example uses the wireframe and tube modules to have a geometry involving
spheres drawn with cylinders instead of lines:

READ GEOM

|

WIREFRAME

|

TUBE

|

GEOMETRY VIEWER

RELATED MODULES
read geom, offset, shrink, flip normal, tube, geometry viewer, render geometry

LIMITATIONS
The wireframe module generates lines based on the order of the vertices of a polytri-
angle strip. Sometimes, the resulting object is not exactly what you want. It may have
"cobwebs" and other (usually invisible) data inconsistencies of the original polytrian-
gle strip. You may need to regenerate the original data in order to produce the
desired wireframe representation.

SEE ALSO
The example scripts TUBE, and WIREFRAME demonstrate the wireframe module.

33333333333333333333333333
AVS Module Reference Manual 553

write field3333333333333333333
NAME

write field – write a field description to disk

SUMMARY
Name write field

Availability Imaging, Volume, FiniteDiff module libraries

Type data output

Inputs field any-dimension n-vector any-data any-coordinates

Outputs none

Parameters Name Type Default
Write Field browser
Native/
Portable(XDR) choice Native
Compute Extent booleanOff
Compute Min/Max booleanOff

DESCRIPTION
The write field module writes an AVS field description to disk. The field format on
disk includes two parts, an ASCII header and a binary area. This format is described in
detail in the manual page for read field.

write field will include any information present about the field such as labels and
units, as well as its dimensions, vector length, data type, etc.

By default, write field will write out the field structure exactly as it is. That is, if no
minimum and maximum extent information or minimum and maximum values are
computed for the field, write field will not compute and write them out. However,
if values for the minimum and maximum extents for the field, and the minimum and
maximum data values for each vector component in the field are not already present,
write field can calculate them and store them in the output ASCII header. This is
controlled with the Compute Extent and Compute Min/Max buttons. This is useful
when you are importing data into AVS format with read field’s data parsing input
mode, and you do not know these correct values. You should let write field calculate
them rather than try to guess them.

After the field file is written, the filename is reset to NULL. This prevents subsequent
changes upstream in the network from automatically triggering the rewriting of the
file. A new file is written only when you enter a filename.

INPUTS
Data Field (field any-dimension n-vector any-data any-coordinates)

The input can be any AVS field.

PARAMETERS
Write Field

A file browser that allows you to specify the name of the field file to be
created. The file suffix .fld is appended to the name automatically. If the
file already exists, write field issues a warning message and has you
confirm the operation ("Overwrite") or cancel it ("Cancel").

Native/Portable(XDR)
Controls the format of the binary portion of the output field file.

Native
The binary portion of the output field file will be written in the
same format as the platform on which the write field module is exe-
cuting. A comment stating this platform will be added to the end of

33333333333333333333333333
554 AVS Module Reference Manual

write field3333333333333333333
the "data=" line in the ASCII header.

Portable(XDR)
The binary portion of the output field file will be written in Sun’s
XDR (external data representation) format. This option is useful for
transporting field files between machines with different binary
architectures ("big-endian" vs "little-endian"). The "data=" line in
the ASCII header will specify xdr_integer, xdr_float, or xdr_double
rather than the simple data type.

See the "Binary Compatibility on Different Hardware Platforms"
section of the read field man page for more information on the pur-
pose of this feature.

Compute Extent
If the extents are not already computed, turning this button ’ON’ will
cause them to be computed and written out with the field. This feature is
off by default.

Compute Min/Max
If the minimum and maximum values for each vector component are not
already computed, turning this button ’ON’ will cause them to be com-
puted and written out with the field. This feature is off by default.

EXAMPLE 1
Following is an example of a native-format file produced by write field. The "data="
line indicates that the field file was written on an DEC workstation.
AVS field file (@(#)write_field.c 5.10 Stellar 91/06/28)

creation date: Thu Jul 18 16:03:36 1991

#

ndim=3 # number of dimensions in the field

dim1=40 # dimension of axis 1

dim2=32 # dimension of axis 2

dim3=32 # dimension of axis 3

nspace=3 # number of physical coordinates per point

veclen=5 # number of components at each point

data=float # native format of dec3100

field=irregular # field type (uniform, rectilinear, irregular)

min_ext=-7.815747 0.000000 0.000000 # coordinate space extent

max_ext=14.362204 8.327559 5.724251 # coordinate space extent

label= density x-momentum y-momentum z-momentum stagnation

min_val=0.192600 -2.183500 -0.325250 -3.733900 0.768957 # minimum data values

max_val=4.977500 5.790300 3.545400 1.502900 25.160999 # maximum data values

The field has three dimensions, 40x32x32. There is a vector of 5 floating point values
at each point, and the field is irregular.

EXAMPLE 2
The following is an example of an XDR format file produced by write field of a 3D
uniform field with a vector of 3 values at each point. This field had no labels or
units.
AVS field file (@(#)write_field.c 5.10 Stellar 91/06/28)

creation date: Fri Aug 23 14:25:54 1991

#

ndim=3 # number of dimensions in the field

dim1=27 # dimension of axis 1

dim2=25 # dimension of axis 2

33333333333333333333333333
AVS Module Reference Manual 555

write field3333333333333333333
dim3=32 # dimension of axis 3

nspace=3 # number of physical coordinates per point

veclen=3 # number of components at each point

data=xdr_float # portable data format

field=uniform # field type (uniform, rectilinear, irregular)

min_ext=0.000000 0.000000 0.000000 # coordinate space extent

max_ext=26.000000 24.000000 31.000000 # coordinate space extent

min_val=-29.381140 -33.578682 -10.565389 # minimum data values

max_val=42.604145 24.940878 29.761003 # maximum data values

EXAMPLE 3
The following network reads in a field, crops it and then writes the resultant field to
a file:

READ FIELD

|

CROP

|

WRITE FIELD

RELATED MODULES
read field
print field
compare field

write field writes any AVS field file.

ERRORS
Write field complains if it can’t open the file, or if there isn’t enough space to write
the complete file.

SEE ALSO
The example script WRITE FIELD demonstrates the write field module.

33333333333333333333333333
556 AVS Module Reference Manual

write image3333333333333333333
NAME

write image – store image data in a file

SUMMARY
Name write image

Availability Imaging, Volume, FiniteDiff module libraries

Type data output

Inputs field 2D 4-vector byte uniform

Outputs none

Parameters Name Type
Write Image browser

DESCRIPTION
The write image module writes an AVS image data structure to a file. This structure
takes the form of a "field 2D 4-vector byte". See the read image manual page for a
detailed description of the image format.

INPUTS
Data Field (required; field 2D 4-vector byte uniform)

The input can be any AVS image.

PARAMETERS
Write image

A file browser that allows you to specify the name of the image file to be
created. The file suffix .x is appended to the name automatically. If the
file already exists, write_image issues a warning message and has you
confirm the operation ("Overwrite") or cancel it ("Cancel").

After the image file is written, the filename is reset to NULL. This
prevents subsequent changes upstream in the network from automati-
cally triggering the rewriting of the file. A new file is written only when
you enter a filename.

EXAMPLE
READ GEOM

|

RENDER GEOMETRY

|

|-------------------|

| |

DISPLAY PIXMAP PIXMAP TO IMAGE

|

|

WRITE IMAGE

RELATED MODULES
Image processing:

contrast, threshold, histogram stretch, clamp, interpolate
Decompose/compose images from separate bands:

extract scalar, combine scalars
Show image:

display image
image viewer

33333333333333333333333333
AVS Module Reference Manual 557

write image3333333333333333333
Take output from data output module, and write the data out as an image:

geometry viewer, image to postscript

SEE ALSO
read image
image viewer

The example script WRITE IMAGE demonstrates the write image module.

33333333333333333333333333
558 AVS Module Reference Manual

write ucd3333333333333333333
NAME

write ucd – write unstructured cell data to disk

SUMMARY
Name write ucd

Availability UCD module library

Type data output

Inputs ucd structure

Outputs none

Parameters Name Type Default
Write UCD browser
File Format choice Binary

DESCRIPTION
The write ucd module writes a UCD structure to disk.

write ucd outputs a binary or ASCII file. Both binary and ASCII file formats are read
by the module read ucd.

The format of UCD structure, as well as the format of ASCII and binary UCD files is
described in detail in the manual page for read ucd, and in the "Unstructured Cell
Data" section of the AVS Developer’s Guide.

After the UCD file is written, the filename is reset to NULL. This prevents subse-
quent changes upstream in the network from automatically triggering the rewriting
of the file. A new file is written only when you enter a filename.

INPUTS
ucd structure

The input can be any UCD structure.

PARAMETERS
Write UCD

A file browser that allows you to specify the name of the ucd file to be
created.

File Format
A pair of radio buttons that specify Binary or ASCII file output.

EXAMPLE
The following network reads in a UCD structure, crops it, and writes the resulting
structure to disk:

READ UCD

|

UCD CROP

|

WRITE UCD

RELATED MODULES
Modules that could provide the UCD structure input:

read ucd
field to ucd
Any module that outputs a UCD structure.

ERRORS
write ucd will complain if it can’t open the file, or if there isn’t enough space to write
the complete file.

33333333333333333333333333
AVS Module Reference Manual 559

write ucd3333333333333333333
SEE ALSO

The example script WRITE UCD demonstrates the write ucd module.

33333333333333333333333333
560 AVS Module Reference Manual

write volume3333333333333333333
NAME

write volume – write volume data to a file

SUMMARY
Name write volume

Availability Volume, FiniteDiff module libraries

Type data output

Inputs field 3D scalar byte uniform

Outputs none

Parameters Name Type
Write Volume browser

DESCRIPTION
The write volume module writes volume data to a file. The volume is in the AVS
format "field 3D scalar byte". The data format on disk is:
1 byte: number of voxels in X 1 byte: number of voxels in Y 1 byte: number of vox-
els in Z nx ∗ ny ∗ nz ∗ 1 byte: voxel data
Each time the file is written, the filename is reset to NULL. This prevents successive
changes upstream in the network to automatically trigger a volume data file to be
written. A new filename must be entered each time the file is to be written out.

If the file to be written exists, the following warning appears:
File FILENAME

already exists. Do you want to overwrite it?

Two choices are presented. If you select Cancel, the write operation is aborted. If
you select Overwrite, the existing file on disk is replaced with the new volume data.

This module is commonly used to pre-process a volume database for later use. For
example, the input data might be very low-contrast. You could construct a network
that includes the contrast module and the write volume module. Once you select
appropriate settings for the contrast, the data could be written to a file, and used later
for other types of processing.

INPUTS
Data Field (required; field 3D scalar byte uniform)

The input data must be a 3D field, with a byte value at each location in
the field.

PARAMETERS
Write Volume

A file browser that allows you to specify the name of the volume data file
to be created. The file suffix .dat is appended to the name automatically.
If the file already exists, write_volume issues a warning message and has
you confirm the operation ("Overwrite") or cancel it ("Cancel").

RELATED MODULES
read volume, clamp, contrast, crop, downsize, histogram stretch, interpolate, mirror,
threshold, transpose

EXAMPLE
The following network writes a volume-format output file to disk.

33333333333333333333333333
AVS Module Reference Manual 561

write volume3333333333333333333
READ VOLUME

|

CROP

|-----------------|

| |

COLORIZER |

| |

ORTHOGONAL SLICE WRITE VOLUME

|

DISPLAY IMAGE

LIMITATIONS
The format of volume databases on disk is severely limiting. The dimensions are res-
tricted to a maximum of 255 in x, y and z. The data also must be in the range 0 - 255.

SEE ALSO
read volume

The example script WRITE VOLUME demonstrates the write volume module.

33333333333333333333333333
562 AVS Module Reference Manual

x-ray3333333333333333333
NAME

x-ray – perform simple orthographic volume visualization

SUMMARY
Name x-ray

Availability Volume, FiniteDiff module libraries

Type filter

Inputs field 3D uniform scalar any-data

Outputs field 2D uniform scalar same-data

Parameters Name Type Default Choices
Axis choice K I,J,K
Operation choice mean sum, mean, median, min, max

DESCRIPTION
x-ray peforms simple, orthogonal volume visualization on 3D uniform fields. It out-
puts a 2D field that can be colorized and displayed as an image.

Looking directly along the X, Y, or Z axis, the module looks at the row of voxels
"behind" each screen pixel and, depending on the selected operation, creates a new
pixel based on those voxels. The 2D result resembles an x-ray.

x-ray is a fast volume visualization technique. It is useful to quickly get a sense of the
contents of an unfamiliar dataset.

INPUTS
Data Field (required; field 3D uniform scalar any-data)

An input field. Note that the field may have any data type.

PARAMETERS
Axis (choice)

The choices are I, J, and K. The default is K. If you choose I, you look
down the X axis into the YZ plane. If you choose J, you look down the Y
axis into the XZ plane. If you choose K, you look down the Z axis into
the XY plane.

Operation (choice)
The choices are sum, mean, median, min, and max. The default is mean.

sum Each screen pixel is the sum of the stack of voxels.

mean Each screen pixel is the sum of the stack of voxels divided by
the number of voxels in each stack.

median The stack of voxels is sorted by value and the screen pixel gets
the center value in the sorted stack.

min The screen pixel gets the smallest value in the stack.

max The screen pixel gets the largest value in the stack.

median is very slow to compute.

sum and mean produce the same visual results if you normalize the colormap to the
data, but mean takes a little longer to compute.

mean and max are the best techniques for most operations.

OUTPUTS
Data Field (field 2D uniform scalar same-data)

x-ray outputs an field with the same data type as the input field. This
field must be colorized in order to be displayed. Note that the sum

33333333333333333333333333
AVS Module Reference Manual 563

x-ray3333333333333333333
operation could cause data values to overflow their data type. Byte
input fields should probably be converted to integer (field to int module)
if the sum operation is used.

EXAMPLE
Here is the typical x-ray network:

GENERATE COLORMAP READ FIELD

| |

| X-RAY

|_____________ __________|

| | |

COLOR RANGE |

|_________ |

| |

COLORIZER

|

DISPLAY IMAGE

RELATED MODULES
tracer, orthoslicer

SEE ALSO
The example script X-RAY demonstrates this module.

33333333333333333333333333
564 AVS Module Reference Manual

	Introduction to AVS Modules
	Module Listing
	avs
	alpha blend
	animated float
	animated integer
	animate lines
	antialias
	arbitrary slicer
	average down
	AVS Animator
	background
	blend colormaps
	boolean
	brick
	bubbleviz
	calc warp coeffs
	cfd values
	character string
	clamp
	clip geom
	color legend
	color range
	colorize geom
	colorizer
	colormap manager
	combine scalars
	compare field
	composite
	compute gradient
	compute shade
	contour to geom
	contrast
	convolve
	create geom
	crop
	cube
	data dictionary
	Data Viewer
	dialog box
	display image
	display pixmap
	display tracker
	dot surface
	downsize
	draw grid
	edit substances
	euler transformation
	excavate
	excavate brick
	extract graph
	extract scalar
	extract vector
	field to short
	file descriptor
	field legend
	field math
	field to byte
	field to double
	field to float
	field to int
	field to mesh
	field to ucd
	file browser
	flip normal
	float
	generate axes
	generate colormap
	generate filters
	generate grid
	generate histogram
	geometry viewer
	gradient shade
	graph viewer
	hedgehog
	histogram stretch
	image compare
	image manager
	image measure
	image probe
	image to cgm
	image to pixmap
	image to postscript
	image viewer
	integer
	interpolate
	ip absolute
	ip arithmetic
	ip blend
	ip compare
	ip contour
	ip convolve
	ip dilate
	ip edge
	ip erode
	ip extrema
	ip fft
	ip fft display
	ip fft multiply
	ip fft pack
	ip fft unpack
	ip float math
	ip histogram
	ip ifft
	ip lincomb
	ip linremap
	ip logical
	ip lookup
	ip median
	ip merge
	ip morph
	ip read kernel
	ip read line
	ip read mtable
	ip read sel
	ip read vff
	ip reflect
	ip register
	ip rescale
	ip rotate
	ip statistics
	ip threshold
	ip translate
	ip twarp
	ip warp
	ip write vff
	ip zoom
	isosurface
	label
	local area ops
	luminance
	minmax
	mirror
	Module Generator
	offset
	oneshot
	orthogonal slicer
	output postscript
	particle advector
	pdb to geom
	pixmap to image
	print field
	probe
	read field
	read geom
	read image
	read plot3d
	read ucd
	read volume
	render geometry
	render manager
	replace alpha
	ribbons
	samplers
	scatter dots
	scatter to ucd
	set view
	shrink
	sketch roi
	statistics
	sobel
	stream lines
	3D bar chart
	threshold
	threshold slicer
	time sampler
	transform pixmap
	tracer
	track ball
	transpose
	tristate
	tube
	ucd anno
	ucd cell to node
	ucd cell color
	ucd contour
	ucd crop
	ucd curl
	ucd div
	ucd extract
	ucd extract scalars
	ucd extract vector
	ucd grad
	ucd hex to tet
	ucd hog
	ucd iso
	ucd isolines
	ucd legend
	ucd math
	ucd minmax
	ucd offset
	ucd plot
	ucd print
	ucd probe
	ucd reverse cell
	ucd rslice
	ucd rubber sheet
	ucd slice 2D
	ucd streamline
	ucd threshold
	ucd to geom
	ucd tracer
	ucd vecmag
	ucd vol integral
	vector curl
	vector div
	vector grad
	vector mag
	vector norm
	volume bounds
	volume manager
	volume render
	wireframe
	write field
	write image
	write ucd
	write volume
	x-ray

	Finite Difference Module Library List
	Imaging Module Library List
	UCD Module Library List
	Unsupported Module Library List
	Volume Module Library List
	AVS Module Groups List

