
333333333 3333

AVS
DEVELOPER’S

GUIDE333333333333
Release 4
May, 1992

Advanced Visual Systems Inc.33333333
Part Number: 320-0013-02, Rev B

NOTICE

This document, and the software and other products described or referenced in it, are confidential and proprietary
products of Advanced Visual Systems Inc. (AVS Inc.) or its licensors. They are provided under, and are subject
to, the terms and conditions of a written license agreement between AVS Inc. and its customer, and may not be
transferred, disclosed or otherwise provided to third parties, unless otherwise permitted by that agreement.

NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT,
INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR
SUITABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A
WARRANTY BY AVS INC. FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF AVS INC.
WHATSOEVER. AVS INC. MAKES NO WARRANTY OF ANY KIND IN OR WITH REGARD TO THIS
DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

AVS INC. SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS
DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED
TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF AVS INC. HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The specifications and other information contained in this document for some purposes may not be complete,
current or correct, and are subject to change without notice. The reader should consult AVS Inc. for more
detailed and current information.

Copyright 1989, 1990, 1991, 1992
Advanced Visual Systems Inc.

All Rights Reserved

AVS is a trademark of Advanced Visual Systems Inc.

STARDENT is a registered trademark of Stardent Computer Inc.
IBM is a registered trademark of International Business Machines Corporation.

AIX, AIXwindows, and RISC System/6000 are trademarks of International
Business Machines Corporation.

DEC and VAX are registered trademarks of Digital Equipment Corporation.
NFS was created and developed by, and is a trademark of Sun Microsystems, Inc.

HP is a trademark of Hewlett-Packard.
CRAY is a registered trademark of Cray Research, Inc.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.
SPARC is a registered trademark of SPARC International.

SPARCstation is a registered trademark of SPARC International,
licensed exclusively to Sun Microsystems, Inc.

OpenWindows, SunOS, XDR, and XGL are trademarks of Sun Microsystems, Inc.
UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.

Motif is a trademark of the Open Software Foundation.
IRIS and Silicon Graphics are registered trademarks of Silicon Graphics, Inc.

IRIX, IRIS Indigo, IRIS GL, Elan Graphics, and Personal IRIS are trademarks of Silicon Graphics, Inc.
Mathematica is a trademark of Wolfram Research, Inc.

X WINDOW SYSTEM is a trademark of MIT.
PostScript is a registered trademark of Adobe Systems, Inc.

FLEXlm is a trademark of Highland Software, Inc.

RESTRICTED RIGHTS LEGEND (U.S. Department of Defense Users)

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
the Rights In Technical Data and Computer Software clause at DFARS 252.227–7013.

RESTRICTED RIGHTS NOTICE (U.S. Government Users excluding DoD)

Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in
the Commercial Computer Software — Restricted Rights clause at FAR 52.227–19(c)(2).

Advanced Visual Systems Inc.
300 Fifth Ave.

Waltham, MA 02154

AVS DEVELOPER’S GUIDE CONTENTS-1

TABLE
OF
CONTENTS

1 AVS Overview

Introduction 1-1
AVS Overview 1-1
Modules 1-2
Data Types 1-3
AVS Flow Networks 1-4
Data Flow 1-5
Module Life Cycle 1-6
Use of Shared Memory 1-6
Heterogeneous Network Support 1-7
Data Flow Diagram 1-8

Multiple Module Processes in AVS 1-10
Release Compatibility 1-11
Portability Issues 1-11

Writing Portable Code 1-11
Porting Binary Data Files 1-12

Program Examples Online 1-13

2 AVS Data Types

Introduction 2-1
Bytes 2-3
Integers 2-3
Floating-Point Numbers 2-4
Text Strings 2-4
Fields 2-4

Mapping Computational Space to Coordinate Space 2-4
Uniform Fields 2-5
Rectilinear Fields 2-6
Irregular Fields 2-6
AVS Mapping Information 2-7

Examples of Field Mappings 2-8
Example 1 2-8

TABLE OF CONTENTS

CONTENTS-2 AVS DEVELOPER’S GUIDE

Example 2 2-10
Example 3 2-10
Example 4 2-11
Example 5 2-12
Example 6 2-12

Field Components 2-13
Declaring Fields 2-16
Manipulating Fields from C 2-17
Manipulating Fields from FORTRAN 2-19
Creating Fields 2-20
Scatter Data 2-21
Image Data 2-21
Volume Data 2-22

Colormaps 2-22
Geometries 2-23

Manipulating Edit Lists 2-25
Templates for New Filter Utilities 2-26
Writing a New Filter Utility 2-27

Converting a Polyhedron 2-27
Converting a Polygon 2-28
Converting a Scalar Mesh 2-28
Converting a Mesh 2-28
Converting a Sphere 2-28
Converting a Disjoint Line 2-28
Converting a Polyline 2-28

Pixel Maps 2-29
Unstructured Cell Data 2-29
Molecular Data Type 2-30
User-Defined Data Types 2-30

3 AVS Modules

Modules 3-1
Module Components 3-1

Name 3-1
Type 3-1
Ports 3-2
Parameters 3-3
Parameters As Input Ports 3-3
Functions 3-4

The Description Function 3-5
The Computation Function 3-7
Initialization Function 3-8
Destruction Function 3-8

Subroutines and Coroutines 3-9
Subroutine Modules 3-9

 TABLE OF CONTENTS

AVS DEVELOPER’S GUIDE CONTENTS-3

Coroutine Modules 3-11
Handling Errors in Modules 3-13
Selective Computation 3-15
Building and Linking Modules 3-15

Writing Subroutines 3-16
Writing Coroutines 3-16
Include Files 3-16

C Language Include Files 3-17
FORTRAN Include Files 3-17
avs_math.h Include File 3-18

Compiling and Linking Modules 3-18
Converting an Existing Application to a Module 3-19
Debugging Modules 3-20

Syntax of avs_dbx 3-20
Using avs_dbx 3-21

Module Examples 3-23

4 Advanced Topics

Introduction 4-1
Memory Allocation Debugging 4-1

Run Time Environment Variables 4-2
Coroutine Synchronization 4-4

Coroutine Scheduling with X 4-5
Coroutine Scheduling with Other Devices 4-6
Synchronous Execution 4-6

Upstream Data 4-7
Overview of Upstream Data Feedback Mechanism 4-7
Implementing Upstream Data 4-8

Transformation Information 4-8
Selection Information 4-11
Rules for Picking Objects 4-13

Picking the Top Level Object 4-13
User-Defined Upstream Data 4-15

Automatic Connections of Ports 4-15
Port Classes 4-15
Port Visibility 4-17

User-Defined Data 4-18
Defining User-Defined Data 4-18
Using a User-Defined Data Type On an Input Port 4-19
Using a User-Defined Data Type On an Output Port 4-20

Image Picking Data Type 4-21
Multiple Modules in a Single Process 4-21

Restrictions 4-22
Implementing Multiple Modules Processes 4-23
Implementing Reentrant Modules 4-24

TABLE OF CONTENTS

CONTENTS-4 AVS DEVELOPER’S GUIDE

Modifying Modules that Share Processes 4-24
Linking Multiple Modules Together 4-24

 Module Groups 4-27

5 Command Language Interpreter

Introduction 5-1
Access to the CLI 5-1

Command Line Option 5-1
Server Option 5-2
Module Access 5-2
.avsrc File Option 5-3

Basic Concepts 5-4
Commands and Tokens 5-4
Case Sensitivity 5-4
Interrupting CLI execution 5-5
Multiple Line Commands 5-5
Variable References 5-5
Output Redirection 5-6

Identifiers 5-6
Module Names and Aliases 5-6
Parameter Names 5-7
Port Names 5-7

Combining Networks 5-7
Module Tags 5-8
Module Maps 5-8
Pend Operations 5-9

Writing CLI Scripts 5-9
Writing Scripts 5-10
Playing Back Scripts 5-11
The Script Controller Browser 5-11
Script Suites 5-12

Commands 5-12
Command Usage Notation 5-13
Basic CLI Commands 5-13

General Commands 5-14
Script Commands 5-14
Variables Commands 5-15

Network Editor Commands 5-16
Network Commands 5-17
Module Commands 5-18
Parameter Commands 5-20
Port Commands 5-20
Creating Macro Modules From CLI 5-21
Macro Module Description File 5-22
Another Way to Create Macro Modules From CLI 5-22

 TABLE OF CONTENTS

AVS DEVELOPER’S GUIDE CONTENTS-5

Geometry Viewer Commands 5-22
Geometry CLI State 5-23
Saving/Restoring Scenes and Objects 5-24
Geometry CLI Versus .obj and .scene Files 5-24
Saving Network Geometry State 5-25
Naming Objects, Cameras and Lights 5-25
Matrix Operations 5-26
Global Object Commands 5-26
Browser Commands 5-27
Object Commands 5-27
Light Commands 5-30
Camera Commands 5-31
Action Commands 5-33

Image Viewer Commands 5-34
Scene Commands 5-34
View Commands 5-34
Image Commands 5-35
Image Processing Technique Commands 5-36
Label Commands 5-37
Cycle Commands 5-37

Graph Viewer Commands 5-38
Reading Plot Data 5-38
Modes for Reading Data 5-39
Writing Plot Data 5-39
General Plotting 5-39
Titles and Labels 5-40
Plot Legend 5-40
Miscellaneous Dataset Information 5-41

User Interface Layout Commands 5-42
Introduction 5-42
Basic Layout Concepts 5-43
Widget Naming 5-44
Geometry 5-45
Module Based Layout Control 5-46

Dynamic Layouts 5-47
Layout commands 5-47

Application Commands 5-49

A AVS Library Routines

Introduction A-1
Include File A-1
Type Declarations A-1

Routine Summary A-2
Routines for Module Initialization A-2
Routines for Module Description Functions A-2

TABLE OF CONTENTS

CONTENTS-6 AVS DEVELOPER’S GUIDE

Routines for Modifying and Interpreting Parameters A-2
Routines for Coroutine Modules A-3
Status Monitoring Routines A-3
AVS Command Language Interpreter Routine A-3
Routines for Selective Computation A-3
Routines for Creating Fields A-3
Field Accessor Routines A-4
Colormap Accessor Routines A-4
User Data Accessor Routines A-4
FORTRAN Array Accessor Routines A-5
FORTRAN Single Byte Accessor Routines A-5
Routines for Handling Errors A-5

Routines for Module Initialization A-6
Routines for Module Description Functions A-7
Routines for Modifying and Interpreting Parameters A-22
Routines for Coroutine Modules A-26
Status Monitoring Routine A-31
AVS Command Language Interpreter Routine A-32
Routines for Selective Computation A-33
Routines for Creating Fields A-34
Field Accessor Routines A-42
Colormap Accessor Routines A-59
User Data Accessor Routines A-62
FORTRAN Array Accessor Routines A-71
FORTRAN Single Byte Accessor Routines A-74
Routines for Handling Errors A-75

B AVS C Language Field Macros

Macros for Obtaining the Dimensions of a Field B-1
MAXX B-1
MAXY B-1
MAXZ B-1

Macros for Obtaining Elements of a Scalar Data Array B-1
I2D B-1
I3D B-2
I4D B-2

Macros for Obtaining Elements of a Vector Data Array B-2
I1DV B-2
I2DV B-3
I3DV B-3
I4DV B-3

Macros for Obtaining Rectilinear Coordinate Arrays B-4
RECT_X B-4
RECT_Y B-4
RECT_Z B-4

 TABLE OF CONTENTS

AVS DEVELOPER’S GUIDE CONTENTS-7

Macros for Obtaining Coordinates for 3D Data Elements B-4
COORD_X_3D B-4
COORD_Y_3D B-5
COORD_Z_3D B-5

C Examples of AVS Modules

Introduction C-1
AVS Example Modules C-1

A C Language Subroutine Module C-4
A FORTRAN Subroutine Module C-6
A C Language Coroutine Module C-9

D On-Line Help Facility

Introduction D-1
Help Files - Format and Naming Conventions D-1
Integrating Your Help Files into the Help System D-2

AVS Help D-3
The -reindex Option and AVS_HELP_PATH D-3
AVS Help Search D-4

Man Command D-4

E Unstructured Cell Data Library

Overview E-1
Synopsis E-2
ucd Routine Summary E-3

Structure Manipulation Routines E-3
Structure Query Routines E-3
Cell Manipulation Routines E-3
Cell Query Routines E-3
Node Manipulation Routines E-4
Node Query Routines E-4

Description E-5
The Setup of the UCD Structure E-5
 Cells, Nodes, and Mid-Edge Nodes E-6
UCD Data Structure and Type Definitions E-7
File Format for UCD Data Files E-9
ASCII UCD File Format E-9
Binary UCD File Format E-13

Structure Manipulation Routines E-15

TABLE OF CONTENTS

CONTENTS-8 AVS DEVELOPER’S GUIDE

Structure Query Routines E-21
Cell Manipulation Routines E-28
Cell Query Routines E-34
Node Manipulation Routines E-41
Node Query Routines E-49
Examples E-56

Allocating a New Structure E-56
C Code: E-56
FORTRAN code: E-58

Storing Information About the Nodes E-59
C Code: E-59
FORTRAN Code: E-60

Storing Information about the Cells E-62
C Code: E-62
FORTRAN Code: E-63

F Field Arguments in FORTRAN

Introduction F-1
Field passing using multiple arguments F-1
Array Allocation F-4

Memory Allocation and Application Portability F-4

G Geometry Library

Introduction G-1
Synopsis G-2

Compiling and Linking G-2
Routine Listing G-3

Object Creation Routines G-3
Object Utility Routines G-4
Object Property Routines G-4
Object Texture-Mapping Routines G-4
Object Vertex Transparency Routines G-4
Object File Utilities G-5
Object Debugging Routines G-5
AVS Module Interface Routines G-5

Overview: AVS Geometry Object Data Structure G-6
Geometry Object Types (Geometry Primitives) G-6

Mesh Objects G-6
Polyhedrom Objects G-6
Polytriangle Objects G-7
Sphere Objects G-8
Label Objects G-8

 TABLE OF CONTENTS

AVS DEVELOPER’S GUIDE CONTENTS-9

Geometry File Filters G-8
Geometry Producing Modules G-9

The Edit List G-9
Description G-10
Object Creation Routines G-11

Creating an Object G-11
Extents G-11
Flags G-12
User Supplied Primitive Data G-12
User Supplied Vertex Data G-13

Object Utility Routines G-25
Object Property Routines G-28
Object Texture Mapping Routines G-29
Object Vertex Transparency Routines G-31
Object File Utilities G-32
Object Debugging Facilities G-33
AVS Module Interface Routines G-34

Edit Lists G-34
Object Transformations G-36
Light Transformations G-37
Camera Transformations G-37

FORTRAN Binding G-50
Files G-51

H The F77_Binding Utility Program

Introduction H-1
Inter-Language Calling Conventions H-1

Function Naming Rules H-1
Matching C and Fortran Calling Conventions H-2
Handling String Arguments H-2
Handling Function Return Values H-2
f77_binding Function Declarations H-3
Return Types H-3
Function Names H-3
Argument Declarations H-4
Other Lines H-5

Fortran Include Files H-5
f77_binding Command-Line Syntax H-6

Options H-6
Examples H-7

TABLE OF CONTENTS

CONTENTS-10 AVS DEVELOPER’S GUIDE

List of Tables

Table 2-1 C and FORTRAN Type Declarations for AVS Data Types 2-3
Table 2-2 Field Mappings of Computational to Coordinate Space 2-8
Table 2-3 Field Declarations 2-17
Table 2-4 Template for Filter Utilities 2-26
Table 3-1 Archive Libraries for Modules 3-18
Table A-1 Parameter Types and C/FORTRAN Data Type
 Declarations A-8
Table A-2 Property Name, Data Type, and Widget Type
 Correspondence A-11
Table A-3 Parameter to Widget Correspondence A-14
Table A-4 Data Port Type to String Correspondence A-16
Table A-5 Module Flags and Meaning A-20
Table A-6 Module Types and C/FORTRAN Descriptions A-21
Table F-1 Field Arguments for FORTRAN Routines F-2
Table G-1 Object Vertex and Primitive Data Applicability G-13
Table G-2 Converting C Language Data Declarations
 to FORTRAN G-50
Table H-1 Recognized C and FORTRAN Types H-4

List of Figures

Figure 1-1 Data Flow Between Kernel and Modules 1-9
Figure 2-1 Irregular Field Computational and Coordinate
 Space Mappings 2-7
Figure 2-2 1D Computational and Coordinate Field 2-9
Figure 2-3 2D Rectilinear Coordinate Field 2-10
Figure 2-4 2D Computational, 3D Coordinate Irregular Field 2-11
Figure 2-5 3D Computational, 3D Coordinate Irregular Field 2-13
Figure E-1 Hierarchical Structure of Model, Cells and Nodes E-5
Figure E-2 UCD Cell Types, Nodes, Mid-Edge Nodes, and
 Node Numbering E-6

AVS OVERVIEW 1-1

CHAPTER 1 AVS
OVERVIEW

Introduction

The AVS system allows users to dynamically connect software modules to
create data flow networks for scientific computation. These modules pass
data of mutually agreed upon types between each other. Programmers can
extend AVS by developing new modules. There are a variety of ways in
which modules can be integrated into AVS. These allow the user a spectrum
between dynamic configuration and maximum efficiency.

This manual describes what a programmer needs to know to write AVS
modules. The manual assumes an elementary understanding of the concept
of a data flow network and a working knowledge of either the C or the
FORTRAN programming languages. It also assumes familiarity with AVS
on the user level. For AVS user documentation, see the AVS User’s Guide.

AVS Overview

AVS consists of two major parts: the main application (which includes the
AVS Kernel) and AVS modules, which are computational units that can be
linked together into flow networks.

The AVS Kernel includes the Network Editor, the control panel Layout Edi-
tor, the user interface code, functions that control execution of AVS flow
networks, and communications functions. The functions that control the ex-
ecution of flow networks created by the Network Editor are collectively re-
ferred to as the flow executive. When a flow network is active, its modules
are invoked in turn (and only when necessary) by the flow executive.

User-written modules are implemented as separate UNIX programs. They
communicate with the AVS Kernel using the Berkeley UNIX socket mecha-
nism and, in some cases, use shared memory. UNIX domain (local machine)
sockets are used where possible for efficiency, otherwise, TCP domain sock-
ets are used (for example, when modules are running on a remote machine,
or there are no more UNIX domain sockets available).

Modules can also be "builtin," i.e., linked directly into the AVS Kernel. Sev-
eral of the modules supplied by Advanced Visual Systems are currently im-

Modules

1-2 AVS OVERVIEW

plemented as "builtin" modules. While you can develop your own modules,
you cannot create "builtin" modules.

As the number of modules in use increases, AVS may use quite a large num-
ber of process slots in the UNIX kernel. As an efficiency enhancement, users
can place multiple modules into a single executable. Placing multiple mod-
ules in a single executable can cut down on system memory used as well as
reduce the number of process slots needed. The programmer declares multi-
ple modules in a single program by including multiple description functions in
the source code, each of which describes the relevant entry points and data
structures for a single module. Next, these modules are linked together in one
executable. The description functions are registered with the AVS Kernel by
making calls to the AVSmodule_from_desc routine within a user-supplied
function that must be named AVSinit_modules.

AVS passes high-level descriptions of images and geometric data to the
graphics display modules (Data Output modules). AVS implements these
modules using the graphics library interface that each platform supports
(PHIGS, PEX, GL, XGL, Dore, X, etc.). This provides high performance ren-
dering in a device independent manner. AVS also uses the X-Window library
for windowing and for generating the user interface widgets.

Modules

The fundamental unit of computation in AVS is the module. Modules process
inputs to generate outputs. Modules are intended to be fairly high-level units
of computation. For example, a module might be designed to compute a
threshold for a scalar field, but it would be inappropriate to design a module
to add two numbers. Modules also have parameters that the user can adjust
at run time to affect the action of the computation.

Modules specify to the AVS Kernel what data inputs they expect to receive
from other modules (image data or a color map, for example). Data input can
be required by the module, or it can be optional. Modules can also specify
data outputs. You connect these outputs to other modules that have compati-
ble inputs. To allow user interaction, modules define user-interface parame-
ters that are displayed and monitored by the AVS Kernel (for example, a
threshold value or a file name).

The module writer assigns a data type to each user-interface parameter and
can associate with it a particular widget that you use to set and view the pa-
rameter’s value. For example, an integer parameter could be displayed and
controlled using a dial widget, but it could just as well utilize a slider or
typein widget. AVS users generally should be allowed to control parameter
values. However, a module can set a parameter value internally at any time,
which may be necessary if the user sets a parameter to an illegal or nonsensi-
cal value.

You can conveniently extend the capabilities of AVS by writing a new mod-
ule. Because AVS operates on fairly general data types, you can define new

Data Types

AVS OVERVIEW 1-3

modules to work with existing modules. Application developers can concen-
trate on algorithms that implement new functionality by building on capabil-
ities that already exist and utilizing the flexible user interface widgets. The
Module Generator helps developers in the process of creating these new
modules. A complete description of the Module Generator can be found in
the Applications Guide.

There are two kinds of modules, subroutine modules and coroutine modules. A
subroutine module’s computation function is invoked by AVS whenever its
inputs or parameters change. A coroutine module executes independently,
obtaining inputs from AVS and sending outputs to AVS whenever it wants. In
this document, "module" generally refers to a subroutine module, and "corou-
tine" refers to a coroutine module. Most of the modules provided with AVS
are subroutine modules.

Most subroutine modules consist of two main functions: the description
function and the computation function. You can write these functions in ei-
ther C or FORTRAN. The description function describes what data the mod-
ule takes as input and what data it produces as output, as well as the
parameters that control its behavior. The computation function performs the
operations intended by the module developer. It is called whenever an input
or user parameter changes. The data structures implicitly defined in the de-
scription function for inputs, outputs, and parameters are passed as argu-
ments to the computation function. The computation function typically
operates on the inputs and parameters to produce new output.

The flow executive calls a subroutine module’s computation function when
the module is marked as "changed" and it is the next changed module in the
run queue. A module is defined as "changed" when an input or parameter has
been modified. The run queue is only processed when the flow executive is
enabled. You can enable and disable the flow executive from the "Network
Tools" menu in the Network Editor.

You can convert many existing simulations and other scientific applications to
AVS coroutine modules by making the application use AVS data types, insert-
ing calls to transmit data to and from AVS, and writing a description function.

Data Types

There are two general classes of data in the system: primitive data and aggre-
gate data. Primitive data items are simple objects such as bytes, integers, float-
ing point numbers and text strings. Aggregate data items are the large chunks
of data that characterize modern scientific applications. One fundamental
type of aggregate data is called a field. Basically, a field contains computation-
al data along with associated coordinate data. For example, pressure and tem-
perature samples might be stored as computational data in a field, and the
sampling coordinates would be stored as the coordinate data in that same
field. The pressure and temperature samples can be associated as vector ele-
ments comprising each computational sample to be associated with a single
point.

AVS Flow Networks

1-4 AVS OVERVIEW

AVS contains aggregate data types useful for defining geometric as well as
numeric information. The geometry data type provides a flexible mechanism
for defining geometric objects. The unstructured cell data (UCD) type pro-
vides a way to define a geometric object composed of discrete cells with asso-
ciated data. UCD definitions are particularly useful for finite element analysis
and computational fluid dynamics applications. The molecular data type
(MDT) provides a way to define molecular and quantum structures. MDT ad-
dresses the needs of classical, substructure and quantum chemistry fields.

AVS also has other types of aggregate data, including colormaps and pix-
maps. Colormaps are data structures that define color lookup tables which
you can use to map numeric values to colors. Pixmaps are used to keep track
of X-Window pixel maps used to directly update the screen. Most users do
not deal directly with pixmaps because AVS provides modules that create
pixmap outputs from fields, geometries, and unstructured cell data types.

Any data type can be used as module input, but generally, only the primitive
data types are suitable for use as parameters. The only difference between a
parameter and module input is that parameters are usually associated with
user interface widgets.

AVS Flow Networks

An AVS user builds an application by constructing a network of modules. A
typical network might consist of modules performing three kinds of tasks:

• Importing data from outside AVS (or generating their own data) and con-
verting it into data of one of the AVS data types.

• Transforming AVS data in some way, producing output data of the same
or of a different AVS type.

• Rendering the data on a display screen, printer or plotter, or storing the
data to a file.

A module can receive data through an input port and transmit data through
an output port. A user who connects two modules is actually connecting an
output port of one module to an input port of another module. You can con-
nect two ports when they have matching AVS data types.

When a flow network contains remote modules (modules that are executing
on a remote machine), the data architecture (for example, the byte order or the
floating point format) used on the remote machine may be different. Howev-
er, this is not a problem for passing data between modules because the AVS
executive uses the External Data Representation (XDR) format when passing
data between dissimilar machines.

Data Flow

AVS OVERVIEW 1-5

Data Flow

The purpose of constructing a network is to provide a data-processing pipe-
line in which, at each step, the output of one module becomes the input of an-
other. In this way, data can enter AVS, flow through the modules of a
network, and finally be rendered on a display or stored outside AVS.

This process requires that each module in a network be invoked at the appro-
priate time. For a subroutine module, the computation function must be exe-
cuted whenever the inputs or parameters change. AVS has a flow executive
that is normally active during the life of the application. The flow executive
supervises data movement between modules, keeping track of which inputs
and parameters have changed and invoking modules in the correct order.

AVS uses a remote procedure call mechanism to establish communication be-
tween modules. When the user starts up a module, AVS creates a new process
in which that module runs. (When multiple modules are combined into a sin-
gle executable, a new process is not created.) AVS also sets up a connection
between the module and AVS, using the Berkeley UNIX socket mechanism.
Both sides use remote procedure calls and, if possible, shared memory to
communicate through this connection.

AVS allows coroutine modules to execute independently. A coroutine is often
a simulation or animation; an application that executes multiple times to pro-
duce a series of frames or data sets. AVS communicates with coroutine mod-
ules through the same sort of remote procedure call mechanism it uses to
communicate with subroutine modules.

Modules will attempt to execute in parallel if all of the following conditions
are met:

• The user has specified the -parallel n command line option, where n is the
maximum number of modules that can execute at one time.

• There are multiple processors, local and/or remote, available for module
execution.

• The module has no input dependencies upon other modules that would
be executing at the same time. For example, networks often have multi-
ple, independent, parallel branches made up of multiple filtering and
mapping techniques. These independent branches can execute in parallel.

• Modules executing in parallel must be in different processes. If the mod-
ules happen to be compiled together to execute as one process (as most
AVS modules are), the user can force execution as separate processes us-
ing either the blanket -separate option to AVS which will cause all mod-
ules to execute separately, or by fine-tuning their networks using the
Module Editor panel’s Process and Group controls to explicitly organize
different modules into different processes. See the "Advanced Topics"
chapter later in this manual and the "Module Editor" section of the User’s
Guide’s "Advanced Network Editor" chapter.

Module Life Cycle

1-6 AVS OVERVIEW

Module Life Cycle

When AVS starts, it searches for libraries of modules to load. The libraries are
specified by the avsrc file ModuleLibraries entry. First, AVS always reads the
system default startup file in /usr/avs/runtime/avsrc. Users may override or
supplement the options in the system startup file with a personal avsrc file.
AVS looks for user avsrc files in the following order: 1) ./.avsrc in the current
directory, 2) $HOME/.avsrc in your home directory.

For each ModuleLibraries entry, the library files specified are used. The mod-
ule palettes are built using information from the library file. Since the library
file is ASCII text, it is easy to edit and comment out modules that are not
wanted prior to starting AVS.

When a module is instanced in a network, the executable for the module is
run as a UNIX process (unless it is a "builtin" module). The module descrip-
tion function is called and information about the module’s inputs, outputs,
parameters, and computation function are sent back to the AVS Kernel. The
Kernel automatically builds user interface widgets for any input parameters.
If the module has specified an "initialize" function, that function is called.
Please note that during the initialization process, calls to AVScommand will
not work.

When it is time for a module’s computation function to run, the flow execu-
tive sends the module a message with the input port and parameter values.
The first message is not sent until all input ports with the REQUIRED option
have been attached and data is available, at which point the module’s compu-
tation function is called.

When a module is "hammered" (destroyed), the AVS Kernel sends a shut-
down message to the module. If the programmer has specified a destruction
function, it is called before the module exits. Please note that during the de-
stroy process, calls to AVScommand will not work.

Use of Shared Memory

Shared memory regions are a form of interprocess communication that allow
sharing of data between processes without having to copy the data. The data
must be placed in a memory buffer that is set up with UNIX system calls to be
a shared memory region. Multiple programs can then map to the same pages
of physical memory using their own virtual addresses, by making UNIX sys-
tem calls. There can thus be a single copy of the data being accessed by multi-
ple programs.

The AVS field and UCD data types use shared memory. Geometries, pix-
maps, colormaps, user-defined data, the molecule data type, etc., do not.

The AVS kernel attempts to share data among modules when possible, by
placing the data in a shared memory region. Pointers to the data are passed

Heterogeneous Network Support

AVS OVERVIEW 1-7

between modules just as if each module had its own private buffer. This tech-
nique cuts down on memory usage and also speeds processing because the
data does not have to be copied. (AVS 2 modules do not make use of shared
memory until they are recompiled and linked with AVS 3 or later libraries.)

The use of shared memory is normally completely transparent to the user.
However, because data is placed in a shared memory region by default when
AVS modules are executing on the same machine, modules cannot directly al-
ter data in an input port buffer. The shared data might also be in use by anoth-
er module that would be affected by the change to the data. If a module
wishes to modify data input data, it can set the special flag MODIFY_IN
when creating the port. This will cause a copy of the input data to be passed to
the module. If the module truly needs to directly modify the data in the input
buffer, its users must be aware that they must run AVS with ReadOnly-
SharedMemory 0 (disabled). See the description of AVScreate_input_port in
Appendix A.

AVS creates the shared memory keys as follows: the high-order byte of the
key is 0x1a; the next two bytes are the process id; the low order byte is a se-
quence number that is initially 0 for each process. If the desired key is already
in use, AVS increases the sequence number and tries again.

The use of shared memory may be limited or unavailable on certain plat-
forms. See the AVS Release Notes for more information.

Heterogeneous Network Support

AVS supports remote execution of modules. It uses the External Data Repre-
sentation (XDR) format to provide a machine independent representation of
data flowing between modules. The UNIX socket mechanism is used to pass
requests across the network. The Flow Executive executes modules in the
same order as if they were on a single machine. (AVS 2 modules do not use
the XDR format for data representation and so must be recompiled with AVS
3 or later libraries in order to execute properly across a network.) When ma-
chines on both ends of the socket have the same data representations, the
XDR translation layer is bypassed.

In AVS3, where connected modules on a remote host were in the same pro-
cess, data would be passed directly between them using a pointer passed
through the flow executive. (Most AVS modules were combined into a single
executable to support this.) However, if the remote modules were in different
processes, data flowed from a remote module to the AVS Flow Executive, and
then back to a downstream remote module, resulting in system network over-
head for every module-to-module connection on a remote host. A better solu-
tion is to run more than one remote module from a single UNIX process. See
Chapter Four for information on how to do this. Starting with AVS 4, addi-
tional sockets are created so data can be transferred directly between mod-
ules. This is called Direct Module Communcation (DMC).

Data Flow Diagram

1-8 AVS OVERVIEW

The user interface supporting remote module execution is built on the Mod-
ule Tools sub-menu of the Network Editor. The Read Remote Modules but-
ton brings up a browser panel which prompts the user for the name of a
remote host. The contents of the panel are constructed from a Hosts file, either
the system default in /usr/avs/runtime/hosts, or any such file specified in the us-
er’s .avsrc file with the Hosts keyword. The Hosts file contains the name of the
available remote hosts, a remote command to execute to establish contact
with the remote host (usually rsh) and the pathname to a directory of AVS
modules on the remote host. AVS creates a socket connection to the remote
host and looks for an executable file named list_dir in the specified remote di-
rectory. list_dir is a special program that executes on the remot host and dis-
plays a browser with the contents of the remote directory, i.e., module
binaries, available for execution. For complete information regarding the
loading and use of remote modules, see the AVS User’s Guide.

Data Flow Diagram

Figure 1-1 illustrates the collective impact of running multiple modules in a
single process, shared memory, and direct module communication on data
flow through AVS networks.

K is the AVS kernel. M1 and M2 are AVS modules. D represents an area allo-
cated for data.

Note that the AVS kernel is always in a separate process. Also note that some
twelve modules are "builtin" to the AVS kernel and execute in its process.
The next section describes which of the supplied AVS modules execute in
what processes.

In the AVS 3 and AVS 4 coroutine, no direct module communication case:

• When M1 and M2 are in different processes:
• Without shared memory (for example, when passing geometries be-

tween modules, when the host does not support shared memory, or
with -noshm specified), the data must be copied from M1 to the AVS
kernel, which then copies it to M2. There are three copies of M1’s
output data.

• With shared memory, M1 creates a shared memory segment. The
AVS kernel is involved in two ways: it receives control information
about the output data area from M1 and passes this along to M2, and
the kernel also attaches the shared memory segment itself. M2 at-
taches the shared memory segment. There is only one copy of M1’s
output data.

• When M1 and M2 are in the same process:
• The two modules share data by passing pointers. No shared memory

segments are involved. The kernel has only a control link to the mod-
ules’ process. It is not involved in passing the data. There is only one
copy of M1’s output data.

Data Flow Diagram

AVS OVERVIEW 1-9

In the AVS 4 subroutine, with direct module communication case:

• When M1 and M2 are in different processes:
• Without shared memory, the kernel’s control communication channel

informs M1 that M2 requires its data. M1 then contacts M2 directly,
sending its output data to M2’s DMC socket. M2 copies the data into
its own area. There are two copies of M1’s output data.

• With shared memory, the AVS kernel’s control communication chan-
nel informs M1 that M2 requires its data. M1 then contacts M2 direct-
ly. M2 attaches the shared memory segment created by M1. The
kernel does not attach the shared memory segment. There is one
copy of M1’s output data.

 Figure 1-1 Data Flow Between Kernel and Modules

M1
D

D

K

M2

M1

D

K

D

M2

M1

K

D

M2

M1

K

D

M2

D

M1

K

M2

D

AVS 3 All Modules or AVS 4 Coroutine Modules
(no direct module communication)

- noshm - shm

M1 & M2 in single process

AVS 4 Subroutine Modules
(with direct module communication)

same as above

M1 & M2 in different processes

control
communication

data attach or
access

data copy

Data Flow Diagram

1-10 AVS OVERVIEW

• When M1 and M2 are in the same process, behavior is the same as with-
out direct module communication.

The pathways are identical when one or both M1 and M2 are on a remote
host, with one exception. Under AVS 3, remote modules in separate processes
would behave has though there were no shared memory even if the remote
host supported shared memory. In AVS 4, remote modules behave the same
as local modules.

Note that parallel modules must execute in separate processes.

Shared memory, direct module communication, and multiple modules in a
single process can all be turned on and off with command line options and/or
.avsrc startup file keywords. Module processes can be further regulated with
the Network Editor’s Module Editor by adjusting the modules’ group. This
last option is described in the "Advanced Topics" chapter of this manual.

Some platforms’ operating systems limit the number and size of shared mem-
ory segments available, and/or the number of processes that can attach to a
shared memory segment. When such limits are encountered, AVS attempts to
fall back on the multiple process/no shared memory approach to passing
data among modules. Such limits are usually documented in the platform’s
release notes, along with information on how to increase the system limits, if
possible.

Multiple Module Processes in AVS

There are two main categories of processes in AVS: the AVS kernel and AVS
modules. The kernel always runs as a separate process. Some AVS modules
are part of the kernel and run in its process. These are the so-called "builtin"
modules:

generate colormap
display image
display pixmap
geometry viewer
graph viewer
image viewer
render geometry
transform pixmap (not present on all platforms)
colormap manager
image manager
render manager

Most of the rest of the AVS modules are compiled together in one of two bina-
ries. All of the modules in one of these binaries execute in a single process.
The actual partitioning of modules varies from release to release. In general:

• All UCD modules are in the binary /usr/avs/avs_library/ucd_multm

Release Compatibility

AVS OVERVIEW 1-11

• Most of the rest of the supported modules are in the binary /usr/avs/avs_l-
ibrary/mongo

There is a set of modules, mostly coroutines, that each reside and execute in
their own, separate process. The library files /usr/avs/avs_library/Supported
and /usr/avs/unsupp_mods/Unsupported lists all modules and their correspond-
ing binaries.

Release Compatibility

With AVS 4 there are new elements in certain data structures, including the
"field" structure. To access the new elements, modules must be recompiled
and relinked. In general, AVS 3 modules continue to work properly under
AVS 4. You can use AVS 3 and AVS 4 modules together in a single network.

To take advantage of new AVS 4 features, such as mesh ids, existing user
modules must be recompiled using the new AVS 4 libraries. Code that uses
the AVSbuild_field routine cannot make maximal use of shared memory and
is no longer the recommended approach to creating fields. AVS will, however,
continue to support this routine. See Chapter Two for detailed information
about allocating fields in a module.

Portability Issues

This section describes issues to consider when writing code that runs on dif-
ferent platforms.

Writing Portable Code

With a little effort, you can write AVS modules that do not require source code
changes when porting between different platforms. Avoid the use of non-
standard operating system calls and "include" files, and do not rely on hard-
ware specific features such as integer word length.

When allocating space for data, don’t assume a particular size for a type dec-
laration such as short, int, float, or double. For example, to allocate an array of
64 integers, don’t allocate "64*4" bytes; rather, allocate "64*sizeof(int)".

When dealing with data structures built out of bytes, do not manipulate the
bytes as integers. In particular, when dealing with AVS images, the RGB data
is represented as a 4-vector of bytes. Do not assume that integers are four
bytes and manipulate the pixels as integers. When allocating space, for in-
stance, do not use "width*height*sizeof(int)"; rather, use "width*height*4*-
sizeof(char)".

Portability Issues

1-12 AVS OVERVIEW

If you cast a value of "char*" to "int*", add 1 to it, and cast it back to "char *", it
could have the result of adding 4 on some platforms or 8 (e.g., on a Cray) to
the original pointer value, so don’t assume a particular value.

When allocating memory for use within a single function, you should use the
ALLOC_LOCAL and FREE_LOCAL macros in port.h instead of system calls
peculiar to the local implementation of UNIX. This will cause AVS to use the
alloca call on systems that support it, and malloc on other platforms. FOR-
TRAN code should avoid using malloc on the local platform and use AVS-
data_alloc or AVSptr_alloc as appropriate.

Usually, FORTRAN statements cannot exceed 72 characters.

For machines that do not support a FORTRAN BYTE or LOGICAL*1 data
type, there are two routines in the AVS library, AVSload_byte and AVSs-
tore_byte, that you can use to access and store 8-bit integer values.

You should use the FORTRAN include syntax of ’INCLUDE file’, starting in
column 7, rather than the C preprocessor form.

An appendix describes a utility program, f77_binding, that generates inter-
language interface functions. These functions allow code written in C to call
subprograms written in FORTRAN, and vice-versa.

It is strongly recommended that user Makefiles follow the conventions of the /
usr/avs/examples Makefile to enhance portability. Particularly, using Makein-
clude and the macros it provides such as LASTLIBS, can simplify the task of
porting between platforms.

Porting Binary Data Files

When storing information in files, some data is stored in binary format. For
example, the first two items of an image file are the width and height stored
as a 4-byte integer. Field data is stored in binary format following an ASCII
header. Geometry files contain both binary and ASCII data. Machines that use
a converse byte ordering ("big-endian" vs. "little-endian") from the machine
that produced the data file may reverse the order of bytes within larger data
values. The supplied AVS modules that read images are written to examine
the byte ordering of the size data in image files so that users may convenient-
ly transfer image information between platforms. If you write your own mod-
ule to directly read in image or field data, you need to be aware of this
problem.

Starting with version 3 of AVS, geometry files are written and read using XDR
format. With field files, the user has the option (on the write field module) of
writing fields in either XDR or a system’s native format. When written in
XDR, the byte ordering is well defined on all machines and there is no com-
patibility problem. Geometry files from earlier releases begin with a 4-byte
"magic number" value which is different than that for AVS 3. The supplied
AVS modules that read geometries know how to read both formats. If some-

Program Examples Online

AVS OVERVIEW 1-13

one wants to write the old geometry format, defining the environment vari-
able AVS_GEOM_WRITE_V2 forces the file writing routine to write the old
geometry format.

Volume data files should be compatible across machines since they contain
byte values only. Modules written to read volume data directly should read
the data as a stream of bytes.

Program Examples Online

There are two directories that you should refer to when writing code using
the AVS libraries. These directories contain many relatively simple program-
ming examples that illustrate the subroutines and programming techniques
you should use when creating new modules and geometry filters (programs
that create geometries from data). Each directory contains a README file that
describes the programs briefly so you can pick an appropriate template and a
Makefile to show you how to build a module on your machine.

The directory /usr/avs/examples contains module templates for both subroutine
and coroutine modules. The file README documents what the programs do.
AVS routines other than the geometry library routines are documented in Ap-
pendix A.

The /usr/avs/filter directory contains example geometry filters that use libgeo-
m.a routines to create geometries from user data. Appendix G documents lib-
geom.a.

Program Examples Online

1-14 AVS OVERVIEW

AVS DATA TYPES 2-1

CHAPTER 2 AVS
DATA
TYPES

Introduction

AVS promotes software reusability by defining a set of general, common
data types for module writers to use. Some of the data types have general
and specific versions; for example, a "field" is general, but a "2D field" is
more specific. Modules that accept more general input data can connect to a
greater number of other modules.

The data types supported in AVS can be broken into two categories: primi-
tive data and aggregate data. Primitive data types are bytes, integers, reals,
and strings. Aggregate types are fields, colormaps, geometries, and pixel
maps. In general, primitive data types are used for parameters and aggre-
gate types are used for data being passed between modules, but there are
many exceptions to this. A parameter is actually an input "port" that uses a
widgit to provide a value. Unlike data being passed between modules, pa-
rameters "ports" are not visible by default.

The AVS data types currently supported are following:

• Byte implements 8-bit unsigned integers.
• Integer implements standard integers (maybe 32 or 64 bit, depending on

machine architecture).
• Real implements single-precision floating-point numbers.
• String and string block implement simple text strings.
• Field implements n-dimensional arrays with scalar or vector data at

each point. Fields also support arbitrary rectilinear or irregular coordi-
nate systems, and they can represent lists of points in coordinate space.
Fields can contain single or double precision floating-point, integer, or
byte data.

• Colormap implements a transfer function that you can use to map a
functional value into color and opacity values.

• Geometry implements geometric descriptions that the geometry render-
er can use to view objects. Geometry objects are usually created using
calls to subroutines in the geom library; see the "Geometry Library" ap-
pendix for more information.

• Pixel map is actually a reference to the X server’s representation of the
rendered form of an image.

Introduction

2-2 AVS DATA TYPES

• Unstructured cell data provides the capability to associate data and discrete
geometric objects within a single structure.

• Molecule data type addresses the needs of classical, substructure and quan-
tum chemistry fields. Detailed documentation on this data type is provid-
ed in the Chemistry Developer’s Guide.

• User-defined data allows you to define a local data structure and pass it to
other modules that also understand that particular data structure. It is
currently used for upstream feedback between modules.

Fields are AVS’s fundamental data type. They use the full generality of AVS’s
data type system to span a set of commonly used data types. This allows you
to write modules that are as general as is appropriate for the application
while, at the same time, allowing optimized algorithms to be used for specific
cases. You can represent the output data from a typical scientific simulation as
a field. AVS provides routines to facilitate the conversion of standard arrays
of data to fields.

When AVS calls a C language computational routine, it usually passes an ele-
ment of a certain data type as a pointer to that element. Most data types are
represented as structures, which are defined in type-specific include files.
Some simple types, such as integers, are simply passed directly. C routines
typically get direct pointers to the data for inputs and parameters, but point-
ers to pointers are used to allocate the data for outputs. Therefore, a module
that takes a field as input and produces a field as output is called as follows:

module_compute(field_in, field_out)
/* note double indirection for field_out */
AVSfield_float *field_in, **field_out;
{
 int dims[3];
 dims[0] = MAXX(field_in);
 dims[1] = MAXY(field_in);
 dims[2] = MAXZ(field_in);
 *field_out = (AVSfield_float *)AVSdata_alloc("field 3D float",dims);

 ... compute ...

 return(1);
}

Since FORTRAN programs do not have direct access to C structures, there are
two different ways of getting access to fields in a compute function. The first
way is by having the individual elements of the C structure get passed as sep-
arate arguments. For example:

FUNCTION COMPUTE(F, NX, NY, NZ,...)

where F is a 3D array with dimensions NX, NY, NZ. AVS attempts to make the
arguments to the computation function a natural representation of that data
type for the programmer. The implication of this is that the computation rou-
tine written in FORTRAN often has more formal arguments than there are in-
puts, outputs, and parameters, with multiple formal arguments representing
a single input, output, or parameter.

Bytes

AVS DATA TYPES 2-3

This approach is somewhat cumbersome and restrictive, particularly in light
of issues like shared memory allocation, the range of field types that can be
handled by a module, the ease of producing an invalid field, etc. It is retained
from earlier AVS releases for the sake of compatibility and is documented
more fully in Appendix F.

The preferred approach is to pass a field as a single integer argument that is
used by many of the same field accessor functions that a C module calls, as
well as by additional functions provided specifically for FORTRAN. The
module MUST include an AVSset_module_flags call to use the single argu-
ment approach since the default is to pass multiple arguments. The single ar-
gument approach is illustrated fully in /usr/avs/examples/test_fld2_f.f.

Table 2-1 summarizes the type declarations used for arguments to module
computation functions that correspond to input ports, parameters, and out-
put ports:

Colormaps and User-Defined data can also be passed a single or multiple ar-
guments. The routine AVSset_module_flags must be called to specify the sin-
gle integer argument method. Pixmaps cannot be passed as arguments to a
FORTRAN computation routine.

Bytes

Bytes are declared using the data type "byte". A byte is passed to a computa-
tion routine in C as a char (char * for output) and to a subroutine in FOR-
TRAN as a BYTE.

Integers

Integers are declared using the type "integer". An integer is passed to a sub-
routine in C as an int (int * for output) and to a subroutine in FORTRAN as an
INTEGER. AVS has a number of data types for parameters that are also repre-

Table 2-1 C and FORTRAN Type Declarations for AVS Data Types

AVS
Data Type

C Input or
Parameter Data
Type

C Output
Data Type

FORTRAN Input or
Parameter Data Type

FORTRAN Output
Data Type

byte char char * BYTE BYTE
integer int int * INTEGER INTEGER
real float * float ** REAL REAL
string char * char ** CHARACTER*(*) CHARACTER*(*)
field AVSfield * AVSfield ** INTEGER (or mult. args.) INTEGER (or mult.args.)
colormap AVScolormap * AVScolormap ** INTEGER (or mult. args.) INTEGER
geometry GEOMedit_list GEOMedit_list * INTEGER INTEGER
pixel map AVSpixdata * AVSpixdata **
UCD UCD_structure UCD_structure INTEGER INTEGER
User-Defined structure * structure INTEGER INTEGER

Floating-Point Numbers

2-4 AVS DATA TYPES

sented as integers: "boolean", "tristate", and "oneshot". See the documentation
for the AVSadd_parameter routine in Appendix A, "AVS Routines".

Floating-Point Numbers

AVS supports floating-point data. Single-precision floating-point numbers are
declared using the type "real". This corresponds to the C type float and to the
FORTRAN type REAL or REAL*4. A single-precision floating-point number
is passed to a computation routine in C as a float * (float ** for output) and to
a subroutine in FORTRAN as a REAL (a pointer to a REAL for output).

Text Strings

Text strings are the standard one-dimensional character strings. A character
string is declared using the type "string". It is passed to a computation routine
in C as a char * (char ** for output) and to a subroutine in FORTRAN as a
CHARACTER *(*) (a pointer to a CHARACTER *(*) for output).

There is also a multiple line string parameter of type "string_block" which is a
character string that expects to handle embedded newlines.

Fields

A field is a general representation for an array of data. The array can have any
number of dimensions, and the dimensions can be of any size. Each data ele-
ment in the array can consist of one value or a vector of values. All values in
the array are of one of four types: unsigned character (byte), integer, single-
precision floating-point, or double-precision floating-point.

A field is often used to represent data elements that correspond to points in
space. For example, each data element of a three-dimensional field might be a
vector of values representing temperature, pressure, and velocity at some
point in a volume of fluid. The field has an implicit or explicit mapping of
data elements to coordinates that represent the corresponding points in space.
In other words, a field is a relation between two kinds of space: the computa-
tional space of the field data and the coordinate space to which the field data is
mapped.

Mapping Computational Space to Coordinate Space

AVS assumes that the computational space is logically rectangular. In the
computational domain, the mesh is similar to a uniformly spaced lattice in
Cartesian space. In this logical space, each dimension of the data array forms

Fields

AVS DATA TYPES 2-5

a perpendicular axis beginning at the origin, and the interval between data el-
ements is 1 for each dimension.

AVS supports three types of mapping between computational and coordinate
space: uniform, rectilinear, and irregular.

Uniform Fields

In uniform fields, the coordinate mapping is direct and implicit. Each dimen-
sion of computational space is implicitly mapped to the corresponding axis of
coordinate space. The first dimension of computational space is implicitly
mapped to the X axis, the second dimension is implicitly mapped to the Y
axis, and so on. In each dimension, the coordinate that corresponds to a given
data element is the index of that element in the data array. The data is
mapped to a uniformly spaced lattice in Cartesian space between the mini-
mum and maximum extent values supplied for the field. Each cell is a con-
stant-length line segment for a 1D field, a square for a 2D field, a cube for a 3D
field, or a hypercube for a field of higher dimensions.

Because the coordinate mapping is uniformly spaced along each coordinate
axis, uniform fields need to specify a only minimum and maximum value for
each axis. These values represent the range over which the data extends and
are specified in the same data type as the data (e.g., if the data is comprized of
real values, you need to specify the extents with real numbers).

The minimum and maximum data values may be different from the data ex-
tend values if the field has been subsetted in some fashion (such as cropping,
downsizing, or interpolation). Then, the field data structure contains the orig-
inal field’s minimum and maximum values, while the coordinates array con-
tains the minimum and maximum extent of the subsetted data. The extents in
the coordinate array are stored in this order: minimum x, maximum x, mini-
mum y, maximum y, minimum z, maximum z, etc.

Mapper modules use the extents information to properly position their geo-
metric representation of the subsetted data in world coordinate space. For ex-
ample, a downsized data set should not appear smaller than the original data
set; it should appear at the same coordinates but with less resolution (fewer
computational values within the coordinate area). The computational data is
treated as lying at regular intervals between the minimum and maximum ex-
tents, derived from the original data set.

As another example of how AVS uses extents, consider a data set that has
been cropped. The cropped portion of the data set should not necessarily be
positioned at the original minimum value along each axis. It should be posi-
tioned between the minimum and maximum extents that apply to the
cropped data so that it is positioned correctly relative to other cropped por-
tions of the data set and does not appear to be layered on top of them. The
cropped data extents are stored in the physical coordinates array, and the
original data extents are stored in the min_ext and max_ext arrays in the field
data structure.

Fields

2-6 AVS DATA TYPES

In the case of a "slicer" module, the extent information in the coordinates ar-
ray is used to position the slice correctly in space. For example, when taking a
2D slice from a 3D data set, the computational dimension of the field repre-
senting the slice is two, but the physical (n-space) dimension is three. If the
slice is orthogonal to the Z axis, the X and Y extents for the slice are the same
as for the original data set, and are the same in both the coordinates array and
the min_ext and max_ext arrays in the field data structure. However, in the
coordinates array of the slice, the Z min and max are equal to each other and
are used to position the slice along the Z axis in 3D space. The Z min and max
in the min_ext and max_ext arrays are the same as in the original data set.

In some cases a uniform field can have a physical (n-space) dimension differ-
ent from the computational (ndim) dimension. Such a situation occurs, for ex-
ample, when a 2D slice of data is extracted from a 3D data set. In order to
retain a sense of the original positioning of the 2D data, a third dimension can
be specified in the coordinate extents arrays. The additional dimension allows
a mapper module to position the data slice (and geometries derived from it,
such as a uniform mesh) correctly relative to other representations derived
from the original data (such as a volume bounding box or isosurface).

Rectilinear Fields

In rectilinear fields coordinate space has the same number of dimensions as
computational space. Each dimension of computational space is explicitly
mapped to the corresponding axis of coordinate space. The first dimension of
computational space is mapped to the X axis, the second dimension is
mapped to the Y axis, and so on. As in uniform fields, the data is mapped to a
lattice in Cartesian space. However, each dimension of the data array has a
separate and explicit coordinate mapping. The spacing of data elements along
each axis need not be uniform. Each cell is a variable-length line segment for a
1D field, a rectangle for a 2D field, a rectangular parallelepiped for a 3D field,
and so on. The cell dimensions can vary from one cell to the next within the
field.

Irregular Fields

In irregular fields, coordinate space might not have the same number of di-
mensions as computational space. Each data element in computational space
is explicitly mapped to a point in coordinate space. This allows for a variety of
mappings. For example, a 3D computational space can be mapped to a 3D co-
ordinate space in which each cell has curvilinear bounds. A 1D computational
space can be mapped to a 2D or 3D coordinate space that does not have cells,
but rather consists of a set of "scattered" points with a data element at each
point.

Figure 2-1 shows the various computational to coordinate space mappings for
irregular fields. The ndim is the dimensionality of the data array (a 1D array
of numbers, a 2D array of numbers, a 3D array of numbers). The nspace is the
line (1D), plane (2D), or volume (3D) within which the data points exist. To
establish the mapping between the two, each element of the data array must
have an explicit X (1D), XY (2D), or XYZ (3D) location in space defined for it.

Fields

AVS DATA TYPES 2-7

AVS Mapping Information

AVS needs information in different forms to specify the three mappings.

For a uniform field AVS needs only the minimum and maximum coordinates
along each axis. The coordinates for each data element are implicitly assumed
to be equally spaced between the minimum and maximum coordinates. The
min/max coordinate values are placed in the coordinates array as well as in
the arrays min_ext and max_ext in the field data structure.

*

*

** *

*

* *

*

*

**

ndim = 1 nspace = 1

ndim = 1 nspace = 2

ndim = 1 nspace = 3

ndim = 2 nspace = 2

ndim = 2 nspace = 3

ndim = 3 nspace = 3

*

 Figure 2-1 Irregular Field Computational and Coordinate Space Mappings

Fields

2-8 AVS DATA TYPES

For a rectilinear field AVS needs a mapping from each dimension of computa-
tional space to the corresponding axis of coordinate space. The mapping con-
sists of one X value for each subscript along the first dimension of
computational space, one Y value for each subscript along the second dimen-
sion of computational space, and so on. The total number of values in the
mapping is the sum of the dimensions of the field in computational space.

For an irregular field AVS needs a mapping from each data element in com-
putational space to a point in coordinate space. The mapping consists of a set
of coordinates (X, Y, and so on) for each data element. The total number of
values in the mapping is the product of each dimension in computational
space and the number of dimensions in coordinate space.

Table 2-2 summarizes these mappings:

Examples of Field Mappings

This section presents several examples of fields and their mappings from
computational to coordinate space.

Example 1

A data set consists of 25 data elements, each representing F(X) for a given val-
ue of X. The field consists of 25 elements:

The computational space is one dimensional with 25 values for F(X). The co-
ordinate space is also one dimensional with 25 X coordinates, one for each
value of F(X). The spacing between points in X is not constant, so the field is
rectilinear or irregular.

Table 2-2 Field Mappings of Computational to Coordinate Space

Mapping Mapping Information Coordinates for Data
Element (i, j, ...)

Uniform Implicit—Computational Dimension
to Coordinate Axes

X=i
Y=j
...

Rectilinear Explicit—Computational Dimension
to Coordinate Axes

X = X(i)
Y = Y(j)
...

Irregular Explicit—Computational Element to
Coordinate Point

X = X(i, j, ...)
Y = Y(i, j, ...)
...

F X i)) i,((1 25,={ }

Fields

AVS DATA TYPES 2-9

Figure 2-2 shows the mapping between computational and coordinate space.
It also presents a line graph, F(X(i)) vs. X(i), of the relation between the data
elements and the coordinate values.

The following is a summary of the field characteristics:

Data type: Floating-point
Number of values per data element: 1
Number of computational dimensions: 1
Computational dimensions: 25
Number of computational values: 1 * 25 = 25
Mapping type: Rectilinear or irregular
Number of coordinate dimensions: 1
Number of coordinate values: 25

Suppose that each data element in this example consisted of a two-compo-
nent velocity vector. In this case the field characteristics would be as follows:

Data type: Floating-point
Number of values per data element: 2
Number of computational dimensions: 1
Computational dimensions: 25
Number of computational values: 2 * 25 = 50
Mapping type: Rectilinear or irregular
Number of coordinate dimensions: 1
Number of coordinate values: 25

F(X(i))

X(i)

Computational Space Coordinate Space

 Figure 2-2 1D Computational and Coordinate Field

Fields

2-10 AVS DATA TYPES

Example 2

A scalar field is defined as a two-dimensional mesh, with nonconstant spac-
ing between both X and Y values. The field consists of 500 elements:

The field is rectilinear, with 20 X coordinates and 25 Y coordinates. Each cell
in coordinate space is rectangular. Figure 2-3 shows the mapping between
computational and coordinate space.

The following is a summary of the field characteristics:

Data type: Floating-point
Number of values per data element: 1
Number of computational dimensions: 2
Computational dimensions: 20 x 25
Number of computational values: 1 * 20 * 25 = 500
Mapping type: Rectilinear
Number of coordinate dimensions: 2
Number of coordinate values: 20 + 25 = 45

Example 3

A two-dimensional mesh is mapped to a sphere. One dimension of the mesh,
u, corresponds to lines of equal longitude on the sphere. The other dimension

F X i) Y j)) i,(,((1 20 j, , 1 25,= ={ }

j

i

Y(j)

X(i)

Computational Space Coordinate Space

 Figure 2-3 2D Rectilinear Coordinate Field

Fields

AVS DATA TYPES 2-11

of the mesh, v, corresponds to lines of equal latitude on the sphere. The field
consists of 500 elements:

The field is irregular, with 500 X coordinates, 500 Y coordinates, and 500 Z co-
ordinates. Each cell in coordinate space has curvilinear bounds. Figure 2-4
shows the mapping between computational and coordinate space.

The following is a summary of the field characteristics:

Data type: Floating-point
Number of values per data element: 1
Number of computational dimensions: 2
Computational dimensions: 20 x 25
Number of computational values: 1 * 20 * 25 = 500
Mapping type: Irregular
Number of coordinate dimensions: 3
Number of coordinate values: 3 * 20 * 25 = 1500

Example 4

A two-dimensional image is represented by a mesh of data elements, each of
which specifies the value of a pixel. Each data element is a vector of four bytes

F X u v) Y u v) Z u v)) u, ,(, ,(, ,((1 20 v, , 1 25,= ={ }

v

u
Computational Space

Y(u,v)

X(u,v)

Z(u,v)
Coordinate Space

 Figure 2-4 2D Computational, 3D Coordinate Irregular Field

Fields

2-12 AVS DATA TYPES

that specify the three color components and an alpha channel. The field con-
sists of 65536 elements, each with four values:

The field is uniform.

The following is a summary of the field characteristics:

Data type: Byte
Number of values per data element: 4
Number of computational dimensions: 2
Computational dimensions: 256 x 256
Number of computational values: 4 * 256 * 256 = 262144
Mapping type: Uniform
Number of coordinate dimensions: 2
Number of coordinate values: 0

Example 5

A medical imaging data set contains 100 evenly spaced scan planes, each with
a resolution of 256 x 256 pixels. Each data element is a single byte. The field
consists of 6553600 elements:

The field is uniform.

The following is a summary of the field characteristics:

Data type: Byte
Number of values per data element: 1
Number of computational dimensions: 3
Computational dimensions: 256 x 256 x 100
Number of computational values: 1 * 256 * 256 * 100 = 6553600
Mapping type: Uniform
Number of coordinate dimensions: 3
Number of coordinate values: 0

Example 6

A fluid dynamics application is a three-dimensional simulation of fluid flow
through a nozzle. Each data element has five values: a three-component ve-
locity vector, temperature, and density. The field consists of 576 elements,
each with five values:

Vn i j) i, ,(1 256 n, , 1 4,= ={ }

F i j k) i, , ,(1 256 j, , 1 256 k, , 1 100,= = ={ }

Vn X i j k) Y i j k) Z i j k)) i, , ,(, , ,(, , ,((1 12 j, , 1 12 k, , 1 6 n, , 1 5,= = = ={ }

Fields

AVS DATA TYPES 2-13

The field is irregular, with 576 X coordinates, 576 Y coordinates, and 576 Z co-
ordinates. Many of the cells in coordinate space have curvilinear bounds. Fig-
ure 4 shows the mapping between computational and coordinate space.

The following is a summary of the field characteristics:

Data type: Floating-point
Number of values per data element: 5
Number of computational dimensions: 3
Computational dimensions: 12 x 8 x 6
Number of computational values: 5 * 12 * 8 * 6 = 2880
Mapping type: Irregular
Number of coordinate dimensions: 3
Number of coordinate values: 3 * 12 * 8 * 6 = 1728

Field Components

As represented in AVS, a field has the following components:

• The number of dimensions in computational space. This is an integer.
• The dimensions in computational space. This is an array of integers

whose length is the number of dimensions in computational space. Each
element of the array is the number of data elements along the correspond-
ing dimension of computational space.

• The number of variables or values for each data element. This is an inte-
ger. A field with one value for each data element is a scalar field. A field
with more than one value for each data element is a vector field. A field

j

k

i

Y(i,j,k)

X(i,j,k)

Z(i,j,k)

Computational Space Coordinate Space

 Figure 2-5 3D Computational, 3D Coordinate Irregular Field

Fields

2-14 AVS DATA TYPES

can also consist only of coordinates, with no values for each data element;
in this case the field represents a list of points in coordinate space.

• The data type of each value for the data elements. This is an integer. The
data type can be unsigned character (byte), integer, single-precision float-
ing-point, or double-precision floating-point. AVS defines a constant to
represent each data type: AVS_TYPE_BYTE, AVS_TYPE_INTEGER,
AVS_TYPE_REAL, and AVS_TYPE_DOUBLE. These constants are de-
fined in the include files <avs/avs.h> for C programs and <avs/avs.inc> for
FORTRAN programs.

• MIN/MAX information for computational data elements. The minimum
values for each variable in the array of data elements are stored in an ar-
ray whose data type is the same as that of the data elements. The size of
this array is equal to the vector length of the field. The maximum values
for each variable in the array of data elements are also stored in an array
whose data type is the same as that of the data elements. The size of this
array is equal to the vector length of the field.

• MIN/MAX extents for coordinates in each dimension of n-space. The
minimum extent is an array of floating-point numbers, with a size equal
to the number of dimensions in coordinate space. The maximum extent is
also an array of floating-point numbers with a size equal to the number of
dimensions in coordinate space.

• Labeling information for each vector element in the array of computation-
al data. The labels are stored in a character array with a delimiter charac-
ter as the first character in the array. The delimiter is followed by string/
delimiter pairs. The number of pairs is equal to the vector length of the
field. The labels are useful for defining what each variable in the array of
data elements is. For instance one variable might be temperature, a sec-
ond one might be pressure and a third might be density.

• The unit label associated with each vector element in the array of compu-
tational data. This is a character array with a delimiter character as the
first character in the array. The delimiter is followed by string/delimiter
pairs. The number of pairs is equal to the vector length of the field. The
unit labels are useful for defining measurement units for each variable in
the array of data. For instance one variable unit might be degrees centi-
grade and another might be pounds per square inch.

• The array of data elements representing the computational space of the
field. Each element of the array is a value for a data element of the field.
For a vector field, this array has one more dimension than the number of
dimensions in computational space; the extra array dimension is the
number of values per data element. The size of the array is the product of
each dimension in computational space and the number of values per
data element. The elements of the array are stored in "FORTRAN" order,
with all values for each data element kept together. The array subscript
for the value per data element varies fastest, followed by the subscript for
the first dimension, the subscript for the second dimension, and so on. If
n_value is the subscript for the value per data element and i, j, and k are
the subscripts for the first, second, and third dimensions, respectively, the
array is accessed in C as follows:

data[k][j][i][n_value]

The same array is accessed in FORTRAN as follows:

Fields

AVS DATA TYPES 2-15

DATA(N_VALUE, I, J, K)

AVS has a number of macros to make access to this array more convenient
for C language programmers. See Appendix B "AVS C Language Field
Macros".

• A flag indicating the type of mapping from computational space to coor-
dinate space. This is an integer, one of the following constants: UNI-
FORM, RECTILINEAR, or IRREGULAR. These constants are defined in
the include files <avs/field.h> for C programs and <avs/avs.inc> for FOR-
TRAN programs.

• The number of dimensions in coordinate space. This is an integer. For a
uniform or rectilinear field, this is the same as the number of dimensions
in computational space. For an irregular field, this can differ from the
number of dimensions in computational space.

• For a UNIFORM, RECTILINEAR, or IRREGULAR field, an array of
floating-point values representing the coordinates of the field. (The term
points is used interchangeably with the term coordinates throughout the
documentation.)
For a UNIFORM field, coordinate information is limited to minimum
and maximum extent fullword values for each physical dimension (n-
space) of the data. The minimum and maximum extent values in the coor-
dinate binary area are copies of the min_ext and max_ext values in the
field data structure, except when the field has been cropped, downsized,
or interpolated. Then the field data structure contains the original field’s
min_ext and max_ext values, while the coordinate section of the binary
area contains the minimum and maximum extent of the subsetted data.
Mapper modules can use this additional extent information to properly
locate their geometric representation of the subsetted data in world coor-
dinate space. The extents in the coordinate binary area are stored in the
following order: minimum X, maximum X, minimum Y, maximum Y,
minimum Z, maximum Z.
For a RECTILINEAR field, this array contains one X value for each sub-
script along the first dimension of computational space, one Y value for
each subscript along the second dimension of computational space, and
so on. The coordinate array has one dimension, and the size of the array is
the sum of the dimensions in computational space. All the X coordinates
corresponding to the first dimension of computational space are stored
first; all the Y coordinates corresponding to the second dimension of com-
putational space are stored second; and so on. If i, j, and k are the sub-
scripts for the first, second, and third dimensions of computational space,
and if idim1, idim2, and idim3 are the first, second, and third dimensions of
computational space, the X, Y, and Z coordinates are obtained in C as fol-
lows:

x = coords[i]
y = coords[idim1 + j]
z = coords[idim1 + idim2 + k]

The coordinates are obtained in FORTRAN as follows:
X = COORDS(I)
Y = COORDS(IDIM1 + J)
Z = COORDS(IDIM1 + IDIM2 + K)

Fields

2-16 AVS DATA TYPES

For an IRREGULAR field, this array contains a set of coordinates (X, Y,
and so on) for each data element in computational space. The coordinate
array has one more dimension than the number of dimensions in compu-
tational space; the extra array dimension is the number of dimensions in
coordinate space. The size of the array is the product of each dimension in
computational space and the number of dimensions in coordinate space.
All the X coordinates are stored first, then all the Y coordinates, and so on.
The subscript for the first dimension of computational space varies fast-
est, followed by the subscript for the second dimension of computational
space, and so on. The subscript for the dimension of coordinate space (X,
Y, and so on) varies most slowly. If n_coord is the subscript for the dimen-
sion of coordinate space and i, j, and k are the subscripts for the first, sec-
ond, and third dimensions of computational space, the array is accessed
in C as follows:

coords[n_coord][k][j][i]

The same array is accessed in FORTRAN as follows:
COORDS(I, J, K, N_COORD)

AVS has a number of macros to make access to this array more convenient
for C language programmers. See Appendix B "AVS C Language Field
Macros".

• A unique, integer mesh_id identifier for a field representing the coordi-
nate mesh of the field. Fields have two main components: the data itself
and the X,Y,[Z] grid of coordinates in space at which the data exists. This
grid of coordinates is also called the mesh.
Often, when processed by an AVS network, the field data entering a map-
per module will change (for example, a change in an extract scalar pa-
rameter, or in the field legend settings) while the mesh remains the same.
Prior to AVS 4, a change in the data would cause the module to recom-
pute internal data structures related to the mesh such as the block table,
or geometries produced from the mesh, even though the grid of coordi-
nates had not changed.
In AVS 4, a new element has been added to the field data structure: the
mesh_id. A module can assign a unique mesh_id to a particular field data
structure. It changes the mesh_id only when it has changed the mesh.
Downstream modules can compare the mesh_ids of incoming field data
with that of the previous input. If the mesh_id is the same, it can elect to
not recompute values related to the coordinate mesh. This can substan-
tially improve performance.

Declaring Fields

When declaring or allocating fields, a programmer uses a field type string.
This string consists of the word "field" followed by words describing each of
the ways in which the field is specialized, such as "field 3D scalar uniform
float". When declaring input and output ports (with AVSadd_input_port or
AVSadd_output_port), you can leave out particular specifications to indicate
that your module can accept or produce a more general data type. For exam-

Fields

AVS DATA TYPES 2-17

ple, a module writer can declare an input port as accepting "field scalar" to in-
dicate that that module accepts any type of scalar field.

The AVS flow executive does not permit a user to connect a module’s output
to another module’s input if the output and input are declared to be conflict-
ing types of fields. For example, AVS does not allow a "field 2D" output to be
connected to a "field 3D" input. However, AVS does allow an output and an
input to be connected if one is a subtype of another. For example, AVS allows
a "field" output to be connected to a "field 2D" input.

The flow executive will not allow incompatible fields to be passed to a mod-
ule. If you declare an input port as accepting a field of type: "field scalar uni-
form float", but the upstream module outputs a field of type "field 2D scalar
uniform integer", the flow-executive will generate an error and not execute
your module.

In rare situations, you might have to check if the data type description is not
specific enough. If your data type description is: "field" but you really only
wanted 2D or 3D fields (and couldn’t handle 1D for example) your module
should check to ensure that a field of the appropriate dimension was received.

In a field declaration, the word "field" is mandatory and is always the first
word in the string. Specializing words are optional and can appear in any or-
der. The following table lists possible specializing words:

For the number of dimensions of coordinate space, any string beginning with
"n-coord" is acceptable. For example, AVS recognizes "n-coords", "n-coordi-
nate", and "n-coordinates".

Manipulating Fields from C

When a C language module has declared an input port, output port, or pa-
rameter to be a field, the computation routine is called with one argument
corresponding to each field. If the field is an input port or parameter argu-

Table 2-3 Field Declarations

Field Component Value Specializing Words

Number of Dimensions n "nD"
Vector Length 1

n
"scalar", "1-vector"
"n-vector"

Data Type byte
integer
real
double

"byte", "char"
"integer", "int"
"real", "float"
"double", "real*8"

Number of Coord Dims n "n-coord", "n-space"
Mapping Type uniform

rectilinear
irregular

"uniform"
"rectilinear"
"irregular"

Fields

2-18 AVS DATA TYPES

ment, the subroutine parameter is declared as AVSfield *. If the field is an
output port, the subroutine parameter is declared as AVSfield **.

The type AVSfield is a structure defined in <avs/field.h>. Actually, there are
four different kinds of field, one for each of the data types that fields support:

Field Type Data Type
AVSfield_char Byte
AVSfield_int Integer
AVSfield_float Real
AVSfield_double Double

The only difference between these types is the type declaration for the data
array. For the generic type AVSfield, the data is defined to be a union. See
<avs/field.h> for more information.

An AVSfield structure is laid out as follows (using AVSfield_float as an ex-
ample):

typedef struct {
 int ndim; /* no. of computational dimensions */
 int nspace; /* no. of coordinate dimensions */
 int veclen; /* no. of values per data element */
 int type; /* data type */
 int size; /* size of each value in data element */
 int single_block; /* internal, type of memory allocation */
 int uniform; /* mapping type: Uniform, Rectilenear, or Irreg. */
 int flags; /* data validity flags */
 int *dimensions; /* dimension along each axis; length is ndim */
 float *points; /* coordinates for fields */
 float *data; /* the field data itself as floats */
 float *min_extent; /* range of the data, array size is nspace */
 float *max_extent; /* range of the data, array size is nspace */
 char *labels; /* labels for each value in a data element */
 float *minimum; /* min data values for each value in a data element */
 float *maximum; /* max data values for each value in a data element */
 int shm_key; /* internal, shared memory key */
 int shm_id; /* internal, shared memory identifier */
 char *shm_base; /* internal, shared memory base address */
 char *units; /* units for each component */
 int shm_size; /* internal, shared memory segment size */
 int mesh_id; /* unique id for the "points" information */
} AVSfield_float;

To illustrate the relation between field declarations and elements of the field
structure, we use the example of a field representing fluid flow through a noz-
zle. The field has three dimensions in computational space, 12 x 8 x 6. Each
data element has five floating-point values. The field is irregular with a three-
dimensional coordinate space. The declaration for that field is as follows:

"field 3D 5-vector real 3-coordinate irregular"

The corresponding members of the AVSfield structure and their values are as
follows:

Fields

AVS DATA TYPES 2-19

ndim 3
nspace 3
veclen 5
type AVS_TYPE_REAL
size sizeof(float)
single_block true if field is single malloc
uniform IRREGULAR
dimensions dims[3] = { 12, 8, 6 }
points coords[3][6][8][12]
data data[6][8][12][5]
min_extent min extent of coords in each dim
max_extent max extent of coords in each dim
labels labels for each component
minimum min data value for each component
maximum max data value for each component
shm_key shared memory key
shm_id shared memory identifier
shm_base shared memory base address
units units of each component in data
mesh_id unique id for the "points" information

The include file <avs/field.h> defines preprocessor macros to help C program-
mers gain access to the components of a field, including the dimensions in
computational space, the data array, and the coordinate array. See Appendix
B "AVS C Language Field Macros" for more information.

Manipulating Fields from FORTRAN

The preferred mode of accessing a field input or output port in FORTRAN is
to pass the module’s computation function a single integer argument for each
field, rather than using the older method of passing several arguments. How-
ever, the module writer must specifically request the single integer argument
mode by adding the following call to the description function for the module:

CALL AVSSET_MODULE_FLAGS(SINGLE_ARG_DATA | other flags)

The module’s computation function receives a single integer argument that is
a pointer to the field, rather than having the components of the field passed as
multiple arguments. This field pointer value can then be passed directly to
field accessor functions (e.g., AVSfield_get_minmax) in order to access any
desired field element. When using the old multiple argument passing tech-
nique, in order to access field elements that are new in AVS3 (min_extent,
max_extent, labels, minimum, maximum), it is necessary to call the routine
AVSport_field in order to retrieve the field pointer required by the field acces-
sor functions. The field accessor functions can then be used to retrieve any de-
sired value from the field.

The FORTRAN module then accesses field structures using accessor functions
on the single argument rather than by directly accessing the structure as a C
module does. For both input and output fields, the integer argument is actual-
ly a pointer to a field pointer. This is unlike C which declares input fields and

Fields

2-20 AVS DATA TYPES

output fields differently. For example, a computation routine that takes as its
first input port a "field 3D 3-vector real rectilinear" (or any field) is defined as

FUNCTION COMPUTE(INFIELD, ...)
INTEGER INFIELD

Most of the accessor functions either return the requested information or the
information is copied into an array passed in by the FORTRAN routine. For
instance, instead of referencing infield->ndim the FORTRAN routine would
call AVSfield_get_int:

LOCAL_NDIM = AVSFIELD_GET_INT(INFIELD, AVS_FIELD_NDIM)

The include file <avs/avs.inc> includes the necessary function declarations
and accessor constants. Those field arrays which are of predictable size, such
as the dimensions array, are filled directly by the accessor functions and it is
incumbent upon the FORTRAN module writer to ensure that the arrays that
are passed in are large enough for the maximum expected dimensions. Exam-
ples of using accessor functions such as AVSfield_get_int are provided in the
program /usr/avs/examples/test_fld2_f.f.

Accessing either the data or points array in a field is a little more involved
since the arrays are arbitrarily large. There are two approaches to accessing
each array. The first approach returns an offset index N between a local FOR-
TRAN array and the actual field data array. The N+1_th element of the local
FORTRAN array is the same as the first element of the desired array. This ele-
ment reference can then be passed into a second function which declares it to
be an array of a particular type and dimensionality. This approach is a little
awkward but is generally portable. An example of using this technique is pro-
vided in the program /usr/avs/examples/test_fld2_f.f. The appropriate library
routines are AVSfield_data_offset and AVSfield_points_offset.

The second approach is to use the AVSfield_data_ptr and AVSfield_-
points_ptr routines to retrieve the data pointer as an integer from the field
structure. Then pass the %VAL() of this integer to a second FORTRAN func-
tion which can then declare an array of the anticipated type and dimensions.
This is easier, but less portable, than the first technique since some FORTRAN
compilers support %VAL, others %LOC, and some may not support this non-
ANSI FORTRAN feature.

Creating Fields

For allocating and freeing field structures, AVS provides several routines that
are accessible from both C and FORTRAN. These routines ensure that a field
is created which is internally self consistent (e.g., if it contains a 20 x 30 2D
computational array the appropriate data and points arrays are automatically
allocated) and which takes advantage of shared memory storage when possi-
ble. For instance, to create a "field 3D 3-vector real rectilinear" of size 20 x 20 x
20 make the following call in C:

output_field=AVSdata_alloc("field 3D 3-vector real rectilinear",dims)

Fields

AVS DATA TYPES 2-21

where dims is a 3 element integer array containing 20,20,20. If an existing field
is available as a template, AVSfield_alloc may be called to make a duplicate.

Before allocating new data, modules must free the data left over from their
previous invocation. Failure to do this will eventually consume all available
memory, shared memory segments, and swap space, causing the module
(and perhaps AVS) to die. Fields may be freed using AVSdata_free or AVS-
field_free:

AVSdata_free("field", output_field);

or

AVSfield_free(output_field);

Examples of creating fields may be found in the directory /usr/avs/examples.
See especially read_image.c, read_vol.c, threshold.c, and test_fld2_f.f.

Scatter Data

A scatter is a list of points in coordinate space with an optional scalar or vector
data element for each point. AVS represents scatters as 1D irregular fields. For
example, a scatter with scalar real data and 3D coordinates would be declared
as a "field 1D scalar real 3-coordinate irregular". The one dimension of the
field in computational space is the number of points in the scatter. The length
of the data array is the product of the number of points in the scatter and the
number of values per data element at each point.

A module can declare a scatter to have no data by declaring the vector length
to be 0. For example, a scatter with no data and 3D coordinates is declared as
"field 1D 0-vector 3-coordinate irregular". Such a field has no data array. The
number of dimensions is declared as 0, and the one dimension of the field in
computational space is the number of points in the scatter. This dimension is
necessary to calculate the length of the coordinate array.

Image Data

AVS generally represents two-dimensional images as 2D uniform vector
fields. Each vector contains four elements of byte data, and each byte repre-
sents one component of a pixel value. Thus, an image is usually declared as a
"field 2D 4-vector byte". The following table shows which vector element cor-
responds to each component of the pixel value. The table is zero-based, as in a
C language vector; in FORTRAN the vector index is one-based. For portabili-
ty of modules to machines with different byte/integer organization, it is im-
portant that images be treated as "byte" arrays rather than "integer" arrays.

Byte Component
0 alpha
1 red

Colormaps

2-22 AVS DATA TYPES

2 green
3 blue

The alpha byte is not used in determining color; some modules use it to con-
vey other information, such as opacity.

You can find examples of how to creating a 2D uniform vector field for use as
an image in /usr/avs/examples/read_image.c and /usr/avs/examples/read_image_f.f.

Volume Data

AVS represents some volumes as 3D scalar fields of bytes, usually declared as
"field 3D scalar uniform byte". The value of each byte is between 0 and 255 in-
clusive. Some modules use the field data as indices into colormaps. For the
read volume module each dimension of the field must be less than 256.

You can find examples of how to create a 3D scalar uniform byte field for use
as a volume in /usr/avs/examples/read_vol.c and /usr/avs/examples/read_vol_f.f.

Colormaps

A colormap is a data structure that implements a transfer function that as-
signs a color to each value between an upper and a lower bound. A colormap
consists of four arrays of floating-point values, one each for hue, saturation,
value, and opacity. Each value is between 0.0 and 1.0 inclusive. A colormap
also has an integer size or number of colors, which is the length of each of the
four arrays. A colormap has floating-point lower and upper bounds that de-
termine the resolution of the colormap. The lower bound is an index that
maps to the first element of each array. The upper bound is an index that
maps to the last element in each array.

In C, a colormap is represented by an AVScolormap structure, defined in
<avs/colormap.h> as follows:

typedef struct {
 int size; /* number of entries in each array */
 float lower; /* 0th entry maps to this value */
 float upper; /* size-th entry maps to this value */
 float *hue;
 float *saturation;
 float *value;
 float *alpha;
} AVScolormap;

A C routine declares a colormap input argument as AVScolormap * and a col-
ormap output argument as AVScolormap **.

A FORTRAN computation routine can input a colormap by passing a single
argument, which is an integer colormap id, and use accessor functions to ac-

Geometries

AVS DATA TYPES 2-23

cess the contents of the colormap. To do this, a module must set the SINGLE_-
ARG_DATA module flag which tells AVS to pass both colormaps and fields
as single arguments:

AVSset_module_flags(single_arg_data)

Use the AVScolormap_get and AVScolormap_set routines to access the con-
tents of the colormap. In either C or FORTRAN, a new colormap can be creat-
ed using AVSdata_alloc as in:

colormap_out = AVSdata_alloc("colormap", dimensions)

where dimensions is a one element integer array with the colormap size as the
first element of the array.

If the module flags are not set to single-arg-data, a FORTRAN computation
routine inputs a colormap by declaring a series of parameters:

INTEGER FUNCTION my_module(size,lower,upper,hue,sat,val,alpha)
 INTEGER size
 REAL lower, upper
 REAL hue(size), sat(size), val(size), alpha(size)

Using this older approach, a FORTRAN routine outputs a colormap as fol-
lows. Note the use of POINTER variables to supply an extra level of indirec-
tion:

INTEGER FUNCTION my_module(size, lower, upper, phue, psat, pval, palpha)
 POINTER (phue,hue), (psat,sat), (pval,val), (palpha,alpha)
 REAL hue(size), sat(size), val(size), alpha(size)

FORTRAN programmers can also use the more portable AVSptr_offset func-
tion to return an offset index between the colormap array and a local refer-
ence array when the multiple argument approach is used.

An example of using colormap input within a FORTRAN module using both
of these approaches is provided in /usr/avs/examples/colorizer_f.f.

Geometries

AVS passes geometric information between modules by using a data struc-
ture called an edit list. The edit list describes changes to the geometry of a par-
ticular scene. Generally a user module sends edit lists as outputs. It is possible
for a module to use edit lists as inputs, but AVS3 does not support routines to
extract geometric information from an edit list. Geometry output is typically
used as input to an AVS-supplied renderer module such as the geometry
viewer.

A geometry data object must be inserted into an edit list in order to be passed
along via an output port. The edit list can also contain an arbitrarily long list
of changes to be made in the current scene. Each change pertains to a particu-
lar object, camera, or light source. Changes are made in the order specified in

Geometries

2-24 AVS DATA TYPES

the edit list. The AVS data type for an edit list is GEOMedit_list. A C lan-
guage module computation routine declares an argument representing an in-
put port or parameter as GEOMedit_list and an argument representing an
output port as GEOMedit_list * (note the single asterisk). In FORTRAN both
kinds of argument are declared as INTEGER.

Each object, camera, or light is referred to by a name that is an ASCII string.
By default, an object name is modified by the port through which it is com-
municated. This prevents two different modules from modifying each other’s
objects. For example, two "arbitrary slice" modules would each try to modify
the data for the object named "arbitrary slice". Since the name is modified by
the port, the first arbitrary slice module modifies "arbitrary slice.0", and the
second modifies "arbitrary slice.1". When it is desirable for a module to use
the absolute name of an object, it can precede the object name by a "%" charac-
ter (e.g., "%arbitrary slice").

AVS creates any object that doesn’t already exist the first time an attempt is
made to change that particular object.

Camera names are ASCII strings of the form: cameran, where n ranges from 1
to the number of views on the particular scene.

Light names are ASCII strings of the form lightn, where n ranges from 1 to 16.

AVS has routines that allow a module to change several properties of an ob-
ject in an edit list:

• Geometric data defining the object
• Surface or line color
• Render mode (Gouraud, Phong, wireframe, etc.)
• Parent (the name of the parent object)
• Object material properties
• Object, camera, and light transformation
• Object visibility, deletion
• Object color, light source color and camera background color
• Camera background color
• Light source on/off, type
• Texture mapping
• Transformation mode (controls how objects are transformed)
• Selection mode (controls how objects are picked)
• Center of rotation and scaling
• Viewable region of data
• Viewing projection

Geometries

AVS DATA TYPES 2-25

Manipulating Edit Lists

When a module is invoked, it typically initializes the edit list from the previ-
ous execution. This both frees the data from the previous run and creates an
empty edit list for use on the current run. The module places into the edit list,
changes that it wants to make for this invocation. A module uses routines in
the geom library to create and use edit lists, geometry objects, and light sourc-
es. See the "Geometry Library" appendix for more information.

A module typically uses the following steps in preparing an edit list for out-
put:

• Initialize the edit list, using GEOMinit_edit_list in C or GEOM_INIT_E-
DIT_LIST in FORTRAN. This creates a new list or empties an existing
list.

• Create and/or modify geometry objects, cameras, or lights sources, using
routines in the geom library.

• Modify the edit list, using routines whose names begin with GEOMedit
in C or GEOM_EDIT in FORTRAN (such as GEOMedit_geometry or
GEOM_EDIT_GEOMETRY).

• For a coroutine module, use AVScorout_output to output the list, and
then use GEOMdestroy_edit_list in C or GEOM_DE-
STROY_EDIT_LIST in FORTRAN to deallocate the list.

A module must deallocate an existing edit list before reusing the list. For a
subroutine module, the edit list passed to the module as an output argument
is the edit list the module created on its last execution. The module must deal-
locate this list at the start of each invocation of the module, normally by call-
ing the GEOMinit_edit_list routine in C or GEOM_INIT_EDIT_LIST in
FORTRAN before modifying the list:

/* C */
my_module(output)
GEOMedit_list *output;
{
 /*
 * Deallocate edit list from last invocation;
 * initialize edit list for this invocation.
 */
 *output = GEOMinit_edit_list(*output);

 < rest of module >
}

C FORTRAN
 FUNCTION MY_MODULE(OUTPUT)
 EXTERNAL GEOM_INIT_EDIT_LIST
 INTEGER OUTPUT, GEOM_INIT_EDIT_LIST
 OUTPUT = GEOM_INIT_EDIT_LIST(OUTPUT)

 < rest of module >

Geometries

2-26 AVS DATA TYPES

A coroutine module can use GEOMdestroy_edit_list in C or GEOM_DE-
STROY_EDIT_LIST in FORTRAN to deallocate a list after calling
AVScorout_output:

/* C */
 ...
 GEOMedit_list output;

 < generate edit list "output" >

 AVScorout_output(output);
 GEOMdestroy_edit_list(output);

C FORTRAN
 ...
 INTEGER OUTPUT

 < generate edit list "OUTPUT" >

 CALL AVSCOROUT_OUTPUT(OUTPUT)
 CALL GEOM_DESTROY_EDIT_LIST(OUTPUT)

You can find examples of manipulating geometry edit lists in the directory /
usr/avs/examples. The programs polygon.c and polygon_f.f are subroutine mod-
ules; qix.c and qix_f.f are coroutine modules.

Templates for New Filter Utilities

AVS provides several C-language and FORTRAN-language templates for
those who wish to write their own filter utilities. (If your data format is simple
enough, you may be able to use one of the templates without modifying it.
The mesh format, in particular, can often be used without modification.)

Each template handles a particular type of object defined in the Geometry Li-
brary. Table 2-4lists the AVS-supplied filter templates. Each one reads a file
from stdin, writes a file to stdout, and accepts no command-line options.

The filters are all located in directory /usr/avs/filter.

Table 2-4 Template for Filter Utilities

Source Filename(s) Executable Filename Object Type

mesh.c, mesh.f mesh_to_geom Mesh
polygon.c, polygon.f polyg_to_geom Disjoint polygon
polyh.c polyh_to_geom Polyhedron
sphere.c sphere_to_geom Sphere

Geometries

AVS DATA TYPES 2-27

Writing a New Filter Utility

This section provides pointers for those who wish to create new filter utilities,
using the template programs listed in the table above.

The basic procedure for creating a geom-format object is:

1. Decide which of the geom-format objects conforms most closely to
the application data:
Polyhedron

A list of vertices with an indirect list of pointers into these verti-
ces for each polygon.

Polygon
A list of vertices for each polygon.

Mesh
A 2D array of values, either scalars (for a height field) or verti-
ces.

Sphere
A list of center points and radii.

Polytriangle
A single list of vertices representing polylines, disjoint lines, or
a triangle mesh, where the connectivity is implied by the partic-
ular data type.

Note that no tools exist for direct conversion of non-linear geome-
tries, such as spline surfaces and quadrics.

2. Create an instance of that geom-format.
3. Perform any necessary processing on the object, such as generating

normals.
4. If necessary, convert this object to an optimized-format object, such

as a polytriangle.
5. Write the object to a file.

The Geometry Library contains routines that help with these tasks.

The following sections describe the steps for converting a variety of object
types to geom format.

Converting a Polyhedron

Start with the template polyh.c, then:

• Create a polyhedron object.
• Add vertices.
• Add a list of polygons (as a list of pointers).
• Generate normals (if necessary).
• Convert to polytriangle object — both wireframe and surface descrip-

tions.

Geometries

2-28 AVS DATA TYPES

Converting a Polygon

Start with the template polygon.c or polygon.f, then:

• Create a polyhedron object.
• Add disjoint polygons (either faceted or smooth).
• Generate normals (if necessary).
• Convert to polytriangle object — both wireframe and surface descrip-

tions.

Converting a Scalar Mesh

Start with the template mesh.c or mesh.f, then:

• Create a mesh from a list of scalars.
• Generate normals (if necessary).
• Convert to polytriangle object — both wireframe and surface descrip-

tions.

Converting a Mesh

Start with the template mesh.c or mesh.f, then:

• Create a mesh from the vertices.
• Generate normals (if necessary).
• Convert to polytriangle object — both wireframe and surface descrip-

tions.

Converting a Sphere

Start with the template sphere.c, then:

• Create a sphere object from the sphere centers and radii.

Converting a Disjoint Line

There is no starting template for this case. You should do the following:

• Create a polytriangle object.
• Add disjoint lines to this object.

Converting a Polyline

There is no starting template for this case. You should do the following:

• Create polytriangle object.
• Add zero or more polylines to this object.

Pixel Maps

AVS DATA TYPES 2-29

Pixel Maps

A pixel map is a data structure that incorporates a reference to an X Window
System pixmap. An X pixmap is an array of pixel values that can be a destina-
tion for a rendered image. It resides in the X server. (In contrast, an image is a
data structure that includes an array of colors and resides in client memory.)
A pixel value can be a colormap index on a pseudo color system.

A pixel map data structure includes an Xlib Pixmap id, the Xlib Window id of
the window associated with the pixmap, the Window id of that window’s
parent window, and other information which is dependent on extensions to
the X-Window Server.

In C, a pixel map is defined as an AVSpixdata data type. A pixel map input
argument is declared as AVSpixdata *, and a pixel map output argument is
declared as AVSpixdata **. AVSpixdata is a structure defined in <avs/avs_pix-
data.h> with the following components:

typedef struct _AVSpixdata {
 int parent;
 int window;
 int pixmap;
 int is_buffer; /* 1 if pixmap is from the render geometry module */
} AVSpixdata;

A FORTRAN computation routine cannot take a pixel map as an argument.

Because pixel maps rely heavily on specific hardware and software features,
they are not very portable or easy to use. Programmers should not try to use
pixel maps to perform image processing; the "image" field type ("field 2D 4-
vector byte uniform") is more portable and interfaces to a wider variety of
other modules.

Unstructured Cell Data

The Unstructured Cell Data (UCD) type provides a way to aggregate 3D
primitive objects and associated data into a single data structure. The 3D ob-
jects do not have to be connected, i.e., they are not required to share nodes or
define a surface. UCDs are useful to represent volume information that is not
structured enough to be represented as a field data type.

The use of unstructured cell data is detailed in Appendix E. An example of
creating a UCD data structure from a definition in a file is provided in /usr/
avs/examples/read_ucd.c. An example of creating a UCD data structure based
on user parameter input is provided in /usr/avs/examples/gen_ucd.f. Examples
of manipulating UCD data structures are found in /usr/avs/examples/ucd_ex-
tract.c and ucd_thresh.c.

Molecular Data Type

2-30 AVS DATA TYPES

Molecular Data Type

In order to better address the needs of the chemistry community, a Molecule
Data Type has been added to AVS. This data type addresses the general needs
of classical, substructure and quantum chemistry fields.

The use of the Molecular Data Type is detailed in the Chemistry Developer’s
Guide. Module source examples working with this data type can be found in
the directory /usr/avs/examples/chemistry.

User-Defined Data Types

AVS provides limited capabilities for users to implement their own data
types. There are also two standard AVS data types that are defined using this
mechanism. User-defined data types may be useful for problems that are best
defined using data structures that are different from those built into AVS.
However, existing modules are unlikely to be able to deal directly with the
new data type; the user has to convert to a more standard type eventually
(such as "field" or "geometry") or simply not use existing modules.

The user-defined data type may also be useful for sending a subset of data
back "upstream" in a network to feed back information to a module that is
sending data "downstream". The two module must both recognize the data
type defined for this purpose.

Chapter 4 discusses in detail upstream feedback and the declaration and use
of user-defined data types. For an example module that uses upstream feed-
back and a user-defined data type, see the sample programs, pick_cube.c,
user_data.c, and user_data_f.f in the /usr/avs/examples directory.

AVS MODULES 3-1

CHAPTER 3 AVS
MODULES

Modules

A module is the fundamental building block in an AVS network. A module
typically has one of three purposes:

• To import data from outside AVS (or generate its own data) and convert
it into data of one of the AVS data types.

• To transform AVS data in some way, producing output data of the same
or of a different AVS type.

• To render or store AVS data on an external device, such as the display
screen or a file.

AVS has a library of modules that perform these tasks for many types of
data. This chapter describes how to write your own modules. To simplify
the process of writing new modules a Module Generator has been provid-
ed. Documentation on the Module Generator can be found in the Applica-
tions Guide.

Module Components

This section describes the anatomy of AVS modules.

Name

The name of a module is a string that identifies the module to the user. The
name appears on the module icon in the module palette and in the work-
space.

Type

A module is of one of four types, depending on its function:

Module Components

3-2 AVS MODULES

Data Input
A module that generates data or imports data from outside AVS and con-
verts it into one of the AVS data types.

Filter
A module that transforms AVS data in some way, producing output data
of the same or of a different AVS type.

Mapper
A module that converts AVS data to a "geometry" data type.

Data Output
A module that renders or stores AVS data, usually of the type geometry,
on an external device, such as the display screen or a file.

These module type distinctions affect only the presentation of the module in
the AVS user interface. The module type determines in which menu the mod-
ule icon appears in the module palette.

Ports

A module may have zero or more input ports and zero or more output ports. A
port is a channel through which data passes to or from other modules. Each
port has a name and an AVS data type associated with it. An input port is rep-
resented in the Network Editor by a colored bar at the top of the module icon,
and an output port is represented by a colored bar at the bottom of the icon.
The color (or colors) of each bar indicate the port’s data type.

Data modules usually read or generate their own data and therefore do not
generally have input ports. Renderer modules often display or write their
own output data and therefore do not generally have output ports.

When you instance a module in AVS (that is, move the module icon from the
Network Editor module palette to the workspace), you connect each input
port to an appropriate output port of another module, and connect each out-
put port to an appropriate input port of another module. You can connect a
pair of ports only when the data types of the ports match. The data types
match when they are the same or when one is a subtype of the other. For ex-
ample, a port declared to be of type "field" matches a port of type "field 2D",
but a port of type "field 2D" does not match a port of type "field 3D". You can-
not connect an output port to an input port of the same module.

Some input ports require a connection to an output port of another module
before the module can be invoked (executed by AVS). For other input ports, a
connection is optional. The module developer controls this using the AVScre-
ate_input_port routine.

Module Components

AVS MODULES 3-3

Parameters

A parameter is a variable that has a constant value during an invocation of a
module. The AVS user can change the value of the parameter between mod-
ule invocations by manipulating a user interface "widget" attached to the pa-
rameter. A widget is a virtual input device such as a dial or a file browser.

A parameter has a name, a type, and an initial value. Some parameters also
have bounding information, such as a range of allowed values; AVS then en-
sures that the value of the parameter remains within the bounds. Parameter
types include most primitive AVS data types along with constrained variants
such as "boolean" and "choice". For information on parameter types, see the
documentation for the AVSadd_parameter routine in Appendix A.

Each parameter is usually connected to a widget that enables the user to
change the value of the parameter between module invocations. You can con-
nect a parameter only to a widget that is compatible with the parameter’s
data type. Each parameter type has a default widget type, but the module can
override the default and attach a parameter to another compatible widget.
For information on the permissible widget types and the default widget type
for each parameter type, see the documentation for the AVSconnect_widget
routine in Appendix A

A parameter can also have properties. A property usually determines some as-
pect of how the associated widget presents the parameter. By setting proper-
ties on a parameter, a module can customize how the user interface handles
the parameter. Each property is meaningful only with certain widgets. For a
description of the available properties, see the documentation for the AVSad-
d_parameter_prop routine in Appendix A

A module can dynamically alter the current value or bounds of a parameter.
AVS then updates any widget associated with the parameter. See the docu-
mentation for the AVSmodify_parameter routine in Appendix A for more in-
formation.

In some cases properties can be updated during computation using AVSmod-
ify_parameter_prop. For instance, the default text shown for a boolean pa-
rameter could be changed to a new value based on labels in an input field.
Some changes do not have a noticeable effect if the widget currently attached
to the parameter can not accommodate the change.

Examples of defining parameters are provided in the example program /usr/
avs/examples/widgets.c.

Parameters As Input Ports

AVS makes a distinction between parameters and inputs. By default, a param-
eter is attached to a widget and input is received through a port. From the
Network Editor, a user can turn any parameter into a port on that module (see

Module Components

3-4 AVS MODULES

the AVS User’s Guide for information on how this is done using the parameter
edit capability of the Network Editor). Once a parameter has a port, it be-
haves very much like an input port. The only difference is that when a new
value is generated for that port, the widget associated with that parameter (if
any) is updated with the value. You can disconnect the widget from the mod-
ule if this behavior is not desired. Assigning a port to a parameter allows the
you to simultaneously feed a parameter value to multiple modules.

While it may appear that parameters are just a special form of input port,
there are a couple of important differences:

• Parameter ports are invisible by default and there is no way to make them
visible within the module code. The user makes them visible when invok-
ing the widget that is associated with the parameter.

• Parameters do not accept any arbitrary data type. For example, modules
cannot declare pixmaps as a parameter data type.

Functions

Each module has one or more functions associated with it. The module writer
supplies these functions, and AVS invokes them at various times during the
life of the module. The following list describes the basic kinds of functions
found in a module and discusses the purpose of each:

• Each module has a description function. The description function identi-
fies the module to AVS and declares its name, ports, and parameters. AVS
invokes this procedure when it first learns about a module’s availability
and again when the user makes an instance of the module, by moving the
module icon from the Network Editor module palette to the workspace.

• Each subroutine module has a computation function. This function does
the computational work of the module, typically using the input data and
parameters to produce output data. AVS invokes this function when the
flow executive is active and when the module’s input data or parameters
change. The arguments to the computation function correspond to the
module’s input ports, output ports, and parameters.
A coroutine module does not have a computation function; the module’s
main program itself determines when to perform its computation.

• A module may have an initialization function. The initialization function
may take such actions as allocating memory or creating a window. AVS
invokes this function when the user makes an instance of the module (by
moving the module icon from the Network Editor module palette to the
workspace). The initialization function is called before the Kernel has fin-
ished creating the module. Some functions will not work in this context,
notably AVScommand. The initialization function has no arguments and
returns no value.

• A module may have a destruction function. The destruction function may
take such actions as freeing memory or destroying a window. AVS in-
vokes this function when the user destroys the module (as by moving the

Module Components

AVS MODULES 3-5

module icon from the Network Editor workspace to the "hammer" icon).
The destruction function has no arguments and returns no value.

The Description Function

Using a set of library functions, the description function describes the mod-
ule’s name, type, inputs, outputs, and parameters. C and FORTRAN source
files can contain more than one module and therefore more than one descrip-
tion function. The source file must contain a user-written routine named
AVSinit_modules that declares all the description functions in the file. Within
the AVSinit_modules routine, use the library function, AVSmodule_from_-
desc, to declare each module defined in the file. FORTRAN programmers can
use the AVSinit_modules routine itself as the description function if there is
just one module defined in the source file. The description function takes no
arguments and returns no value.

The following is the C language version of a sample description function for a
module that computes the threshold of a 3-dimensional scalar field. The
threshold module has one input port, one output port, and two parameters.

void threshold()
{
 int thresh_compute();
 int in_port, out_port;

 AVSset_module_name("threshold", MODULE_FILTER);
 in_port = AVScreate_input_port("Input Field", "field 3D scalar",
 REQUIRED);
 out_port = AVScreate_output_port("Output Field", "field 3D scalar");
 AVSinitialize_output(in_port, out_port);
 AVSadd_float_parameter("thresh_min", 0.0, FLOAT_UNBOUND,
 FLOAT_UNBOUND);
 AVSadd_float_parameter("thresh_max", 255.0, FLOAT_UNBOUND,
 FLOAT_UNBOUND);
 AVSset_compute_proc(thresh_compute);
}

The following is the FORTRAN version of the same routine:

 SUBROUTINE AVSINIT_MODULES
#include ’avs/avs.inc’
 EXTERNAL AVSCREATE_INPUT_PORT, AVSCREATE_OUTPUT_PORT
 INTEGER IN_PORT, AVSCREATE_INPUT_PORT
 INTEGER OUT_PORT, AVSCREATE_OUTPUT_PORT
 EXTERNAL THRESH_COMPUTE
 CALL AVSSET_MODULE_NAME(’threshold’, ’filter’)
 IN_PORT = AVSCREATE_INPUT_PORT(’Input Field’,
 + ’field 3D scalar’, REQUIRED)
 OUT_PORT = AVSCREATE_OUTPUT_PORT(’Output Field’,
 + ’field 3D scalar’)
 CALL AVSINITIALIZE_OUTPUT(IN_PORT, OUT_PORT)
 CALL AVSADD_PARAMETER(’thresh_min’, ’real’, 0.0,
 + FLOAT_UNBOUND, FLOAT_UNBOUND)
 CALL AVSADD_PARAMETER(’thresh_max’, ’real’, 255.0,
 + FLOAT_UNBOUND, FLOAT_UNBOUND)

Module Components

3-6 AVS MODULES

 CALL AVSSET_COMPUTE_PROC(THRESH_COMPUTE)
 RETURN
 END

In general, description functions perform the following tasks:

• Set the module name and type using AVSset_module_name. A descrip-
tion function must call this routine.

• Create the input and output ports using AVScreate_input_port and
AVScreate_output_port. A description function may have zero or more
calls to each of these routines, depending on how many input and output
ports it has. Each routine returns an integer port identifier for use as an
argument to other routines, such as AVSinitialize_output.

• Create the parameters using AVSadd_parameter or AVSadd_float_pa-
rameter. A description function may have zero or more calls to each of
these routines, depending on how many parameters it has. Each routine
returns an integer parameter identifier for use as an argument to other
routines, such as AVSconnect_widget.

• Set the computation function using AVSset_compute_proc. A description
function for a subroutine module must call this routine. A description
function for a coroutine module does not call this routine.

• Specify special treatment with AVSset_module_flags (for example, speci-
fying SINGLE_ARG_DATA in order to receive field inputs or outputs as
single arguments in FORTRAN).

A description function can also take the following optional steps:

• Use the AVSinitialize_output routine to tell AVS to preallocate memory
for output data before invoking the module computation function. This
routine pairs an output port with an input port. Before invoking the mod-
ule computation function, AVS frees data at the output port and allocates
a new data structure of the same size and dimensions as the data at the in-
put port. This frees the computation routine from the necessity of allocat-
ing memory for the data structure.

• Use the AVSautofree_output routine to tell AVS to free memory allocated
for output data before invoking the module computation function. By de-
fault, AVS does not free the memory allocated for output data during the
previous invocation of the module computation function. AVSautofree_-
output and AVSinitialize_output are mutually exclusive. For futher in-
formation on memory management see the Memory Allocation Debugging
section in Chapter Four.

• Set an initialization function using the AVSset_init_proc routine.
• Set a destruction function using the AVSset_destroy_proc routine.
• Use the AVSconnect_widget routine to declare a preference that a param-

eter be attached to a widget of a given type. Each type of parameter is as-
sociated with a default widget type. This routine allows the module to
override the default.
For example, a module can use a parameter of type "string" for a file path-
name. The default widget for a string parameter is a text type-in. The

Module Components

AVS MODULES 3-7

module description function can use AVSconnect_widget to connect the
parameter to a file browser. The following is a C language example:

int p;
p = AVSadd_parameter("Data File", "string", "/mydata", "", "");
AVSconnect_widget(p, "browser");

The following is a FORTRAN example. Note that a space is required
when specifying empty strings:

EXTERNAL AVSADD_PARAMETER
INTEGER P, AVSADD_PARAMETER
P = AVSADD_PARAMETER(’Data File’, ’string’, ’/mydata’, ’ ’, ’ ’)
CALL AVSCONNECT_WIDGET(P, ’browser’)

• Use the AVSadd_parameter_prop routine to add a property to a parame-
ter. By calling this routine, a module can customize how the user interface
handles the parameter.

The Computation Function

Each subroutine module must have a computation function in addition to a
description function. AVS invokes the computation function when the flow
executive is active and the module’s inputs or parameters change.

The computation function can have any name. The module identifies the
computation function to AVS by calling the AVSset_compute_proc routine in
the description function. You must declare the computation function to return
an integer. It should return a value of 0 to indicate an error and 1 to indicate
success. In the case of an error, the flow executive does not invoke any other
modules whose inputs depend on the erring module’s outputs.

The arguments to the computation function correspond to the module’s in-
puts, outputs, and parameters. A C language computation function has one
argument for each input port, output port, and parameter declared in the de-
scription function. In the parameter list, all the input ports are represented
first, then all the output ports, then all the parameters. Within each category,
the arguments appear in the order in which the ports or parameters are de-
clared in the description function.

For a FORTRAN computation function, the general ordering of ports and pa-
rameters is the same as in C. However, there are two alternatives for passing
arguments. The default approach is to pass aggregate structures such as fields
and colormaps as multiple arguments in order to gain direct access to each ele-
ment of the structure. Another approach is to set the module flag (using AVS-
set_module_flags) to single_arg_data. This causes AVS to pass fields,
colormaps, and user-defined data types as a single argument. The argument
is actually a pointer to the data structure pointer itself, and can be used as an
argument to language independent access routines. For more information on
the use of single_arg_data and on declaring arguments to FORTRAN compu-
tation functions, see Chapter 2.

Module Components

3-8 AVS MODULES

C language computation functions pass input port and parameter arguments
as pointers to an object of the same C data type as the AVS data type declared
in the description function for that port or parameter. An argument that rep-
resents an output port is usually passed as a pointer to a pointer to an object
of the appropriate data type. This double indirection is provided to allow the
computation routine to allocate memory for the output data. For example, a C
language computation function declares an input field argument as AVSfield
* and an output field argument as AVSfield **. Arguments that represent
ports or parameters of some data types, such as integer, are passed as the ob-
jects themselves.

Because FORTRAN arguments are passed by reference, a FORTRAN compu-
tation routine usually declares an argument to be of the FORTRAN type that
corresponds to the AVS data type of the port or parameter. For example, an
argument that represents a floating-point input port, output port, or parame-
ter is declared to be of type REAL.

The computation routine usually performs some operations on the input data
and parameters to produce output data. By default, the computation function
is responsible for freeing memory allocated for output data on previous invo-
cations of the module and for allocating memory for output data on the cur-
rent invocation.

Note: Failure to free the memory allocated on previous module invocations
will eventually consume all available memory, shared memory segments,
and swap space, causing the module (and perhaps AVS) to die.

Rather than using malloc and free, modules should call AVSdata_alloc, AVS-
field_alloc, and AVSfield_free since these routines automatically make a field
of the desired dimensions and free fields in an appropriate manner. The mod-
ule can use the AVSinitialize_output and AVSautofree_output routines in
the description function to eliminate the need for some of this memory man-
agement. For futher information on memory management see the "Memory
Allocation Debugging" section in Chapter Four.

Initialization Function

If a module defines an initialization function, AVS invokes the it when the
user instances the module (moves the icon from the Network Editor module
palette to the workspace). An initialization function performs tasks like allo-
cating memory or creating a window.

Use the AVSset_init_proc routine to declare the initialization routine from
within the description function.

Destruction Function

If a module defines a destruction function, AVS invokes it when the user de-
stroys a module (moves the module icon from the Network Editor workspace
to the "hammer" icon). A destruction function performs tasks like freeing
memory or destroying a window.

Subroutines and Coroutines

AVS MODULES 3-9

Subroutines and Coroutines

AVS has two types of modules: subroutines and coroutines. The chief difference
between the two is the way they interact with AVS to do their computational
work. In essence, a subroutine module does its computation whenever AVS
asks it to, usually when the module’s input ports or parameters change. A
coroutine module does its computation whenever it wants.

Subroutines are the most common type of AVS module. They are used in the
demand-driven portions of a network where a module needs to compute only
when input data or a parameter has changed. Coroutine modules are typical-
ly simulations or animations. A coroutine usually performs a number of inde-
pendent computations, each of which represents one iteration of a series, and
sends output to AVS after each iteration. For example, the AVS particle advec-
tor module is a coroutine.

Subroutine Modules

A basic subroutine module as written by a programmer consists of a descrip-
tion function and a computation function, with optional initialization and de-
struction functions. The programmer does not supply a main program;
instead, the AVS library supplies the main program for a module’s executable
file.

An executable file may contain more than one module, including description
and computation functions for each module, but it has only one main pro-
gram. In addition to the description and computation functions, the program-
mer supplies a function called AVSinit_modules to invoke the description
functions for all modules in the file. This routine takes no arguments and re-
turns no values. It must make one call to AVSmodule_from_desc for each
module in the file. The AVSinit_modules routine can call AVSmodule_-
from_desc either directly for each module in the file or indirectly, for a list of
modules, through a single call to AVSinit_from_module_list. AVSmodule_-
from_desc invokes the given module’s description function. The following is
a simple example of an AVSinit_modules routine for a file that contains a sin-
gle threshold module:

AVSinit_modules()
{
 /* threshold is the module description function */
 int threshold();
 /* this invokes the threshold routine */
 AVSmodule_from_desc(threshold);}

The following is an example of an AVSinit_modules routine for a file that
contains more than one module:

int ((*mod_list[])()) = {
 module_1_desc,

Subroutines and Coroutines

3-10 AVS MODULES

 module_2_desc,
 module_3_desc
};

#define NMODS (sizeof(mod_list) / sizeof(char *))

AVSinit_modules()
{
 AVSinit_from_module_list(mod_list, NMODS);
}

A FORTRAN source file that contains only one module does not need a sepa-
rate AVSINIT_MODULES function; instead, its description function can it-
self be called AVSINIT_MODULES.

A FORTRAN file that contains more than one module must make multiple
calls to AVSMODULE_FROM_DESC from within the AVSINIT_MOD-
ULES function in the same way as a C source file that contains more than one
module.

AVS normally invokes the module’s main program twice: once when the user
reads the module into AVS, as by executing the Read Module Network Editor
command, and once when the user makes an instance of the module, by mov-
ing the module icon from the Network Editor palette to the workspace. In
both cases, AVS creates a new process and invokes the module executable file
in that process.

When AVS invokes the module’s main program the first time, it does so for
identification. The module’s main program then does the following:

• Sets up a connection to AVS.
• Invokes the AVSinit_modules routine. This routine in turn invokes the

description functions of all modules in the executable file.
• Conveys to AVS the module declarations for all modules in the execut-

able file.
• Terminates the module’s process.

When AVS receives the module declarations, it adds the module icons to the
Network Editor palette.

When AVS invokes the module’s main program a second time, it does so for
instantiation. The module’s main program then does the following:

• Sets up a connection to AVS.
• Invokes the AVSinit_modules routine. This routine in turn invokes the

description functions of all modules in the executable file.
• Conveys to AVS the module declarations for all modules in the execut-

able file.
• Sets up an instance of the module that can receive data from and send

data to AVS.
• Invokes the module initialization function, if one exists.

Subroutines and Coroutines

AVS MODULES 3-11

• Enters a server routine that loops indefinitely waiting for remote proce-
dure calls from AVS, and then, executes these requests.

When the flow executive is active, AVS issues a remote procedure call when-
ever any of the module’s input ports or parameters change. When the mod-
ule’s server routine receives a computation request, it reads the module’s
inputs and parameters from AVS, invokes the module’s computation func-
tion, and conveys the module’s outputs to AVS. If another module’s input
port is connected to the current module’s output port, AVS marks the other
module’s input port as having changed data. This may cause AVS to send a
remote procedure call to the second module.

AVS may issue remote procedure calls other than computation requests dur-
ing the lifetime of the module. For example, the user may destroy the module
by dragging the module icon to the "hammer" icon. AVS then issues a remote
procedure call that causes the module server routine to invoke the module’s
destruction function, if one exists, and then terminates the module’s process.
The module’s computation function may also issue callbacks to AVS, as when
reporting errors via the AVSmessage routine.

Coroutine Modules

A basic coroutine module as written by a programmer consists of a main pro-
gram and a description function, with optional initialization function.
(Coroutines do not support destruction functions.) Each executable file can
contain only one module. The description function can have any name.

As with subroutine modules, AVS normally invokes the coroutine module’s
main program twice: once when the user reads the module into AVS, as by ex-
ecuting the Read Module Network Editor command, and once when the user
makes an instance of the module, as by moving the module icon from the
Network Editor palette to the workspace. In both cases, AVS creates a new
process and invokes the module executable file in that process.

When AVS invokes the module’s main program the first time, it does so for
"identification". Because AVS does not supply the main program, the pro-
grammer is responsible for ensuring that the main program responds proper-
ly to this invocation. The main program must call the AVScorout_init routine
early on, before attempting to do any computation. The AVScorout_init rou-
tine does the following during the identification phase:

• Set up a connection to AVS.
• Invoke the module’s description function.
• Convey to AVS the module declarations.
• Terminate the module’s process.

When AVS receives the module declarations, it adds the module icon to the
Network Editor palette.

Subroutines and Coroutines

3-12 AVS MODULES

When AVS invokes the module’s main program a second time, it does so for
instantiation. When the main program invokes AVScorout_init during the in-
stantiation phase, that routine does the following:

• Set up a connection to AVS.
• Invoke the module’s description function.
• Convey to AVS the module declarations for the module.
• Set up an instance of the module that can receive data from and send data

to AVS.
• Invoke the module initialization function, if any.
• Return.

The main program can then interact with AVS at any time it wants. For exam-
ple, the main program can behave like a subroutine module by looping indef-
initely, taking the following steps on each iteration:

• Call the AVScorout_exec routine. This routine waits until the flow execu-
tive has stopped running and then returns.

• Call the AVScorout_wait routine. This routine waits until one of the mod-
ule’s inputs or parameters changes and then returns.

• Call the AVScorout_input routine. This routine obtains the module’s in-
puts and parameters from AVS.

• Perform the module’s computation.
• Call the AVScorout_output routine. This routine conveys the module’s

outputs to AVS.

More typically, a coroutine module performs a series of independent compu-
tations, sending output to AVS after each iteration. The main program can ac-
complish this by means of the loop described above, except that in order to
compute continuously it must call the routine AVScorout_mark_changed be-
fore calling AVScorout_wait. This causes the AVScorout_wait routine to re-
turn immediately.

If a coroutine module computes continuously, it might provide a parameter to
allow the user to stop the computation. The module can check this value of
this parameter after the call to AVScorout_input. If the value indicates that
the module should process continuously, it should call AVScorout_-
mark_changed. The next call to AVScorout_wait returns immediately, rather
than waiting for the user to modify a parameter or for an upstream module to
produce new data.

If the module has any input ports created with the flag: REQUIRED, the first
call to AVScorout_input causes the module to wait for these ports to be con-
nected and for data to be available.

You can use the routines AVSinput_changed and AVSparameter_changed
with coroutine modules to indicate when an input or parameter has been
modified. The return value is true when the input or parameter changes be-
fore the most recent call to AVScorout_input. In other words, you must call

Handling Errors in Modules

AVS MODULES 3-13

AVScorout_input in order to update the knowledge of when inputs or pa-
rameters have changed.

A typical structure of a coroutine module is presented in the following "pseu-
do code":

Description Function:
 (describe inputs, outputs and parameters)

Main Routine

 Call AVScorout_init with "Description Function" name

 Loop for ever

 If we are running continuously
 Call AVScorout_mark_changed (mark module as changed)

 Call AVScorout_wait (wait for module to be changed)

 Call AVScorout_input (get input and parameter values)

 Optionally call AVSinput_changed or AVSparameter_changed
 to see what’s new

 Compute your results

 Call AVScorout_output (send outputs to avs)

 Repeat loop

You can use coroutine modules to handle a variety of different synchroniza-
tion problems such as the use of the X window events from within a module
or synchronizing with other devices and polling the state of inputs and pa-
rameters. For more information on these types of synchronization and a more
detailed description of how coroutine modules synchronize with the kernel
and other modules, see the "Coroutine Synchronization" section in Chapter 4.

Handling Errors in Modules

AVS provides a mechanism for module computation routines and coroutine
main programs to report errors. The AVSmessage routine causes AVS to
present the user with a message from a module computation routine, along
with information about the module and function sending the message. If the
sender indicates that the message represents a warning or error, AVS stops ex-
ecuting and presents the message in a dialog box, along with a set of choices.
The user must acknowledge the message by selecting one of the choices be-
fore AVS can continue. The icon for the module that sends the message is
highlighted in yellow in the Network Editor. The AVSmessage routine also
records the message in a log file for later review.

Handling Errors in Modules

3-14 AVS MODULES

AVS treats error reports differently depending on their severity. The severity
that the module declares determines how AVS presents the message to the
user and whether or not the user must acknowledge the message before AVS
can continue. If the message appears in a dialog box, the border of the dialog
box is color coded to indicate the severity. Following are the possible levels of
severity:

AVS_Information
The message does not indicate an error. The message is written to stderr,
and AVS continues executing. No choices are presented to the user.

AVS_Debug
The message does not indicate an error; it conveys information during
module testing. The message is written to stderr, and AVS continues exe-
cuting. No choices are presented to the user.

AVS_Warning
The message indicates a problem that is not fatal to module execution.
The message and choices are presented in a dialog box with a yellow bor-
der. The user must make a choice before AVS can continue.

AVS_Error
The message indicates a serious problem that may cause the module to
produce erroneous results but is not permanently fatal to module execu-
tion. The message and choices are presented in a dialog box with a red
border. The user must make a choice before AVS can continue.

AVS_Fatal
The message indicates a problem that is permanently fatal to module exe-
cution. The message and choices are presented in a dialog box with a
black border. The user must make a choice before AVS can continue. The
module is marked as dead, and the module icon in the Network Editor
workspace turns black. The flow executive no longer executes the mod-
ule.

Whenever a subroutine module computation function encounters an error
that produces erroneous output, the computation function should return a
value of 0. A coroutine module should not call AVScorout_output if such an
error occurs because the flow executive does not execute downstream mod-
ules that depend on output from the module that encounters the error.

If a module encounters an error likely to be permanently fatal, such as a fail-
ure to allocate memory, it usually should not terminate its process by calling
exit(2). Instead, it should call AVSmessage with a severity of AVS_Fatal. A
subroutine computation function should then return a value of 0. A coroutine
module should call AVScorout_wait and should not call AVScorout_input or
AVScorout_output again.

If a module exits or dies unexpectedly and AVS tries to communicate with
that module, AVS automatically generates a fatal error message. The user is

Selective Computation

AVS MODULES 3-15

usually given an option to restart the module using the original parameters or
the default parameters specified by the module description function.

AVS provides simple interfaces to AVSmessage for reporting errors of a given
severity. These routines are called AVSinformation, AVSdebug, AVSwarn-
ing, AVSerror, and AVSfatal.

Selective Computation

When a module has more than one input port or parameter, it is possible that
when the module computation function executes some ports or parameters
have not changed since the previous execution of the computation function.
By determining what has and what has not changed, the computation func-
tion may be able to avoid some computation on ports or parameters that have
not changed.

AVS provides two routines, AVSinput_changed and AVSparameter_-
changed, to determine whether a given input port or parameter has changed
since the previous invocation of the computation function. These routines re-
turn 1 if the input or parameter has changed and 0 if it has not. For a corou-
tine module, these routines determine whether the input or parameter has
changed since the previous call to AVScorout_input.

When a module has more than one output port, it is possible that after the
module computation function executes, some ports have not changed since
the previous execution of the computation function. By default AVS assumes
that all output ports have changed after each invocation of a module compu-
tation function. This can cause AVS to invoke downstream modules whose in-
put depends on the output of the current module, even if some output ports
have not changed.

AVS provides a routine, AVSmark_output_unchanged, to declare that a giv-
en output port has not changed since the previous invocation of the computa-
tion function. For a coroutine module, this routine declares that the output
port has not changed since the previous call to AVScorout_output.

Building and Linking Modules

Each AVS module is a program that resides in a single executable file. The
programmer can write the source code in either C or FORTRAN. The routines
that the programmer provides depend on the source language and whether
the module is a subroutine or a coroutine. For more information on subrou-
tines and coroutines, see the "Subroutines and Coroutines" section in this
chapter.

Building and Linking Modules

3-16 AVS MODULES

Writing Subroutines

A basic subroutine module as written by a programmer consists of a descrip-
tion function and a computation function, with optional initialization and de-
struction functions. The programmer does not supply a main program;
instead, the AVS library supplies the main program for a module’s executable
file.

An executable file may contain more than one module, including description
and computation functions for each module, but it has only one main pro-
gram. In addition to the description and computation functions, the program-
mer supplies a function called AVSinit_modules to invoke the description
functions for all modules in the file.

A FORTRAN file which contains only one module does not have to have a
separate AVSINIT_MODULES function; instead, its description function can
itself be named AVSINIT_MODULES.

If an executable has more than one module in it, by default, AVS creates a sep-
arate process for each instance of a module. See Chapter 4 for information on
how to share a single process from multiple subroutine modules.

Writing Coroutines

A basic coroutine module as written by a programmer consists of a main pro-
gram and a description function, with an optional initialization function.
Each executable file can contain only one module. The description function
can have any name.

Include Files

AVS supplies a number of include files for both C and FORTRAN programs.
Some include files are needed for all modules, while others are needed only if
the module is using data of a particular type. The routine descriptions in Ap-
pendix A lists any additional include files required by the particular AVS rou-
tine.

The AVS include files are located in the directory /usr/avs/include. The file, /
usr/include/avs, is a link to this directory, so that both C and FORTRAN pro-
grams can refer to an include file using the following syntax:

#include <avs/ filename >

For greater portability, FORTRAN modules should use the INCLUDE state-
ment (no #) that requires an absolute pathname, such as:

INCLUDE ’/usr/avs/include/avs.inc’

Building and Linking Modules

AVS MODULES 3-17

The example Makefile shows how to create a link to /usr/avs/include called avs
allowing the include statement to reference ’avs/avs.inc’.

C Language Include Files

All C language modules should include at least one header file:

avs.h
Data constants and primitive data types needed by all AVS modules.

The following files are needed when a module uses data of specific types:

avs_pixdata.h
Definitions for pixel maps.

colormap.h
Definitions for colormaps.

field.h
Definitions for fields.

geom.h
Definitions for geometries.

ucd_defs.h
Definitions for Unstructured Cell Data (UCD).

chemistry/CHEM*.h
Multiple definition files for Molecule Data Type (MDT).

udata.h
Definitions for user-specified data types used for upstream data flow.

Modules which call math functions such as sqrt or sin should not use the stan-
dard C header file /usr/include/math.h. The file /usr/include/avs/avs_math.h
should be used instead, as it contains optimizations and declarations appro-
priate for the local hardware. See the following avs_math.h Include File sec-
tion.

FORTRAN Include Files

All FORTRAN modules should include at least the following header file:

avs.inc
Data constants and data types needed by all AVS modules.

FORTRAN modules that use geometries should also include the following
file:

geom.inc
Definitions for geometries.

Building and Linking Modules

3-18 AVS MODULES

The file avs.inc should be included after each subroutine declaration for sub-
routines that utilize AVS library calls. The file geom.inc should be included in
each subroutine that utilizes Geometry Library calls. Refer to programs in /
usr/avs/examples and /usr/avs/filter for examples of proper usage.

avs_math.h Include File

C programs using math functions, such as sqrt, normally include math.h
which contains definitions resembling

extern double sqrt();

Without this, the compiler assumes sqrt returns int.

Some systems have special include files that allow the compiler to generate
faster (perhaps inline) code. For each platform, it is desirable to use the best
version of a math function that is available. In order to make code portable to
any system supporting AVS, it is desirable to use a single include file with a
name common across all systems.

The include file avs_math.h provides a way to write portable code that opti-
mizes for each local platform on which it is compiled and linked. avs_math.h is
therefore useful in computation intensive situations where it is desirable to
use math routines optimized for the particular machine that will execute the
module. avs_math.h contains system dependencies so that you should not
have to modify source code as modules migrate to different systems. It should
be used instead of the standard header file math.h.

Compiling and Linking Modules

AVS supplies four basic module libraries in the directory /usr/avs/lib. Each
module must be linked with one of these libraries. The library to use depends
on the source language and whether the module is a subroutine or a corou-
tine:

A module might need to be linked with other libraries, depending on what
data types it uses and what operations it performs. For example, a module
that uses geometries needs the geom library, which requires linking with a
number of library files. For details see the "Geometry Library" appendix.

An example ordering of libraries for a module that utilizes AVS and geom li-
brary calls might be the following:

Table 3-1 Archive Libraries for Modules

Module Type Source Language Library

Subroutine C libflow_c.a
Subroutine FORTRAN libflow_f.a
Coroutine C libsim_c.a
Coroutine FORTRAN libsim_f.a

Converting an Existing Application to a Module

AVS MODULES 3-19

-lflow_c -lgeom -lutil

Different platforms may require additional libraries, in a specific order.

Compilers may also differ from platform to platform. In general, you can use
cc for C modules, and f77 for FORTRAN modules. However, check the release
notes that accompany your platform for specific compiler information.

Note: To avoid confusion about compilers, compiler options, libraries, and
library linking order, you should use the example Makefile in /usr/avs/ex-
amples as a template for creating your own makefiles to compile and link
modules.

Each of the template compile/link commands in the example Makefile con-
tains a series of macro symbols that expand out to include the correct compil-
er options and libraries (in the correct order) for your platform. In the C case,
the symbol FLOWLIBS expands out to a symbol BASELIBS, which includes
the base AVS libraries necessary for a compile; plus a symbol LASTLIBS.
LASTLIBS contains platform-specific libraries to link with. LASTLIBS itself is
defined explicitly in the file /usr/avs/include/Makeinclude, which /usr/avs/exam-
ples/Makefile includes as its first step. The Makeinclude file’s purpose is to de-
fine platform-specific options. The compiler flags are defined by the macro
symbol CFLAGS, which expands to ACFLAGS and AVS_INC. ACFLAGS is
defined in /usr/avs/include/Makeinclude; AVS_INC is defined within the Make-
file. The FORTRAN examples show the use of similar definitions for FOR-
TRAN such as AFFLAGS and LASTFLIBS.

Using the example Makefile ensures that your modules will compile and
link correctly on your platform. Pick a template compile/link command that
corresponds to your module’s type (subroutine or coroutine) and source lan-
guage (C or FORTRAN). If you need to modify or supplement the compiler
options or libraries, be sure to study the expansion of the macros and insert
your modifications in the correct place without leaving any of the necessary
base or platform-specific options or libraries out.

Converting an Existing Application to a Module

You can convert many existing simulations, batch data converters, and other
scientific applications to AVS modules with little difficulty. Often such appli-
cations are most easily converted to coroutine modules. Following are some
of the essential steps in the conversion process:

1. Determine what data the application needs to obtain from AVS as
inputs or parameters and what data it needs to send to AVS as out-
puts.

2. Choose the AVS data type that is most appropriate for each input,
output, and parameter.

3. Write a description function to declare the module and its inputs,
outputs, and parameters.

Debugging Modules

3-20 AVS MODULES

4. In the application’s main program, insert a call to AVScorout_init
and calls to other AVS coroutine functions like AVScorout_input,
AVScorout_output, and AVScorout_wait as appropriate.

5. Convert the program’s data structures to the corresponding AVS
data types for inputs, outputs, and parameters. AVSbuild_field is
particularly useful in converting arrays to fields.

6. Ensure that the program allocates and frees memory for AVS out-
puts where necessary. The AVSinitialize_output and AVSautof-
ree_output routines make this task easier.

7. Use AVSmessage or its variants to handle errors in the program.
8. Ensure that the program uses appropriate AVS include files. C lan-

guage programs should include <avs/avs.h> and any files needed
for particular data types. FORTRAN programs should include
<avs/avs.inc>.

9. Compile and link the program with the AVS coroutine module ar-
chive library that is appropriate for the program’s source language.

Converting an existing application to a subroutine module is similar, with
these differences:

• Convert the application’s main program to a computation function. A
subroutine module does not supply its own main program.

• Ensure that the computation function returns 1 if successful and 0 if un-
successful.

• Do not insert calls to AVS coroutine functions. Instead, ensure that the ar-
guments to the computation function are the module inputs, outputs, and
parameters.

• For a C language subroutine module, supply an AVSinit_modules rou-
tine. For a FORTRAN subroutine module, name the description function
AVSINIT_MODULES.

• Compile and link the module with the AVS subroutine module archive li-
brary that is appropriate for the module’s source language. AVS has dif-
ferent archive libraries for subroutine and coroutine modules.

Debugging Modules

AVS provides a facility for debugging a module during the execution of an
AVS network. The file /usr/bin/avs_dbx is a shell script that arranges for a mod-
ule to run under the native debugger. On many UNIX systems, the native de-
bugger is dbx. You can also specify an alternate debugger using the -debug
option to avs_dbx.

Syntax of avs_dbx

The syntax of avs_dbx is as follows:

avs_dbx [-id] [-debug com] [-mod mod_name] [debug_opts] file

Debugging Modules

AVS MODULES 3-21

The file argument is the name of the executable file that contains the module.
You can specify the following options:

-id
If you specify this option, the module runs under the debugger during an
invocation of the module for identification (e.g. when identified by the
Read Module command) as well as during an invocation of the module
for instantiation (e.g. when moving the module from the module palette
into the workspace). This option is useful if the module does not appear
on the module palette when you use the Read Module Network Editor
command (thereby implying the module’s description function is not
working properly).

When you invoke the Read Module command, AVS calls the module de-
scription function, which conveys the module declarations to AVS. The
module’s process then exits. When you specify the -id option, the execu-
tion of the module’s description function caused by the invocation of the
Read Module command runs under the debugger; by default it does not
run under the debugger.

Note that when you create an instance of the module by moving the mod-
ule icon from the module palette to the workspace, AVS invokes the mod-
ule again, and this invocation is run under the debugger whether or not
the -id option is present. During this invocation, AVS calls the description
function again. The description function then runs under the debugger
even if the -id option is not present.

-mod mod_name
Some executable files may contain more than one module. If you specify
the -mod option, only the module named mod_name is run under the de-
bugger. By default all modules in the file are run under the debugger.

If the -id option is also present, the description functions for all modules
in the executable file are run under the debugger when the executable is
invoked for identification. The description functions for all modules in
the executable file are always run under the debugger when the module
is invoked for instantiation.

debug_opts
These options are passed to the debugger. For more information, see your
debugger’s manual page.

-debug debug_com
This causes the avs_dbx command to run a debugger other than your na-
tive system debugger.

Using avs_dbx

The following describes how to use avs_dbx to run your debugger:

1. Compile the module using the -g option to cc(1) or f77(1). This op-
tion instructs the compiler to generate information needed by the
debugger.

Debugging Modules

3-22 AVS MODULES

2. In a separate xterm window, issue the avs_dbx command. The
avs_dbx command invokes the debugger in this xterm window
and passes any options specified in the debug_opts argument to
your debugger. When the debugger starts, you can set breakpoints
and issue other debugger commands. Do not run your program
yet.

3. Identify the module to AVS. In the Network Editor, you identify the
module by invoking the Read Module command. This installs the
module icon in the module palette.

4. Create an instance of the module. In the Network Editor, move the
module icon from the module palette to the workspace.

5. In the xterm window, AVS prints the message:
file instance waiting, fire when ready...

Instruct your debugger to run the executable file that contains the
module. The command for the dbx and dbg debuggers is run; con-
sult your debugger manual if you are using another debugger.

6. In the Network Editor, you can now make connections to other
modules and you can adjust parameters by manipulating widgets
for the module. When the flow executive causes the module com-
putation function to run, it runs under the debugger. All interaction
with debugger takes place in the xterm window.

The following are some notes on using avs_dbx:

• You can run more than one module under the debugger by invoking the
debugger in multiple xterm windows. However, if you want to run a
module under the debugger, you cannot make more than one instance of
the same module without copying the executable and using the Read
Module command after starting the first instance. Note, however, that
this creates two executable with the same name, the first of which is ig-
nored if they are in the same module library.

• To run a module under the debugger, you must invoke the debugger be-
fore you make the instance of the module, (e.g. before moving the module
icon from the Network Editor module palette to the workspace). You can
use the Read Module Network Editor command to identify the module
to AVS before invoking avs_dbx. However, in this case the -id option has
no effect.

• Do not run your program under the debugger until after AVS has printed
its "fire when ready" message. This message appears after you make an
instance of the module.

• After you have made an instance of a module that is running under the
debugger, you cannot manipulate any widgets for that module or make
any Network Editor connections to or from that module until after you
have run your program under the debugger and it has successfully com-
pleted the description function.

• Avoid commands that might disrupt the synchronization of the module’s
execution with AVS execution. For example, do not rerun your module
unless you have destroyed its current instance and created a new one.

Module Examples

AVS MODULES 3-23

• If you recompile and relink a module after it has been identified to AVS,
you do not have to re-execute the Read Module command. However, you
should destroy all previous instances of the module before you make any
instances of the recompiled module. If you want to run the module under
the debugger, you must reinvoke avs_dbx before making an instance of
the recompiled module.

• The avs_dbx command renames your executable by appending ".real" to
its name while it is running. This can present a problem if the original file
name is already the maximum allowed length. When you quit out of
avs_dbx, it will restore your executable unless the executable has been
modified since running the debugger. In either case, it will inform you of
whether or not the executable was restored.

• You can use the avs_dbx command with both subroutine and coroutine
modules.

Module Examples

Appendix C contains example source code for several AVS modules. Source
code for these and other examples is also available in the directory /usr/avs/ex-
amples.

Module Examples

3-24 AVS MODULES

ADVANCED TOPICS 4-1

CHAPTER 4 ADVANCED
TOPICS

Introduction

This chapter discusses some of the more advanced topics in AVS module
writing. These topics cover the general areas of memory allocation debug-
ging, module process groups, coroutine synchronization, using upstream
data, automatic connection to ports, and running multiple modules in a sin-
gle UNIX process.

Memory Allocation Debugging

Dynamic memory allocation is always a problem area; there are many ways
to make mistakes:

• Write beyond end of memory allocated.
• Use memory after it has been freed.
• Assume that malloc clears memory.
• Not checking for NULL returned from malloc.
• Specify single argument to calloc.
• Failure to free memory ("a memory leak").

Tracking these problems down can be a real challenge.

The task can be easier by having a layer of functions between the applica-
tion and the system memory allocation routines. For example, instead of
calling malloc directly, a new routine such as MEMmalloc can be used. This
can do some error checking, gather statistics, and produce output as a de-
bugging aid. The AVS library memory allocation calls such as AVSdata_al-
loc and AVSauto_free are using these functions.

Rather than changing all occurrences of memory allocation function calls,
macros have been defined to replace the UNIX standard function calls.
These are defined in the header file /usr/avs/include/mem_defs.h. You do not
need to reference this explicitly; it is included by the major AVS include
files.

Part of the file resembles:

Memory Allocation Debugging

4-2 ADVANCED TOPICS

#ifdef MEM_DEFS_ENABLE
#ifndef _MEM_DEFS_defined
#define _MEM_DEFS_defined 1

extern char *MEMmalloc();
extern void MEMfree();
extern char *MEMrealloc();
extern char *MEMcalloc();
extern char *MEMstrdup();

#define malloc(size) MEMmalloc((size),__FILE__,__LINE__)
#define free(ptr) { MEMfree((ptr),__FILE__,__LINE__); (ptr) = NULL; }
#define realloc(ptr,size) MEMrealloc((ptr),(size),__FILE__,__LINE__)
#define calloc(nelem,elsize) MEMcalloc((nelem),(elsize),__FILE__,__LINE__)
#define strdup(ptr) MEMstrdup((ptr),__FILE__,__LINE__)
#endif
#endif

To use this facility, you must define the MEM_DEFS_ENABLE preprocessor
symbol. This can be done by placing the following line of code at the top of
your module’s source file.

#define MEM_DEFS_ENABLE 1

Another approach for defining MEM_DEFS_ENABLE is to add -DMEM_-
DEFS_ENABLE to your list of compile time options (e.g., cc -I. -DMEM_DEF-
S_ENABLE foo.c).

When using the memory allocation debugging facility, there are some things
to be cautious about:

• Casting the argument of free will result in a compiler error, (e.g., "free((-
char*)ptr);").

• Explicitly declaring malloc will result in a compiler error, (e.g., "extern
char *malloc();").

• If you include string.h, do it before any of the AVS include files.
• Every source file using malloc, calloc, etc., should include one of the modi-

fied include files such as avs.h, port.h, field.h, or geom.h in order to include
these macro definitions.

Run Time Environment Variables

To activate the memory allocation debugging routines, the following environ-
ment variables need to be defined.

AVS_MEM_CHECK = 1
When a block of memory is allocated, it will be filled with some non-zero
value. This is to help catch cases that "just happened" to work most of the
time on most machines because the memory usually contained zeros.

Memory Allocation Debugging

ADVANCED TOPICS 4-3

It will overwrite memory when it is freed to disappoint any routine trying
to access it later. If AVS_MEM_HISTORY is not specified, only one byte
is clobbered because the size of the block is not known.

This will also print the total number of allocates and frees just before exit-
ing.

AVS_MEM_HISTORY = 1
This option keeps track of all allocations.

When a block of memory is freed, a search is made through the list of
memory blocks that have been allocated. If the address is not found, an
error message is printed.

When memory is allocated, a little extra memory is also allocated and
filled with a particular pattern. When the memory is freed, the option
looks for this pattern. If it is not there, it means that some routine wrote
beyond the end of the block (e.g., allocated 1000 bytes and stored 1001
bytes there.)

AVS_MEM_VERBOSE = 1, 2, or 3
This option prints a message for every allocate or free as follows:

1 means within a module compute function only.
2 means outside of module compute functions only.
3 means everywhere.

Each message begins with:

- The executable filename.
- Module name if compute function is active.
- Source filename and line number.

Each allocation is assigned a sequence number to make matching the allo-
cates and frees easier.

If AVS_MEM_HISTORY is active, the free will also print out information
about the corresponding allocate.

The AVS libraries, modules and kernel are all built with MEM_DEFS_EN-
ABLE defined. Thus, when you define these environment variables, you will
see messages from AVS’s own memory allocation/deallocation activities, as
well as those of your own modules.

Below is an example of the use of these debugging facilities. First, we see
some sample module source.

 char *p, *q, *r;

 p = malloc (8);
 q = malloc (100);
 r = malloc (99); /* Not freed. */
 strcpy (p, "too long");
 free (q); /* OK. Note that q is clobbered. */
 free (p); /* Error - wrote beyond end. */
 free (q); /* Error - was already freed. */

Coroutine Synchronization

4-4 ADVANCED TOPICS

With the following environment variables defined,

setenv AVS_MEM_VERBOSE 1
setenv AVS_MEM_HISTORY 1
setenv AVS_MEN_CHECK 1

We get the resulting debugging output.

thing2(thing2.user.4) thing2.c:60: allocate 8 bytes, #26 result 0x1002ce24
thing2(thing2.user.4) thing2.c:61: allocate 100 bytes, #27 result 0x1002ce34
thing2(thing2.user.4) thing2.c:62: allocate 99 bytes, #28 result 0x1002ced0
thing2(thing2.user.4) thing2.c:64: free 0x1002ce34, 100 bytes #27 allocated at thing2.c:61
thing2(thing2.user.4) thing2.c:65: free 0x1002ce24, 8 bytes #26 allocated at thing2.c:60
thing2(thing2.user.4) thing2.c:65: free ERROR - Wrote beyond end of block (8 bytes #26 ...
thing2(thing2.user.4) thing2.c:66: free 0x55555555 - ERROR no record of corresponding malloc.

The module would die trying to free 0x55555555. With the final free removed,
debug output concludes when the module is hammered.

thing2: Total of 29 allocates and 6 frees.
thing2: Memory allocated and not freed: current seq: 29

 :
 :

seq: 28; size: 99; ptr:1002ced0; line: 62; file:thing2.c

 :
 :

Coroutine Synchronization

Coroutine modules have the ability to execute asynchronously from the AVS
flow executive. This means that at any time, coroutine modules can call
AVScorout_input to acquire their input values and AVScorout_output to
send output. This provides coroutine modules with more flexibility than sub-
routine modules. For example, they can manage their own input sources
(such as X events or keyboard input), they can run in parallel with other AVS
modules, and they can schedule execution themselves rather than waiting for
user interaction.

Some example coroutine modules in the standard module set are the animat-
ed integer, animated float, and particle advector modules. These modules
need be coroutine modules because, in certain states, they execute continu-
ously. In contrast, subroutine modules can only execute in response to user in-
put or input from upstream modules.

Coroutine modules can either execute continuously or can "wait" for up-
stream input or for the user to change a particular parameter.

In order to perform these tasks effectively, coroutine modules must be able to
communicate with AVS to determine when they should run. For example, if a
coroutine module is in a tight loop calling AVScorout_output, the AVS kernel

Coroutine Synchronization

ADVANCED TOPICS 4-5

reads the data as fast as possible. If the coroutine module executes quickly
enough (or the network takes long enough), some of the data produced by the
coroutine may not processed by the network.

To avoid this problem, more synchronization with the flow executive is neces-
sary. You can use the routine, AVScorout_wait, to facilitate flow executive
scheduling of the module. This routine allows the flow executive to execute
the module when it is the next "changed" module in the run queue. A
"changed" module is one whose inputs or parameters have been modified or
one that has been marked as changed via the AVScorout_mark_changed rou-
tine.

The flow executive executes the module when the following conditions are
true:

• The flow executive is enabled.
• The module is the next "changed" module in the run queue.

The AVScorout_mark_changed routine is useful if you want to implement a
continuously running module. When a module calls this routine, the flow ex-
ecutive marks the module as being in a "changed" state. AVS continues to con-
sider this module as "changed" until the next call to AVScorout_input (or
AVScorout_output if the module has neither inputs nor parameters). This
causes the AVScorout_wait to return immediately rather than wait for input
or parameter changes.

When using AVScorout_mark_changed, you should call AVScorout_input to
determine when inputs and parameters change as AVScorout_wait is not re-
sponding to these events.

Another way to schedule the execution of a coroutine module with the flow
executive is with the AVScorout_exec routine. Calling this routine causes
module execution to wait until the flow executive stops running before re-
turning. This is useful when you want to delay module execution until the
network has completed its processing. See Appendix A for more information
on these routines.

Coroutine Scheduling with X

The AVScorout_wait routine does not allow you to schedule module execu-
tion with X events. To do this, use the AVScorout_X_wait routine. When
called, this routine waits for both input/parameter changes and X events/er-
rors. AVScorout_X_wait also allows you to set a time interval that determine
how long the routine waits before returning. The ability to set a "timeout" in-
terval is useful when implementing features like "double-click" mouse action,
for example. Setting the timeout interval to 0 makes this routine useful for
polling the X server and to determine the status of module input/parameter
changes. Remember to include <sys/time.h> when using this routine. See Ap-
pendix A for more information.

Coroutine Synchronization

4-6 ADVANCED TOPICS

Coroutine Scheduling with Other Devices

AVS provides a more general mechanism by which a coroutine module can
schedule with other file descriptor type devices. You can use the
AVScorout_event_wait routine to wait for data from one of the specified file
descriptor devices or to determine if module inputs or parameters have
changed. If no descriptors are of interest, you can still use this routine to wait
for input or parameter changes within the confines of the specified time inter-
val by specifying the descriptor arguments as zero pointers.

On most systems, this routine uses the select system call. It allows the module
to wait for all of the same events that select waits for and returns the same val-
ues that select returns. See the select man page for a complete description of
the functionality, including error conditions, etc. The only difference between
this routine and the select routine is that it takes an additional parameter that
specifies the coroutine events to wait for. Currently only one coroutine event
is supported: COROUT_WAIT. Remember to include <sys/time.h> when us-
ing this routine. See Appendix A for more information.

Synchronous Execution

By default, coroutine modules run in parallel with other modules. This means
that AVS does not wait for coroutine modules to "finish" before starting other
modules.

When running modules in parallel (i.e. asynchronously), the flow executive
does not wait before scheduling any other modules that are ready to run. If
there are no other modules that are ready to execute, this behavior does not
cause problems. However, if there are other modules waiting to execute,
problems may ensue because the two processes may share data. If this is the
case, modules may executed twice or in an unpredictable way.

To prevent this, you can run your module synchronously with the flow execu-
tive. When a coroutine module runs synchronously, AVS assumes that as long
as it is not waiting in AVScorout_wait, AVScorout_event_wait or
AVScorout_X_wait, then it is running. Therefore, when the coroutine module
is executing, no other modules are allowed to run.

By default, coroutine modules are run "asynchronous". To make your corou-
tine run synchronously, use the AVScorout_set_sync routine:

AVScorout_set_sync(value)
int value;

where value is "0" or "1". A value of 1 makes the coroutine run synchronously,
a value of 0 makes it asynchronously. The coroutine can toggle its synchro-
nous state during execution. The affects take place during the next call to
AVScorout_wait.

Upstream Data

ADVANCED TOPICS 4-7

Upstream Data

This section discusses the use of upstream data. The term upstream data re-
fers to the process of sending information from one module to another mod-
ule that precedes it in the AVS network. AVS uses the upstream data
mechanism to communicate information about direct user manipulation of
geometry (such as rotating an object with the mouse) to modules in the net-
work that need this information to recalculate their contribution to the dis-
played image.

While AVS defines special data types to facilitate the use of upstream data,
module developers can define their own data types for this purpose (see the
"User-Defined Data" section of this chapter for information on defining your
own data types). The following sections describe the upstream data facilities
that already exist in AVS, as well as how to build these capabilities into mod-
ules you are developing.

Overview of Upstream Data Feedback Mechanism

In certain situations, modules need to receive information about events that
occur after their own execution has completed. Examples of this feedback are
the following:

• The arbitrary slice module that produces a geometry object and needs to
get information when the user transforms the slice plane with the Geome-
try Viewer so that it can regenerate the slice at the new location.

• A module defining a molecule that needs information about which bond
the user has selected so the bond can be highlighted in the image.

• The probe module that has a mode where each time the user "picks" an
object, it snaps the probe to a vertex on the object selected.

The module developer implements this feedback through the data flow mech-
anism. A downstream module must have an additional output port from
which to send the data and the upstream module must have an additional in-
put port on which to receive the data. In addition, both of theses input and
output ports must be defined as using the same data type.

The following is an example of using upstream data:

1. The upstream module molecule executes and outputs geometry
data to the geometry viewer module.

2. The geometry viewer module executes, marking its upstream out-
put port as unchanged. This system is now "idle".

3. The user selects a chemical bond. This causes the geometry viewer
module to pass data on its upstream output port to the molecule
module’s input port.

4. The molecule module executes in response to the upstream data
change and highlights the selected bond. It outputs new geometry.

Upstream Data

4-8 ADVANCED TOPICS

5. The geometry viewer module executes again, this time marking its
upstream port as unchanged.

Note that you have created a loop in the network.

You must be careful when constructing loops. For example, if the downstream
module outputs data on its upstream connection each time it executes and
this always causes the upstream module to execute and output data to the
downstream module, then you have constructed an infinite loop in the net-
work.

AVS assumes all output data changes after each invocation of a module. In
the example just discussed, the geometry module marks its upstream output
port as unchanged (using the AVSmark_output_unchanged routine) when it
executes in response to input from upstream in the network. However, when
user interaction requires a change to the display (that is, changes occur down-
stream of the geometry module), the geometry module activates its upstream
output port.

Implementing Upstream Data

This section describes how to use the two types of upstream data currently
supported by AVS and how to implement your own type of upstream data in
modules you develop.

In AVS, the only standard modules that can send upstream data are the geom-
etry viewer module and the display tracker module. They support the fol-
lowing operations:

• Sending transformation information upstream (i.e. rotation, translation,
and scaling information).

• Sending information on the selection of a particular object (that is, "pick-
ing" the object).

These two modules handle each of these cases using separate data types.

Transformation Information

The geometry viewer and display tracker modules can send upstream trans-
formation data any time AVS transforms an object. The modules transmit the
following data structure upstream:

typedef struct _upstream_transform {
 int flags; /* Button state */
 float msxform[4][4]; /* Modeling space transform */
 char object_name[256]; /* Current object */
 int camera_index; /* View transformation is in */
 int x, y; /* Button x, y */
 int width, height; /* window width,height */
} upstream_transform;

Upstream Data

ADVANCED TOPICS 4-9

flags
The current button state that existed when the transformation occurred.
In this case, the transformation is generated by the user rotating the object
with the mouse. Possible values are: BUTTON_DOWN, BUTTON_UP
or BUTTON_MOVING.

msxform
The object’s current transformation matrix. This matrix transforms the
vertices of the object from the modeling coordinate system (in which they
are defined) to the coordinate system of the object’s parent.

object_name
The name of the object whose transformation information is being passed
upstream. Note that the object name may have a suffix appended to it
(e.g. "arbitrary slice" may appear as "arbitrary slice.1").

camera_index
The view number of the window in which the transformation was gener-
ated.

x, y
The x, y position of the cursor in pixels (or -1 if the transformation was
not generated by the mouse).

width, height
The width and height of the window in which the transformation was
generated, if it was generated by the mouse.

Keep in mind that this data structure is transmitted from the downstream
module to an upstream module. Once received, this data structure is available
to the upstream module.

A geometry object can have two modes associated with it that determine how
this mechanism operates: "notify" and "redirect". In both cases, AVS passes the
same information upstream. The two modes differ with respect to how the ge-
ometry viewer treats the object.

In notify mode, the object is treated as any other object in the scene. When the
transformation matrix is changed, the geometry for that object, and all child
objects, are transformed and rendered. The downstream module then trans-
mits the upstream_transform structure to the upstream module.

Notify mode is useful for cases where you want the upstream module to be
informed of changes in the object’s position/orientation but do not want it to
regenerate the geometry (it is being regenerated anyway by the dowstream
module). If the upstream module modifies the geometry, its output causes the
downstream module to refresh the scene again.

AVS uses notify mode to implement the probe module. As the probe is trans-
formed, the module obtains the data probe’s transformation matrix. The mod-
ule then has the opportunity to update the values displayed by the probe

Upstream Data

4-10 ADVANCED TOPICS

according to the new position of the probe. Since the module uses notify
mode, it does not have to update the position of the probe itself because this is
handled by the geometry viewer.

In redirect mode, the transformation matrix is maintained like it normally is
for the object, but this transformation matrix is not used to render the object
or any children of the object. However, the downstream module still trans-
mits upstream_tramsform to the upstream module (which may send new out-
put to the downstream module, causing it to render the object).

Redirect mode is useful when you know that the upstream module needs to
regenerate the geometry in order for the display to be correct. The output of
the upstream module then causes the downstream module to execute. If the
upstream module is going to regenerate the geometry, using redirect mode
provides better performance because the scene is regenerated only once.

When a user defined upstream module receives upstream data from either
the geometry viewer or the display tracker modules, the designer of the up-
stream module has the flexibility to use or ignore any of the data received. See
the example, /usr/avs/example/pick_cube.c, for sample code that uses upstream
data.

The following is an example of how to use upstream data to send transforma-
tion information from the geometry viewer module to your upstream mod-
ule:

• Add an input port to your module having the data type struct up-
stream_transform. This is a user-defined data type that is defined in avs/
udata.h. See the "User-Defined Data" section for more details on user-de-
fined data types.

• Your module should have a geom type output that is connected to the ge-
ometry viewer module.

• When constructing your edit list, you should use the routine, GEOMed-
it_transform_mode:

GEOMedit_transform_mode(edit_list,object_name,mode,flags)
GEOMedit_list edit_list;
char *object_name;
char *mode;
int flags;

mode should have one of the following values:

• notify (to enable notify mode)
• redirect (to enable redirect mode)
• normal (to restore normal operation)
• parent (transform my parent object instead of me — not relevant to this

section)

The flags argument should contain one or more of the following flags "OR"’d
together: BUTTON_DOWN, BUTTON_UP and BUTTON_MOVING. The
flags indicate for a given mouse button state when transforms should be sent

Upstream Data

ADVANCED TOPICS 4-11

to the upstream module. For normal usage, you should specify (BUTTON_-
MOVING | BUTTON_UP). Since BUTTON_DOWN does not cause a
change in the transformation matrix (but simply starts off a transform), speci-
fying it causes a needless execution of the module.

The object name can be either the name of an object that the upstream module
produced, the name of an object that another module produced, or one that
was read in by the user directly from the geometry viewer. See Appendix G
for more details on object names.

Setting the transform mode of an object to either notify or redirect causes the
geometry viewer module and the display tracker module to output data
from the "Transform Info" output port. If there is a connection from this port
to the input port of type struct upstream_transform on an upstream module,
that module executes when the object is changed. See the "Automatic Connec-
tion of Ports" section of this chapter to see how to instruct AVS to make this
connection automatically. If you do not add automatic connection support in
the module description function, you must make the connection by hand. See
the example, /usr/avs/examples/pick_cube for information on invisible ports.

Any subsequent call to GEOMedit_transform_mode for a particular object
overrides the previous call. This means there can be only one requestor for the
transformations of a particular object.

Selection Information

You can cause a module to executed by sending "selection information" to an
input port any time a user picks an object. Selection information includes the
name of the selected object, the nearest vertex selected and user-defined data
associated with the nearest vertex, any user-defined data associated with the
particular primitive selected (line, polygon, or sphere) and the coordinates of
the 3D point that was selected.

The 3D point selected by AVS is the intersection between a ray projected from
the pick point directly into the screen and the first encountered piece of geom-
etry. The coordinates of the selected point is provided in several different co-
ordinate systems, as well as the transformation matrices for the selected
object and the view that contains the selected object.

AVS defines the following structure to contain this information:

typedef struct _upstream_geom {
 int flags; /* Button state, and selection mode */
 char current_obj[256]; /* Object whose selection mode set (coords
 are in the coordinate system of this object
 but vertices are defined for "picked obj" */
 float mscoord[3]; /* Modeling space coordinates */
 float wscoord[3]; /* World space coordinates */
 float sscoord[3]; /* Screen space coordinates */
 float objxform[4][4]; /* Object’s coordinate matrix */
 float worldxform[4][4]; /* From modelling space to world space */
 float viewxform[4][4]; /* From world space to screen space */

Upstream Data

4-12 ADVANCED TOPICS

 int x, y; /* Button x, y */
 int width, height; /* window width,height */
 int camera_index; /* Index of the view selection was made */

 char picked_obj[256]; /* Name of object whose vertex was picked */
 float vertex[3]; /* nearest vertex to selection */
 int vdata; /* per-vertex data -- user specified */
 int odata; /* per-object (line,poly,sphere) data */
} upstream_geom;

flags
One of BUTTON_DOWN, BUTTON_UP or BUTTON_MOVING.

current_obj
The name of the object selected by the user.

mscoord
The coordinates of the 3D selection point, in modeling coordinates (the
coordinate system in which the object’s vertices are defined).

wscoord
The coordinates of the 3D selected point in world coordinates (lighting is
performed in the world coordinate system).

sscoord
The coordinates of the 3D selected point in screen coordinates (the screen
coordinate system ranges from -1 to 1 with -1,-1,-1 being the lower left
hand furthest corner of the window, 1,1,1 being the upper right hand clos-
est corner).

objxform
The current transformation matrix of the selected object.

worldxform
The matrix that transforms the current object from modeling coordinates
to world coordinates.

viewxform
The matrix that transforms the current object from modeling coordinates
to screen coordinates.

x, y
The x and y coordinates, in pixels, of the selection point

width, height
The width and height, in pixels, of the view in which the selection was
made.

picked_obj
The name of the object whose direct geometry was selected. This can ei-
ther be current_obj or a descendant of current_obj.

Upstream Data

ADVANCED TOPICS 4-13

vertex
The X,Y, and Z values of the selected vertex. This is a vertex contained in
the geometry of picked_obj.

vdata
If picked_obj had any vertex data associated with the selected vertex, this
32 bit integer is stored in this member (Appendix G describes how to as-
sociate user-defined data with an object). If there is no vertex data, this
member is -1.

odata
If picked_obj has any primitive or object data associated with the primitive
that was selected, this member contains that data. Otherwise this field has
the value -1.

Rules for Picking Objects

When the user selects (or picks) an object, the geometry viewer module re-
ceives a list of selected objects. The first item in the list is the object that con-
tained the picked geometry. We’ll call this the "picked object". The next item in
the list is the parent of the "picked object", then the parent of that object, etc.
The last item in the list is the "top" object.

Note that the "top" object is always picked regardless of where the user makes
the pick (it is even put in the list when there is no "picked object").

There maybe multiple objects in the list that are requesting selection (that is,
that need to be highlighted by the module owning the object). However, only
a single object is reported as picked. The algorithm for choosing which object
is picked is as follows:

1. If any object in the list is the current object, it has priority over all
other objects and the selection information is sent to the module
that requested a pick on this object.

2. If the current object is not in the list, the first object in the list that
has been selected is picked and this object then becomes the current
object.

Note that if you press the shift key when the you make a selection, the geom-
etry viewer module changes only the current object and does not process any
selections.

Picking the Top Level Object

If the user does not pick any geometry, the top level object becomes the cur-
rent selection. If you pick the top level object, AVS returns valid data only in
the following members of the upstream_geom data structure: current_obj, x, y,
width, height, objxform, wsxform, viewxform, and picked_obj.

In this case, picked_obj is a zero-length string.

Upstream Data

4-14 ADVANCED TOPICS

The following is an example of how to use upstream data to receive selection
information at your upstream module.

• Add an input port to your module using the data type struct upstream_-
geom. This is a "user-defined" data type that is defined in avs/udata.h. See
the "User-Defined Data" section of this chapter for details on user-defined
data types.

• Your module should have a geom type output that is connected to the ge-
ometry viewer module.

• When constructing your edit list, you should use the routine, GEOMed-
it_selection_mode:

GEOMedit_selection_mode(edit_list,object_name,mode,flags)
GEOMedit_list edit_list;
char *object_name;
char *mode;
int flags;

mode should have one of the following values:

• notify (to enable notify mode)
• normal (to restore normal operation)
• ignore (to disable any picking of the object — not relevant to this section)

The flags argument should contain one or more of the following flags "OR"’d
together: BUTTON_DOWN, BUTTON_UP and BUTTON_MOVING. The
flags indicate for a given mouse button state when picks should be sent to
your module. For example, if you specify only BUTTON_DOWN, you only
get picks when the button is pressed. If you specify BUTTON_DOWN and
BUTTON_MOVING, you get picks each time the button is pressed and sub-
sequently each time that the cursor moves until the button is released.

The Geometry Viewer does not process BUTTON_MOVING and BUT-
TON_RELEASE selections if the object picked on the BUTTON_DOWN did
not have any module requesting it.

The object name can be either the name of an object that you produced, the
name of an object that another module produced, or one that was read in by
the user directly from the geometry viewer. See Appendix G for more details
on object names.

Setting the selection mode of an object to notify causes the geometry viewer
module to output data from the "Geometric Info" output port. If there is a con-
nection from this port to the input port of type struct upstream_geom on your
module, it executes when the object is selected. See the "Automatic Connec-
tion of Ports" section of this chapter for information on making this connec-
tion automatically. If you do not add the support for your description
function, you must make this connection by hand. See the example, /usr/avs/
examples/pick_cube.c for information on invisible ports.

Automatic Connections of Ports

ADVANCED TOPICS 4-15

User-Defined Upstream Data

While AVS supports only two modules capable of outputing upstream data,
you can develop you own modules with this capability. You are not limited to
passing information on geometric transformations and on picking. In fact, as
long as you specify the input and output ports correctly and ensure that both
upstream and downstream modules recognize the data structures that you
are passing between them, you can build upstream data capabilities into any
module you are designing.

You can define input and output ports to use any AVS data type (see Chapter
2), and you can also configure ports to use any data type that you can define
using AVS’ user-defined data capability. See the "User-Defined Data" section
of this chapter for more information.

Once you’ve defined the desired data type, you can setup the port connec-
tions in the upstream and downstream modules description functions so that
both ports accept your user-defined data type. If you want AVS to automati-
cally connect the upstream ports when you make the module’s downstream
port connections, see the "Automatic Connection of Ports" section in this
chapter.

As described earlier in the discussion on upstream data, you must be careful
to avoid creating infinite loops in the AVS network when upstream data. See /
usr/avs/examples/pick_cube.c for an example of a module that use upstream
data.

Automatic Connections of Ports

To simplify the network building process, AVS can hide certain types of con-
nections from the user. This section describes a mechanism by which you can
instruct the flow executive to automatically make an upstream connection
when the user makes a downstream connection. Alternately, you can make
ports optionally visible when the port is not required for module execution.

Port Classes

Data in a network can flow both downstream (e.g., probe outputs geometry
to geometry viewer) and upstream (geometry viewer outputs pick informa-
tion to probe). It is often the case that every upstream connection is associated
with a particular downstream connection, usually, in order to feed back data
about a user’s action to the module that produced the particular object.

We associate a "class" attribute with both input and output ports. A class at-
tribute is a character string name that contains two fields. The first (optional)
field is a port name, the second (required) field is a port type specification.
The port type specification is an arbitrary string that is meaningful to both the
upstream and downstream modules

Automatic Connections of Ports

4-16 ADVANCED TOPICS

When the flow executive makes a connection between two modules, it looks
for a match between the input ports of the upstream module and the output
ports of the downstream module. If it finds a match, it makes this upstream
connection.

A successful match occurs when the type of the input port class matches the
type of the output port class. If a module has optionally specified a port name
for the class, the match is made only if the port name specified is the name of
the port being connected.

For example, the probe module defines a port class of type upstream_transform
for its input port. The geometry viewer module defines a port class of type
upstream_transform for its output port. When the probe module is connected
to the geometry viewer module, the input port of the probe module is auto-
matically connected to the output port of the geometry viewer module be-
cause the class matches. For simplicity, this particular case omits the optional
port name field of the class attribute. This is almost always the correct thing to
do.

Here is the code fragment that implements the appropriate part of the probe
module’s description function. Note that the data type of the input port is a
user-defined data structure:

int port;
port = AVScreate_input_port("Transform Info",
 "struct upstream_transform", OPTIONAL | INVISIBLE);
AVSset_input_class(port,"upstream_transform");

The purpose of the INVISIBLE flag is discussed in the next section.

Here is the code fragment that creates a compatible port for the output port
on the geometry viewer module:

port =AVScreate_output_port("Transform Info",
 "struct upstream_transform");
AVSset_output_flags(port,INVISIBLE);
AVSset_output_class(port,"upstream_transform");

Note that in the above example the correspondence between the class type
("upstream_transform") and the data type of the ports ("struct up-
stream_transform") is a convention, not a requirement.

In a more complicated and rarer example, we might have a module that has
multiple outputs or a module that has multiple inputs. It might be the case
that, for such a module, an automatic connection only makes sense when a
particular input or output is connected. In this case, you can specify the op-
tional port name in the port class to restrict the automatic connection mecha-
nism to only take affect when that particular port is connected.

In this case, the output class contains two fields, the port name and the port
type. The port name precedes the port type and the two are separated by a ":".
Here is an example of such a case:

Automatic Connections of Ports

ADVANCED TOPICS 4-17

/* Description of our upstream module */
foo_desc()
{
 ...
 oport2 = AVScreate_output_port("First Output","integer");
 iport = AVScreate_input_port("First Input","boolean",OPTIONAL);
 AVSset_input_class(oport,"First Output:bizarretype");

}

/* Description of our downstream module */
bar_desc()
{
 ...
 iport1 = AVScreate_input_port("Input 1","integer",OPTIONAL);
 iport2 = AVScreate_input_port("Input 2","integer",OPTIONAL);
 oport = AVScreate_output_port("Output 1","boolean");
 AVSset_output_class(oport,"Input 1:bizarretype");
 ...
}

In the above example, if the module described by "bar_desc" is connected
such that "Input 1" is connected to "First Output," an automatic connection is
made from "Output 1" to "First Input". But, if a connection is made from "In-
put 2" to "First Output," there is no automatic connection made. This is be-
cause the class for the output port "Output 1" specifies that the port should
only be connected if "Input 1" is the port that is connected.

Automatic connections are automatically disconnected when the connection
that caused their creation is broken. There can only be a single class for a port.
Automatic connections are not saved in a network but are recreated when the
network is read in, if the classes defined in the modules haven’t changed.

Port Visibility

You can make a module’s input and output ports "invisible" so that colored
boxes do not appear on the module icon. The default visibility of a port is as-
signed through the module description function by setting the port flag "IN-
VISIBLE". For input ports this flag is specified with the routine
AVScreate_input_port in the module description function. An example of
this call is:

port = AVScreate_input_port("obscure port","integer",INVISIBLE | OPTIONAL);

Unlike AVScreate_input_port, the routine AVScreate_output_port does not
have a "flags" field. To make an output port invisible, you must use the rou-
tine AVSset_output_flags:

int port;
port = AVScreate_output_port("obscure out port","integer");
AVSset_output_flags(port,INVISIBLE);

User-Defined Data

4-18 ADVANCED TOPICS

There are two situations in which you can effectively use the port visibility
feature. The simplest is where your module contains an optional input or out-
put port that is tangential to the module’s execution. It may be the case that
the input confuses the intended use of the module to naive users.

The second case is where you have two modules or a class of modules that are
intended to be connected to each other. These modules may have a standard
downstream connection and a standard upstream connection. Using the
mechanism of port classes, you can arrange for an upstream connection to be
made automatically when the downstream connection is made. This feature
combined with the port visibility feature, allows upstream data to be hidden
from the naive user and makes upstream networks much simpler to under-
stand visually.

AVS saves the port visibility attribute when a network is written out and re-
stores it when the network is read in.

User-Defined Data

AVS allows users to define their own data types and to use these data types
for inter-module communication. In fact, the two standard AVS data types
used for upstream data (upstream_transform and upstream_geom) are defined
using this mechanism. This section is of interest to both users implementing
their own data types and to those using the upstream data types.

Defining User-Defined Data

User-defined data is implemented as a "class" of data that can have an extensi-
ble number of subclasses. The class name for the user-defined data type is
"struct".

You can define your own subclasses. For example, a complete user-defined
description might be, "struct foo" where "foo" is the name of your subclass.

The user-defined data mechanism resembles the C structure definition, al-
though Fortran users can also access these data types. AVS supports a subset
of the mechanism for defining a typedef of a structure in C. For example, the
declaration

typedef struct _foobar {
 int hop;
 int hog;
} foo;

defines a data type called "struct foo" that contains two integers, one named
"hop", the other named "hog". Elements in this structure are restricted to int,
char, float, double and arbitrary dimensional arrays of int, char, float, double.
Elements CANNOT be pointers, unions, structures, enums, bitfields, etc.

User-Defined Data

ADVANCED TOPICS 4-19

AVS parses the header file containing these definitions with a parser that has
limited understanding of valid C constructs. It is ignores all C pre-processor
directives and comments. Therefore the following example is NOT VALID:

#define ARRAY 5

typedef struct _bar {
 int hop[ARRAY];
} bar;

An example of a valid declaration is:

/* These are foo flags -- we don’t complain but
 don’t look at them either */
#define FOO_FLAG 1
#define BAR_FLAG 2

typedef struct _dec1 {
 int flag;
 float matrix1[4][4], matrix2[4][4];
 char matrix_name[256];
} foobar;

AVS’ user data definition capabilities are not designed to parse an arbitrary
include file, but rather to provide the user with the capability to design a
header file that can be parsed by AVS and also included in a C program.

Using a User-Defined Data Type On an Input Port

Inputing a user-defined data type is straightforward:

• For a C module, include the header file defining your data type
• Declare an input port of type "struct <classname>", where classname is

the name of the typedef in your header file. For our example, it is the fol-
lowing:

port=AVScreate_input_port("my port name","struct foobar",<flags>);

• For a C module, the argument to your compute function is a pointer to a
structure of the type you’ve specified. A declaration for the compute
function defined in our example is the following:

#include "foo.h"

foo_compute(fooptr)
foobar *fooptr;
{
 if (fooptr->flag == ...)
}

• For a Fortran module, there are two ways to access the data depending on
whether or not the SINGLE_ARG_DATA flag is set using AVSset_mod-
ule_flags. By default, the arguments to your compute function are ex-

User-Defined Data

4-20 ADVANCED TOPICS

panded so that you have a separate parameter for each field in the
structure of the data type. Our example has four arguments for its input
port.
If you select SINGLE_ARG_DATA, then AVS passes a single integer value
for each user-defined data input or output defined. This integer value is
then passed to a number of accessor functions which copy data to or from
the user-defined data structure into a local array or scalar variable. For ex-
ample, you can use AVSudata_get_int to retrieve integer arrays or scalars
from a user-defined data structure. The module must call AVSloa-
d_user_data_types before using the accessor functions so AVS has access
to a description of the user-defined data structure. See Appendix A for
descriptions of the accessor functions for user-defined data types. Also
see the example, /usr/avs/example/user_data_f.f.

Using a User-Defined Data Type On an Output Port

Outputing user-defined data requires slightly more effort. In the description
function, you declare the output port in the same way that you declare the in-
put port. In addition, you must specify the file name that contains the data
types to load using the AVSload_user_data_types routine as follows:

AVSload_user_data_types(filename)
char *filename;

For example:

 AVScreate_output_port("my out port name","struct foobar");
 AVSload_user_data_types("/mydir/foo.h");

If you provide a relative pathname to the routine, AVSload_user_data_types,
the file should be located relative to the directory /usr/avs/include.

For a C module, you must declare the data type in your module as a pointer
to a pointer to the structure you declared, and then use the routine, AVS-
data_alloc, to allocate the data as follows:

foo_output(foopp)
foobar **foopp;
{
 if (*foopp == NULL) *foopp = AVSdata_alloc("struct
foobar",0);
 (*foopp)->flags = ...
}

AVS does not use the second argument to the AVSdata_alloc routine. To ac-
commodate future enhancements to user-defined data, you should pass a 0 as
the argument. In FORTRAN, the output user data field is an integer; call AVS-
data_alloc to allocate the field as in the C example.

Image Picking Data Type

ADVANCED TOPICS 4-21

Image Picking Data Type

The user-defined data type mechanism has been used to implement an im-
age-picking data structure. The image viewer module outputs this data
structure through its leftmost, normally invisible, output port. Downstream
modules can use this data structure to take action based upon where a user
has clicked the left mouse button in the image viewer scene window. For ex-
ample, a module could use the picking information to display the original
field data values present at that location before it was converted to an ARGB
image. At present, none of the supplied AVS modules make use of this data
type.

The data structure is:

typedef struct _iv_pick {
 int view_x, view_y; /* picked point in viewspace (always valid) */
 int view_window_id; /* id of iv window (always valid) */
 char image_name[256]; /* name of picked image ("" if none picked) */
 int image_x, image_y; /* picked point in imagespace (-1,-1 if none) */
 int image_window_id; /* id of image window (-1 if none picked) */
 char label_name[256]; /* name of picked label ("" if none picked) */
 /* label_name with no image indicates title */
} iv_pick;

View space is the X, Y field of the entire image viewer scene window. (0, 0) is
at the upper left corner. The view_window_id is the X Window System win-
dow ID of the scene window. The image_name is the name of the image dis-
played by the image viewer’s Current Image Browser. It is also the image
name required by the CLI. image_x and image_y are the X, Y coordinates of
the point picked within an individual image, with (0, 0) at the upper left cor-
ner. X and Y coordinates are preseved across image scaling operations. im-
age_window_id is the X window id of the individual image. If the user
happens to have picked an Image Viewer label, then label_name is its identify-
ing string, in the format required by the CLI.

To use this data type, you must include the file /usr/include/avs/udata.h as fol-
lows:

#include <avs/udata.h>

As image picking is implemented with user-defined data, see the previous
"User-Defined Data" section for more information on its use as input and out-
put from both C and FORTRAN.

Multiple Modules in a Single Process

In AVS, it is possible to run multiple AVS modules from the same UNIX pro-
cess. This has several advantages:

• There are fewer UNIX processes running, which in turn, uses less of the
system resources (sockets, process table slots, etc.)

Multiple Modules in a Single Process

4-22 ADVANCED TOPICS

• Module startup for the second and subsequent modules does not require
the creation of a new process and is therefore faster.

• When two modules that are in the same process are connected, AVS can
avoid some of the communication overhead of passing data between the
two modules.

• It can reduce memory requirements.

There is, however, a disadvantage to running many modules in one process;
one module could, conceivably, kill the process and thereby kill all the mod-
ules running in that process.

Restrictions

There are some restrictions on the conditions under which you can run multi-
ple modules in the same process:

• The two modules must not interfere with each other’s data allocation. For
example, two modules in the same executable cannot use the same static
memory locations to store read/write information. Here is an example of
two modules that you cannot run in the same process:

int globalvar;

module1_compute(foo,output)
int foo, *output;
{
 globalvar++;
 *output = foo + globalvar;
}

module2_compute(bar,output)
int foo, *output;
{
 globalvar--;
 *output = bar - globalvar;
}

• Two instances of the same module cannot run in the same executable un-
less they do not rely on any read/write static data. Modules that do not
use any read/write static data are usually called "re-entrant" modules.
Modules that are not re-entrant cannot be executed in the same process.

• You cannot run coroutine modules in the same process with any other
module.

• You cannot mark an input port with the flag, MODIFY_IN and run multi-
ple modules in a single process. This flag is used in situations when you
want the module to be able to modify the data on its input port. Since all
of the modules in a single executable can share the same data, modules
that rely on the MODIFY_IN flag are not suitable to run with other mod-
ules in a process.

• In general, modules that do not free allocated static data in their destruc-
tion function should not be run with other modules in a single process.

Multiple Modules in a Single Process

ADVANCED TOPICS 4-23

This is because, if this memory is not freed, it is not available to other
modules in the process that are still active.

Implementing Multiple Modules Processes

When you compile multiple modules into a single executable, AVS starts a
new process each time a module is executed. To run a module cooperatively
with other modules in the same executable, you must set the COOPERATIVE
module flag. You do this using the AVSset_module_flags routine in the de-
scription function of each module that you want to run cooperatively. Set the
flag as follows:

AVSset_module_flags(COOPERATIVE);

In order to run a module cooperatively, the module must be able to run coop-
eratively with ALL the modules in the executable file.

If the module is "reentrant", (i.e. multiple instances of a particular module can
be run from the same process), you must explicitly mark it as such by setting
the REENTRANT module flag:

AVSset_module_flags(COOPERATIVE | REENTRANT);

When AVS is about to instance a module, either from reading in a network or
as a user moves a module to the workspace, it searches the list of currently ac-
tive modules for an existing process that matches all of the following condi-
tions:

• The process is an executable that contains the same version of the module
that AVS is going to execute.

• The module to instance and all active modules in the process are marked
as COOPERATIVE modules.

• Either the module is marked as REENTRANT or there is not an existing
instance of the particular module in the executable.

• No modules in the process are currently executing. If AVS determines
there is a module executing, it starts another process for the module. This
means that you cannot necessarily rely on a module being run in an exist-
ing process.

• AVS was not started with the -separate option.

If you change the module flags or any other option in the module description
function, you must regenerate any module library that contains that module.

If a module dies, AVSmessage offers the user a choice to restart the module. If
the user chooses to restart the module, all modules running in that process are
restarted sequentially so that AVS can again run these modules from a single
process.

Multiple Modules in a Single Process

4-24 ADVANCED TOPICS

You can also restart a module by pressing the module tools button while in
the network editor. This brings up a choice box that contains a "restart mod-
ules" button.

Implementing Reentrant Modules

Modules that require the use of static data can use the AVSstatic feature of the
module programmers interface. This is an external variable of type "char *"
that AVS retains on a per-module basis. It is defined in the header file /usr/avs/
include/flow.h. AVS saves the values assigned to AVSstatic after executing the
module and restores it before executing the next module. The value is also
saved and restored for the initialize and destroy functions that your module
might define.

You can use this variable to store a pointer to information that you want to
keep available from one module invocation to another. AVSstatic is available
only in C modules.

Modifying Modules that Share Processes

When a module is instanced, it is possible that it will attach to an existing pro-
cess rather than starting a new process. It is also possible that the module’s
executable could have been modified since the previous process was started.
You could, therefore, end up running a stale copy of the module.

There are two ways to avoid this:

• Each time you change the module, do a Read Module on the executable.
This causes AVS to mark the current process as running a different ver-
sion of the module. Subsequent attempts to instance a module in this exe-
cutable starts a new process.

• Start AVS with the command line option: -separate. This causes AVS to
run each module in a separate process regardless of how you set their
module flags.

Linking Multiple Modules Together

When modules are linked into one executable, there should not be a separate
AVSinit_modules function for each module. Instead the initialization of each
module to be compiled into one executable is specified in a separate file. The
names of the description functions for each module (e.g., your_mod1) to be
linked into the single executable file are listed in this file. The following is an
example of such a file.

#include <avs/avs.h>
#include <avs/flow.h>

Multiple Modules in a Single Process

ADVANCED TOPICS 4-25

/* module initialization */

extern int
 your_mod1(),
 your_mod2(),
 your_mod3();

/* Build Module List */

static int ((*mod_list[])()) = {
 your_mod1,
 your_mod2,
 your_mod3};

#define NMODS sizeof(mod_list) / sizeof(char*)

AVSinit_modules ()
 {
 AVSinit_from_module_list(mod_list, NMODS);
 }

Note that the AVSinit_modules function calls AVSinit_from_module_list in-
stead of the AVSmodule_from_desc function. This and all the modules listed
in this file are linked into one executable.

Since the AVSinit_modules function is now located in this file, it should not
occur in the individual modules since this would cause multiple definitions of
the same function.

If your modules are written in FORTRAN, you would use the same format as
shown for C, except that:

• You do not need the "static int ((*mod_list[])())" block, or the #define that
follows that counts the number of modules in the list.

• You would use a series of AVSmodule_from_desc calls, one for each
module, in place of the AVSinit_from_module_list call.

It is also possible to link the standard AVS module set in with your modules
as one binary so that they will execute in one process. The file avs/examples/
multi_hog.c is an example of file that performs this task. Use multi_hog.c as a
template, adding your own module function description names to the AVS
modules initialized in this file.

The avs/examples/Makefile make file provides a useful template for creating the
appropriate make file to compile your modules. The line for multi_hog.c fur-
ther specifies the $(MODLIBS) option. At the top of the Makefile, this is ex-
panded to include the set of six libraries that represent the supported AVS
module set compiled in "library" form: libmdata.a, libmfilt.a, libmmapp.a, libm-
rend.a, libmucd.a, and librf.a. The MODLIBS symbol can be removed if you are
just linking your own modules together.

Module developers may find it useful to use a preprocessor symbol that de-
termines whether the module has its own AVSinit_modules function. This al-

Multiple Modules in a Single Process

4-26 ADVANCED TOPICS

lows you to develop and test the module as a separate executable. Later it can
be linked with other modules without changing the source. Simply recompile
without the symbol defined.

For example, the your_isosurface module might have its own AVSinit_modules
function which is used only when the SEPARATE_MODULES flag is de-
fined:

#ifdef SEPARATE_MODULES
/**/
AVSinit_modules()
{
 int your_isosurface();

 AVSmodule_from_desc(your_isosurface);
}

/**/
#endif

You can define this symbol on the command line (or in a make file) when the
compilation command is given using the -D option.

In order for a module to be eligible to run in the same process as another
module, the COOPERATIVE flag must be set. The COOPERATIVE flag is set
within a module using the AVSset_module_flags routine. This routine is de-
scribed in Appendix A of the AVS Developer’s Guide.

All modules supplied with this product have the COOPERATIVE flag set,
EXCEPT the following:

tube
wireframe
flip normal
offset
pixmap to image
image to pixmap
animate lines
extract vector
isosurface
particle advector
field legend
tracer
display tracker
write image
write volume
ucd legend
ucd advect

Coroutine modules cannot run cooperatively and consequently always run in
their own process.

Module Groups

ADVANCED TOPICS 4-27

 Module Groups

Modules have an attribute called the "module group" that can be used to con-
trol whether two modules are placed in the same process or not. This feature
is useful for advanced network editing operations to:

• Increase the parallelism of a network by ensuring that parallel fragments
of a network are not placed in the same process. Two modules that are in
the same process cannot be run in parallel.

• Increase the efficiency of executing a particular network by ensuring that
modules that are connected are placed in the same process so that they
can share data if inter-process shared memory is not available for some
reason.

The module group attribute is an ASCII string that the user can define for a
particular module by typing into the Module Editor panel of a particular
module. When this string is the same for two modules, they share the same
module group and can be placed in the same process when the module is cre-
ated.

The module group can only be used to inhibit two modules from being placed
in the same process but by inhibiting a module from sharing another mod-
ule’s process, it opens up an opportunity to share the process with a third
module.

Here is an example. We have three modules "module A", "module B" and
"module C". All three modules are contained in the same executable, all are
marked REENTRANT and COOPERATIVE. We want module A and mod-
ule B to be run in parallel so they cannot be in the same process. But, we want
module A and module C to be in the same process to reduce the startup time
of the network. We can do this most concisely by defining a module group for
module B when the module is still in the module Pallete. Now, when we in-
stance module A and module C, they will be placed in the same process be-
cause neither module has a defined module group string. When we instance
module B, however, its module group won’t match the non-existant group of
module A, and so it will start a new process. Module A and module B can
now be run in parallel if the network is constructed in a way that allows par-
allel execution.

There are other situations where defining the module group may make sense.
Some systems do not support shared memory communication of data be-
tween two processes. On these systems, when two modules are connected it is
necessary for AVS to make an extra copy of the data set in order for the down-
stream module to have access to it—unless the two modules are in the same
process. A module that is COOPERATIVE but not REENTRANT can only
have one module instance in a particular process. We can therefore come up
with a situation in which the system will make an arbitrary decision when
grouping modules into processes. The user can use the module group to im-
pose an order on this grouping.

Module Groups

4-28 ADVANCED TOPICS

The module group can be modified for either an inactive module in the Pal-
ette or for an active module that has been instanced in the Network Editor
Workspace. The module group attribute is only referenced, though, when you
are creating a new module (dragging it into the Workspace). Changing the
module group of an active module does not rearrange modules in processes
but will potentially affect how a new module is started.

The module group attribute is properly saved and retrieved when you save
away a network.

Note: There is a CLI net_group command that supports a different, simpler
function: the lassoing of modules to be moved as a group. The net_group CLI
command is irrelevant to module grouping as just described. Module process
grouping is controlled by a -group option to the module CLI command.

COMMAND LANGUAGE INTERPRETER 5-1

CHAPTER 5 COMMAND
LANGUAGE
INTERPRETER

Introduction

The AVS Command Language Interpreter (CLI) is a text language that can
be used to drive most of the AVS system. It is used to save networks and
widget layouts, save parameter settings, and to record basic user interaction
in the form of script files for later playback. It is one approach to providing
an animation capability within AVS that allows precise control of AVS net-
work operation for long operations (batch) or fixed sequences of parameter
changes.

AVS modules can also send CLI commands to the kernel to build and mod-
ify networks, modify parameter values, change rendering transformations
and properties, rearrange their user interfaces, and other operations ordi-
narily performed by direct user interaction with AVS. This provides the ba-
sis for building application modules which employ AVS module networks
in end user applications without requiring the user to use the Network Edi-
tor directly.

This appendix provides detailed information on the CLI and the conven-
tions it uses. For most users, the most important information about the CLI
is how to use it for creating and running script files to drive an AVS net-
work without directly manipulating widgets. The section on Writing CLI
Scripts below is a good introduction to script writing basics.

Access to the CLI

The CLI is accessed every time a network file is read or a script is run. It can
also be explicitly accessed for direct user interaction or module access in
several different ways.

Command Line Option

The easiest way to get into the CLI is to start up AVS with the -cli command
line option:

avs -cli

Introduction

5-2 COMMAND LANGUAGE INTERPRETER

This will result in all standard input being directed to the CLI for interpreta-
tion and all results from those commands being displayed on standard out-
put. Hitting an immediate carriage return will result in the CLI prompt (avs>)
appearing to show that the CLI is ready for the next command. Typing help
will provide basic summaries of the command sets and individual commands
and their usage.

The -cli command line option optionally takes a CLI command string so that
AVS can automatically be started running a script or other operation. For ex-
ample,

avs -cli "script -play /usr/avs/test/scripts/script1 -q"

would run avs, playback the script1 script and automatically quit when that
script was complete.

Server Option

AVS can also establish a connection to an external process that is providing
the CLI commands and displaying their output. This provides an avenue for
other programs to drive AVS via CLI commands.

The avs_client program provides a simple example of an external CLI driver
and demonstrates how additional local commands can be added to the avs_-
client side to extend the command set. First, if /usr/avs/examples/avs_client is
not already compiled, run make in that directory to compile it. Then start up
avs with the server option:

avs -server

and as it starts up it will display the message:

AVS server process is <process>, port is: <port number>

In another xterm window, run /usr/avs/examples/avs_client giving the <pro-
cess> value as a command line option:

avs_client <process>

The avs_client program will read a temporary file called /tmp/avs_server.<pro-
cess> to obtain the port number to hook up to the avs process (the <process>
identifier can also be obtained from the CLI variable "Pid"). Then the standard
input to avs_client will be sent to the avs process as CLI input and the resulting
output will appear in the avs_client terminal window.

Module Access

Individual modules can also send CLI commands to the AVS kernel process
that is running them. This allows AVS application modules to manage AVS
networks in response to changes in their own parameters.

C:
#include <avs/avs.h>
AVScommand(destination, command_buffer, output_buffer, error_buffer)

Introduction

COMMAND LANGUAGE INTERPRETER 5-3

char *destination, *command_buffer, **output_buffer, **error_buffer;

FORTRAN:
#include <avs/avs.inc>
AVSCOMMAND(DESTINATION, COMMAND_BUFFER,
 OUTPUT_BUFFER, ERROR_BUFFER)

CHARACTER *(*) DESTINATION, COMMAND_BUFFER
CHARACTER*<maxsize> OUTPUT_BUFFER_BUFFER,

 ERROR_BUFFER

This routine can be used to send AVS CLI commands to the kernel or other
CLI receivers. The destination argument is currently "kernel" only.

The command_buffer is a buffer containing one or more CLI commands. The
output_buffer and error_buffer are used to return the output and error output
from executing the commands, respectively. In C, each of these two argu-
ments are provided as the address of a char pointer which will be changed to
point to the actual buffers. (i.e. declare a char* variable ("buf") and pass its ad-
dress ("&buf")). Memory management for the buffers is provided automati-
cally by AVScommand and the caller should NOT attempt to free these
buffers directly. In FORTRAN, the buffer contents are copied into local buffer
strings provided by the caller. Choose a <maxsize> for the buffer arrays that
is appropriate (the size you choose is communicated automatically from FOR-
TRAN to the AVS C routines). Extra output beyond that amount will be lost.

Multiple commands can be included in the same command buffer and should
be separated by newline characters. The accumulated output and errors will
be in the buffers returned with a single result for the overall operation.

When a module wishes to reference itself in a CLI command, it should use the
variable reference $Module instead of an explicit name like "read image.us-
er.3". This is only recognized during an AVScommand call.

The debug command provides a switch, AVScommand_debug, that will tell
the AVS kernel to display all CLI commands being received from modules
that are using the AVScommand function. It will also show the results and er-
ror messages that these commands are generating. For example,

debug AVScommand_debug 1

will turn the switch on; a value of 0 will turn the switch back off again. The
debug command is not currently supported, but help may be obtained by
typing "help debug".

.avsrc File Option

AVS will recognize an .avsrc file option to read a CLI file in as part of system
initialization. The line

CLIinit /home/me/my_avs_cli_file

Introduction

5-4 COMMAND LANGUAGE INTERPRETER

will execute the command "source /home/me/my_avs_cli_file" as part of ini-
tialization so that personal variables can be set as part of start up using the
var_set command. This is more useful for defining personal variables to cus-
tomize the CLI environment than for performing active operations, such as
starting up CLI scripts. For those operations it is preferable to use the -cli op-
tion.

Basic Concepts

There are some overall concepts that one needs to understand how to use the
CLI. These include lexical and syntactic conventions, naming conventions
and output redirection.

Commands and Tokens

A command is made up of a sequence of tokens, each of which may be one or
more words. Each command is usually in the form of <verb> <subject> <op-
tions>. If an inadequate number of tokens are provided to a command, it will
automatically print out the usage message. For example, in the following
command there are three tokens.

parm_set mymodule.user.2:comment "This is a comment"

The first token is parm_set which is the command to set a module parameter
value. The second token is mymodule.user.2:comment which specifies a
module (mymodule.user.2) and one of its parameters (comment). The third
token is "This is a comment". The use of quotation marks indicates that the
four words are to be treated as a single string so it is handled as a single token
(the new value for the parameter).

Tokens are separated by one or more spaces, and quotation marks must be
used when the spaces are part of a token. In the case where a module name
contains spaces, quotes must be used to enclose the module name. For exam-
ple, in the parameter name

"read image.user.1":"File browser"

the quotes are used to override the embedded spaces in both the module
name and parameter name. A single set of quotes enclosing the entire token
would also be valid (the colon (:) is part of the module:parameter name for-
mat).

Case Sensitivity

CLI commands are case sensitive. Command names are nearly all lower case
as are all option flags. Identifiers, such as module names and aliases and pa-
rameter names, must use the same combination of upper and lower case let-
ters that was originally defined. Pathnames must match the case used in the
target file system.

Introduction

COMMAND LANGUAGE INTERPRETER 5-5

Interrupting CLI execution

When the CLI is executing a script, entering carriage returns on the standard
input window will get the attention of the CLI; it will then offer the option of
continuing or quitting from the script. Hitting control-C to try to abort excess
CLI output will exit from avs itself and should not be used. Individual com-
mands (including net_read) can not be interrupted. If the script is being run
through the Script Controller Browser, the Pause or Abort buttons should be
used to interrupt the CLI.

Multiple Line Commands

Most commands readily fit on a single line. In cases where they don’t a back-
slash (\) can be used to indicate that the command continues on the next line.
The command ends when a line ends without the backslash. For example,

parm_set mymodule.user.2:comment \
"This is a comment"

is identical to the previous parm_set example.

Some tokens may require embedded newlines, as in the case with a comment
that is several lines of text. A newline is recognized as the two characters "\n"
and in combination with a backslash can permit lengthy strings to be used as
in the following:

script_check \
"This is a longer comment \n\
than I thought would be able \n\
to fit on a single line"

This would result in a three line comment to the script_check command.

Variable References

Since some CLI tokens can become long (pathnames for instance) or can
change according to context (what platform you are running on, or where to
find the main AVS directory), it can be useful to replace literal tokens with
variable references. The CLI recognizes variables whose values are substitut-
ed in in place of the original token (or part of a token) when the CLI com-
mand is interpreted. Variables include both those predefined by the AVS
kernel and those defined by the user for convenience.

Variables are defined using the var_set command and their values are re-
trieved using the var_get command. For example, to create a personal vari-
able called "home", the user can type the following:

var_set home /home/terry

The var_get command can then print out the current value of the variable,
"terry". The var_set command also has an option (-env) to obtain a value from
an external environment variable instead of a literal value. For example to

Introduction

5-6 COMMAND LANGUAGE INTERPRETER

create a variable with the value of the "TERM" environment variable, the fol-
lowing command could be given:

var_set term -env TERM

There are some predefined variables that are set by AVS and cannot be
changed by the user. These include the AVS path (Path), AVS kernel process
id (Pid), data directory (DataDirectory), and network directory (NetworkDi-
rectory) and their values represent the value provided by the user from com-
mand line options or the .avsrc file.

The $ character indicates a variable reference within a CLI command and will
cause the remainder of the alphanumeric string to be replaced with the vari-
able value. For example,

module "read image.user.0" -ex $Path/avs_library/read_image

will cause the reference "Path" to be replaced with the internally maintained
variable referencing the -path command line option or the Path .avsrc option.
Variable references can be contained in any part of the token; however, they
will be substituted even if they are contained in quoted tokens.

Output Redirection

CLI commands recognize the > character as redirecting output when used at
the end of the commands. For example:

help * >/home/davids/tmp/help.txt

will cause the help description to be written out to help.txt. They also recog-
nize a double > character (>>) to append to existing files.

Identifiers

There are a limited variety of objects to be referenced in AVS but it is impor-
tant to understand how the naming conventions work. It is easier to see what
names AVS has created after an interactive session than it is to directly predict
names in advance, so it is worthwhile to work with the CLI interpreter inter-
actively to get an understanding of how these conventions work in practice.

Module Names and Aliases

Module names take the form module.user.N, where "module" is the name set
by the module itself and "N" is a unique module identifier number assigned
when the module is created. The number may end up being different than
what appears in the original network file since that number may already be
used. This is what lets us merge network files readily. Unfortunately it makes
it hard to write scripts from scratch since the numbers change. When reading
a network, all references are reinterpreted to use the newly assigned numbers.
Subsequent files read after that can find it hard to predict what numbers will

Introduction

COMMAND LANGUAGE INTERPRETER 5-7

be used. A Clear Network operation (or net_clear command) resets numbers
and makes this easier.

The module command provides an option to explicitly provide a unique and
permanent alias for a module that can be used in place of the ".user.N" con-
vention. After building a network file and writing it out, edit the file using
any text editor and add a -alias clause to the module commands to specify an
alias. For example,

module "read image.user.1" -xy 100,100 -alias ReadImage

will recognize references to the module as "ReadImage" as well as "read im-
age.user.1" (the "1" is likely to be changed during module creation and the as-
signed name is echoed back). If the alias ReadImage is already in use, an error
will be reported and the alias will be ignored.

You can also directly tell the CLI to add an alias to an existing module as in

avs> module "read image.user.1" -alias ReadImage

Once the module has an alias applied to it, it will persist in any networks
written out. Setting the alias to "" (empty string) will eliminate any alias.

Parameter Names

Parameter names are qualified by what module they are associated with. For
example, in the command

parm_set mymodule.user.1:parm value

the reference to "mymodule.user.1" indicates what module the parameter be-
longs to and "parm" indicates which parameter it is. The colon (:) must appear
to distinguish where the module name ends and the parameter name starts.

Port Names

Port names are similar to parameter names in that they are qualified by the
name of the module and a colon between the module name and port name.
The port name is usually an integer indicating the number of the input or out-
put port. Port numbers use zero based indexing, so the first input port would
be 0, the second input port is 1, etc. Output ports use the same numbers. Pa-
rameter ports can also use integers, starting after the input port count (if there
are 3 input ports (0, 1, and 2), the first active parameter port would be 3). Pa-
rameter ports may also use the parameter name itself just like references to
the parameter value. Ports can be connected to regardless of whether or not
they are "visible".

Combining Networks

This section describes some advanced features that allow the CLI greater con-
trol over how networks get merged together and managed as separate sub-

Introduction

5-8 COMMAND LANGUAGE INTERPRETER

nets, options not directly available through the current user interface. All of
these features are used by the Data Viewer module as a means of creating and
managing networks to form a larger network.

Module Tags

Module tags are a means of grouping together related modules for easier han-
dling using the CLI. Modules that have the same tag can be moved together,
hidden from view, disabled, or destroyed with a single command. This pro-
vides support for reading in a network as a single unit and deleting it as a sin-
gle unit without disturbing other modules in use. It also allows for generic
reference to pieces of a network that fulfill a given function (data input, data
processing, etc) when grafting in a network (see "Module Maps" below).

The module command has a -tag option which permits a tag identifier to be
added to the module directly using the CLI or while being read back from a
network file. A tag identifier can be any valid single string token (if spaces are
enclosed, quotes are necessary). The net_read command also has a -tag option
that will automatically add tags to any modules instantiated while reading
the network file.

A number of commands optionally take tags to reference all modules with the
given tag. The net_clear command, for example, will delete only those mod-
ules with the given tag (the -not_tag option deletes all but those with the giv-
en tag). If there were six different tags used and we wanted to delete three of
those tagged groups, three calls to net_clear using the -tag option would se-
lectively remove them.

Module Maps

AVS networks are easily merged using the Read Network (net_read) opera-
tion, but this in itself does not allow the networks to be directly combined.
The use of module maps allows for more direct control over how the net-
works are grafted together to share select resources and operations.

A module map is a list of existing module instances that should be used in-
stead of creating new instances when reading in a network file. The map is
created using the net_map command to add or remove specific modules or
tagged groups to the map or to list the current map. When the network file is
read in using a specific module map, each module creation request first
checks to see if there is a module with the same base name in the map.

For example, if read image.user.1 is in the module map when AVS reads in a
new network which has an instance of read image in it, then the mapped read
image.user.1 is connected to rather than instantiating a new module and add-
ing widgets to it. The existing read image module only gets the same connec-
tions that the network file specifies; any new widget layout and parameter
settings are ignored. The existing module will retain its original tag value and
will not pick up a new tag from the file being read in.

Writing CLI Scripts

COMMAND LANGUAGE INTERPRETER 5-9

A module map can also use tags to reference all modules in a group. The first
module in a tagged group that is found to match a map request while reading
a network file is used. (Only one module is mapped into the net in place of the
one in the network file).

In a few cases, it is useful to map modules to modules that have different
names but which have the same types of inputs and outputs. For example,
you might want to set up a generic base network with ucd read field in it but
you want to be able to graft in a generic network with read field in it instead.
Type tags allow similar modules to be identified. These are different from the
module tags described above in that they are only used in mapping opera-
tions. The module -type_tag option allows an additional qualifier to be added
that provides another map match key. If a module is not otherwise matched
and there is a module in the map with the same -type_tag value, then a match
is made even though they have different names. In the example described
above, if both the ucd read field module and read field modules had the same
type tag, such as "field input", then they would match.

Pend Operations

Pend operations request that a new module be inserted into an existing net-
work. A module can be prepended or postpended to another module, insert-
ing itself in between the specified module and the modules that are connected
to it on a particular port (the -prepend and -postpend options on the module
command). This can be useful to provide additional filtering before or after a
module without specifically referring to the connections that are being dis-
connected and reconnected to include the new module. When the new mod-
ule is deleted or the -unpend option is used, the connections that were broken
in the initial operation are remade between the original modules. As an exam-
ple, in a network consisting of "read field.user.0" connected to "print field.us-
er.1", the following command would create a new instance of "clamp" inserted
between the two:

module clamp -postpend "read field.user.0:0"

When the "clamp" module is deleted, the original connection between the
"read field" and "print field" modules is recreated.

Writing CLI Scripts

CLI scripts are most easily generated by recording network operations and
parameter settings using the script command. Scripts can also be written or
edited by hand or generated by a program. AVS can then be driven under CLI
control to reproduce a series of operations, in effect providing a basic mode of
animation. They are useful for simple animations, test suites, and demonstra-
tions.

A script is basically very similar to a network file except that each individual
step is seen by the user rather than being done all at once. It includes parame-
ter settings that are to be done sequentially (changes are seen after each set-

Writing CLI Scripts

5-10 COMMAND LANGUAGE INTERPRETER

ting) rather than all at once during initialization. It also allows you to change
network connectivity and control what is running.

Writing Scripts

The easiest way to write a CLI script is to let AVS write the basic script for you
and then use that ASCII file as a template. This minimizes the confusion in
determining which commands to use and what names to give to things.

• Start up avs with the -cli option
avs -cli other options

and enter the network editor as you normally would
• In the standard input window (the xterm you started from) give the fol-

lowing command:
script -open <your file> -echo yes

This will start a new file that records the CLI equivalent of the actions you
perform using the mouse. It will always begin with a Clear Network op-
eration so that it can start off with a clean slate. It will prompt you for ver-
ification if there is an existing network. If you want to create a script using
the current network, first do a Write Network to save the network and its
current state and then once you have begun the script, use Read Network
to read it back in again.

• Now you can do basic network editing operations and parameter settings
and they should be recorded out to your file. It should capture the follow-
ing CLI commands (and echo a line out to standard output):

make/move/delete module (module/mod_delete)
Disable (enable) module (module)
connect/disconnect modules (port_disconnect/port_connect)
parameter changes (parm_set) using the modules widgets
 all except the track widget are recorded.
Clear Network (net_clear)
Read/Write Network (net_read/net_write)
Disable (enable) Flow Executive (to batch changes) (net_flow)
Port Visible (port_vis)
All directly typed in CLI commands
Layout Editor operations

• Many common operations are not recorded out to scripts. These include
all operations in the Geometry Viewer, Image Viewer, and Graph View-
ers. You have to edit these commands into your script manually to
achieve full animation capabilities. The -echo option on the script com-
mand allows you to see what is and what is not recorded out to the script.

• You can add comments to your script as you go by typing
script_check "Comment that describes what you are doing"

These comments are echoed when the script is played back and appear in
the script controller widget (if it is being used). They tell the user what

Writing CLI Scripts

COMMAND LANGUAGE INTERPRETER 5-11

should be happening and provide breakpoints that can be used when
playing the script back.

• When you are done, type the following:
script -close

Quitting without closing the script will loose the last output buffer.

Playing Back Scripts

You should now be able to play the script back by typing the following com-
mand:

script -play <your filename>

All scripts generated directly by AVS will begin with a net_clear operation to
clear away any existing network and start a session with a blank slate. It will
not prompt you for verification at this point so be sure to save your existing
work if it is important. Manually edited scripts need not have a net_clear op-
eration in them if that is not desired but you need to be careful that when they
are played back the network context that they expect is available. The script
command has some options detailing how quickly it will play back the script
and what it will do as it runs. It can "break" at each command or just at the
script_check comment points; and when it breaks it can pause for a fixed
number of seconds or prompt for user input to continue.

You can also take advantage of the sh (shell) command to run an external sys-
tem command such as sleep for a given number of seconds. There is also a
CLI command, script_sleep, which will sleep for a given number of seconds
while permitting other AVS operations (coroutine modules running, user in-
tervention, etc) to proceed at the same time.

If you wish to interrupt a script while it is playing back, you can hit the return
key repeatedly until you see a prompt appear:

Script - User Interrupt (continue - c, quit - q):

You must then type either c to continue with the script or q to quit and return
immediately to the avs> prompt.

Errors or warnings that normally cause a dialog box to appear will instead
cause a message to be output on standard terminal output. If a choice is re-
quired, the default choice is automatically selected and the script proceeds.

The Script Controller Browser

An easier alternative to using the script command for playback is to use the
Script Controller Browser. Hit any Help button (on Network Editor, etc) and
on the help browser that appears there is a button labeled Help Demos. Hit-

Commands

5-12 COMMAND LANGUAGE INTERPRETER

ting that button will present the Script Controller Browser showing the scripts
available in /usr/avs/demo/man_scripts. You can type in an alternate directory
and then select the desired script file. Once a script starts you will get some
new buttons on the browser (Pause, Continue, and Abort) that let you pause
momentarily during the script, continue or stop completely. When the script
is finished, the network is left in place unless you added a Clear Network
command to the script (which is not necessary). If it seems to be running very
slowly, type script -sleep 0 at standard input to get it to avoid pausing after
each command that is executed.

The Script Controller Browser is a topic browser (like the main help browsers)
which means it looks in the current directory for an optional .topics file that
has the filename and a descriptive line about it. This allows you to provide a
list of what the scripts do that is more informative than "script1"; topic brows-
ers are described in more detail in the "On-Line Help Facility" appendix.

The Script Controller Browser can also be obtained using the script command
(using the -interface option).

Script Suites

There are several additional features of script playback that allow for a series
of scripts to be played in succession to allow for demo loops or extensive test
suites to be run.

• When playing back a script you can give the script command the -quit
option which tells AVS to quit when the script is finished.

• You can start AVS giving it a CLI command to run immediately:
avs -cli "script -play <myfile> -sleep 0 -quit"

starts AVS, runs the script, and then exits. Without the -quit option, AVS
will continue to run, expecting subsequent commands from standard in-
put or other direct interaction from the user.

• You can specify multiple scripts to play in a single script command as in
script -play <file1> <file2> <file3>

and when the first file is done, the next will be run, etc.
• You can chain from one script to another. If a script file hits a script com-

mand in it, it will close itself and start that other script file instead. This
feature can be used to create a demo or test loop; an initial script file can
contain a script command which starts a series of other scripts, the last of
which is the initial script filename.

Commands

Commands are grouped into related command sets. This section describes the
supported CLI command sets, providing additional background information

Commands

COMMAND LANGUAGE INTERPRETER 5-13

on the concepts that they use. Online help information is available for an en-
tire set as a whole or for individual commands. Typing "help" will describe
how the help command works and list the major command sets:

 Basic CLI commands
 Network editor commands
 Geometry viewer commands
 Graph viewer commands
 Image viewer commands
 User interface layout commands
 Application commands

There are some unsupported commands which are not described here and
may be subject to change in subsequent releases. General help on these com-
mands is available using the -unsupported flag in the help command. Also
there have been some command name changes since the AVS 2 release for
greater consistency between commands. These names are still recognized for
compatibility, but will not appear in general help requests unless the -alias
flag is used. Requests for help on any individual command will work regard-
less of the help flag settings.

Command Usage Notation

• All commands and options are in lower case as shown in the usage mes-
sages. CLI commands are case sensitive as noted above in "Basic Con-
cepts".

• { } indicate optional clauses or tokens
• <name> indicate tokens to be replaced with user values as opposed to lit-

eral strings
• "..." indicates repeatable phrases
• | indicates "either OR"
• / indicates similar tokens with same phrase structure as in

-a/b <name> means "-a foo" or "-b foo" are allowed

• # indicates a comment describing an option
• () indicates where an abbreviation is allowed

(c)lose means that "c" alone is adequate

• * indicates a wildcard match for a value. Only a few specific commands
recognize this value.

Basic CLI Commands

These are basic commands used to control the flow of CLI commands from
files (source, script, etc.), manage variables for easier reference, and provide
help and other general services.

Commands

5-14 COMMAND LANGUAGE INTERPRETER

General Commands

help — List available commands or command sets
With no arguments it will list a summary of the main command sets. A
capital letter will match a command set name and list that command set.
A specific command name will show a full description for that command.
An asterisk (*) will show a brief summary of all commands. A name end-
ing in an asterisk (*) will show commands starting with that name. Some
commands are not supported or intended for continued use and these are
only shown when special options are used (-alias, -unsupported) and are
flagged accordingly. Except for specific command requests, a shortened
description is given two flags (-full and -usage) can be used to expand
help given.

help {-alias } # Show commands which are aliases for other commands
 {-full} # Show full description and usage for command sets
 {-unsupported} # Show commands which are not yet supported
 {-usage} # Show usage information for command sets
 { <capital letter> # Show summary of commands in a command set
 { <command> | * } # Show full help on specific command or all commands.

quit — Quit from AVS with optional confirmation dialog
Ordinarily, this command will immediately quit out of AVS. The -dialog
option will present the standard confirmation dialog box before exiting.
The -status option will cause AVS to return an exit status number consist-
ing of the number of Error and Fatal level messages generated during the
session to support automated testing.

quit { -dialog} { -status}

sh — Send command to external sh
This executes commands in an external Unix shell. All output goes to
standard output so this may not work properly in some CLI modes (mod-
ule access for instance). All arguments are sent to the shell together and
do not need to be quoted into a single string. However some shell con-
ventions such as macros and output redirection are overridden by CLI
command processing.

sh <any>

version — Identify avs version
This command is useful to check the current AVS version number and is
also used in network files to record the version number of the AVS kernel
that wrote the network file. In interactive situations, providing a version
string has no effect.

version { <version string> }

Script Commands

For more information, see the section above on "Writing CLI Scripts".

Commands

COMMAND LANGUAGE INTERPRETER 5-15

script_check — Checkpoint comment for script playback
In record mode, saves script_check command to script output; in play-
back or normal mode, writes out <comment> to output with optional
pause or break depending on script command options.

script_check { <comment> }

script — Manage script output or playback
This command is used both to create scripts (-open and -close) and to
play them back (-play). It can also be used to present the Script Controller
Browser in a specific directory (-interface). During playback, the default
mode is to read each command, wait until the network has finished exe-
cuting, and then proceed with the next command. The -break and -action
options allow for AVS to pause after each command and either wait for a
given number of seconds or wait until the user hits return to continue.

script { <operation_clause> } | { <action_option> } | { <echo_clause> }
 # If no arguments, prints current status of script operations
 # Operation clauses - first letter is sufficient
 -o(pen) <filename> # open a script file for output
 -c(lose) # close script output
 -p(layback) <filename> {<filename>...} # read back script file
 -i(nterface) {<dirname} / close} # open or close script controller panel
 # Action Options - first letter is sufficient
 -b(reak) { s(tep), c(heck) } # When to break
 # on each command (step) or script_check
 -a(ction) { p(ause), u(ser_prompt) } # What to do on break
 -s(leep) <n> # number of seconds to delay for pause
 # Other clauses
 -e(cho) {y | n} # Echo script lines as they are read in or recorded
 -q(uit) # quit when script finishes

script_sleep — Pause for number of seconds during script
This command will permit modules to run while the CLI is waiting for
the given number of seconds to elapse and will allow X and other input
events be processed.

script_sleep <seconds> # Number of seconds to sleep (float)

source — Read commands from file (without pausing after each)
This command is very similar to the script command but does not wait
for modules to finish executing before advancing. It should only be used
when all commands need to be executed immediately, without the Flow
Executive running until the file has been read in completely.

source { <filename> ...}

Variables Commands

The CLI recognizes local variables whose values are substituted in place of
the original token (or part of a token) when the CLI command is interpreted.
For more information on variables see the section in "Basic Concepts" above
on "Variable References".

Commands

5-16 COMMAND LANGUAGE INTERPRETER

var_get — Get current value of specific CLI variables
If only one variable is given, just its value is returned. If multiple values
are requested, then the name and value of the requested variables are dis-
played. If no variables are requested, all known variables are displayed.

var_get {<varname> ...}

var_set — Set the current value of a CLI variable
Any unknown variable is created automatically. This command cannot be
used to modify system defined variables, such as DataDirectory, Net-
workDirectory, Module, Path, and Pid. The value can be given directly or
derived from an environment variable. If the environment variable is not
found, a default value can be provided.

var_set <varname> <value> | {-env <env_varname> {<default>}}}

Network Editor Commands

These commands are used to create and delete modules, connect ports, save
and set parameter values, and list out current network state information.
They are presented in subgroups of related commands which handle network
wide operations, manipulate modules, make connections, and modify param-
eters.

When typing directly at the CLI it can be difficult to know which commands
are of the greatest use. It is useful to highlight certain commands that provide
good information about the current state of the network and control it.

• Available Modules: The mod_show command is useful to find out the
available modules (module palette) that can be instanced OR to find out
general information about existing module instances. It will optionally
list port or parameter descriptions as well but doesn’t describe connec-
tions or parameter values.

• Network State: The net_show command describes the current network in
terms of the modules it is made up of and the connections between those
modules. It displays its output in terms of module and port_connection
commands.

• Flow Control: The net_flow command is very useful to disable module
computation when setting a series of parameter values when they should
be treated as a batch of changes instead of incremental changes.

• Parameter Settings: The parm_save command will list the current values
of select parameters or all parameters in the form of parm_set commands.
It provides the best template for changing parameter values. The mod_-
show command provides some additional range information on parame-
ters.

One of the best ways to see what the CLI commands do is to use the script
command (script -open <myfile> -echo yes) which will echo out the equiva-
lent CLI commands for most interactive network editing operations. The CLI
output may include options that are not required in direct input. For example,
the following session would work quite well to produce a simple network:

Commands

COMMAND LANGUAGE INTERPRETER 5-17

avs> module "read image" -alias ReadImage -xy 10,10
"read image.user.0"
avs> module "display image" -alias DisplayImage -xy 10,60
"display image.user.1"
avs> mod_show -all
MODULE "read image.user.0" (ReadImage) TYPE: data FLAGS: C subroutine
 OUTPUT [0] "Field Output" TYPE: "field 2D 4-vector byte"
 PARM [0] "Read Image Browser" TYPE: string RANGE: $NULL ""
MODULE "display image.user.1" (DisplayImage) TYPE: render FLAGS: C subroutine
 INPUT [0] "Image Input" TYPE: "field 2D 4-vector byte" FLAGS: required
 PARM [1] Magnification TYPE: choice RANGE: "x1 x2 x4 x8 x16" " "
 PARM [2] Automag_Size TYPE: integer RANGE: 50 1024
 PARM [3] "Maximum Image Dimension" TYPE: integer RANGE: 100 4096
avs> port_connect ReadImage:0 DisplayImage:0
avs> sh ls /usr/avs/data/image/*.x
/usr/avs/data/image/mandrill.x /usr/avs/data/image/avs.x
/usr/avs/data/image/marble.x
avs> parm_set ReadImage:"Read Image Browser" /usr/avs/data/image/mandrill.x

Network Commands

net_clear — Clear the entire network or a tagged group of modules
Without any argument it will delete all modules and their user interface
and reset network editor; with an optional tag, it will only delete the
modules that match that tag (the -not_tag option deletes those that don’t
match).

net_clear {-tag/not_tag <tag>}

net_flow — Enable or disable the flow executive, or wait for it to complete
This command controls module computation and is very useful to batch
related parameter changes together so that they occur in one step rather
than a number of incremental changes. Wait is only supported through
the server communications port and not interactively; it is used to wait on
the Flow Executive to finish executing the active modules. Restart and re-
start_default are operations that restart dead modules with the current
parameters and default parameters respectively.

net_flow { on | off | restart | restart_default | wait }

net_group — Manipulate a group of modules together based on tag refer-
ences

This command is used to move or hide groups of module icons in the
Network Editor, and to enable or disable groups of modules, based on
module tags. It is used by application modules combining several net-
works into one.

net_group {-tag <tag>} # identify a group of modules or all by default
 {-xy X,Y} # move the modules by the given amount
 {-on/-off} # enable or disable the modules
 {-hide/-show} # hide or show the modules in the network editor workspace

net_map — List or modify maps of shareable resources
A map is a list of existing modules that is used in place of new modules
during a net_read operation and is used to build aggregate networks
with shared data source modules and renderers or other shared modules.
With no arguments, the existing map names are listed. With only a map
name, that map’s contents are listed. Other options add or delete individ-

Commands

5-18 COMMAND LANGUAGE INTERPRETER

ual modules or tagged groups to a map or clear it to empty. See the sec-
tion in "Basic Concepts" above on "Module Maps".

net_map {<mapname> { {-add/delete <module> } | { -add_tag/delete_tag <tag> }
 | {-clear}}

net_read — Read network description from file
A network file consists of optional comments (#), a version command,
and then a series of commands that define modules, make connections,
set parameters, and then define the user interface layout of the network.
The network is read in its entirety before any modules begin execution. It
may apply a tag identifier to all resulting modules and/or selectively sub-
stitute existing modules for new ones based on a map.

net_read <filename> { -map <map_name>} { -xy <x,y>} {-tag <tag>} {-substack}
 -map <map_name> option substitutes shared modules from map
 -xy <x,y> option offsets module boxes positions by a given amount delta
 -tag <tag> option stamps new modules or widgets with tag
 -no_pends option to suppress checking for pended modules during mapping
 -substack option makes file’s Top Level Stack a substack named tag

net_show — Print out existing network connectivity
This is displayed in form of module and port_connect commands. An op-
tional tag will show those modules in a network with that tag and con-
nections which are output from that set of modules.

net_show {-tag <tag>}

net_write — Write network description to file
This command stores out the network connectivity, parameter settings
and user interface layout as CLI commands. It is essentially equivalent to
the output of the following CLI commands: version, net_show, parm_-
save -range, and layout -root.

net_write <filename>

Module Commands

module — Create or modify a module instance
The module is created if it does not already exist and its name is printed
out. If the module exists it is changed to match the given arguments. If the
name is given without a ".user.N" prefix it is assumed to be a request to
create a new module; the new name will be printed out.

The pend operations connect the module in between other modules or re-
move it from a previous pend operation. A tag is an added identifier that
allows a module to be referenced as part of a group of related modules.

module <module.user.N>
 {-xy X,Y} # location of module in network editor work space
 {-host <host_name>} # remote host name
 {-ex <module_path>} # location of module executable
 {-on/-off} # enable or disable the module
 {-alias <module alias>} # optional unique permanent name for module
 {-parent <macro name>} # this module is contained in the macro module
 {-macro } # this module is a macro module
 {-unshared} # prevents the module being mapped out during readnet

Commands

COMMAND LANGUAGE INTERPRETER 5-19

 {-prepend <module:port>} # insert module before module port
 {-prepend_tag <tag>} # insert module before tagged group
 {-postpend <module:port>} # insert module after module port
 {-postpend_tag <tag>} # insert module after tagged group
 {-unpend } # remove module from pended connections

 {-tag <tag>} # set or change the module tag ("" to clear)
 {-type_tag <type_tag>} # set or change the type tag ("" to clear)
 {-unshared} # prevents the module being mapped out during readnet

mod_delete — Delete individual modules
This command "hammers" one or more module instances in a network; it
does not remove modules from module libraries.

mod_delete <module> { ... }

mod_exec — Execute module regardless of changed inputs or parameters
If the flow executive is disabled it will just add the module to the queue
for later execution when the flow executive is re-enabled

mod_exec <module>

mod_group — Select a group of modules within an area
This command performs the lasso operation within the Network Editor
and is used only during script recording. With no arguments it clears the
selection.

mod_group {<x1 y1 x2 y2>}

mod_lib — Module library operations
Read or write a module library, select the current library, or list the librar-
ies that are currently loaded.

mod_lib { -read <pathname> } | { -select <libname> } | { -list } |
 {-write <libname> <pathname>}

mod_read — Read the module(s) that are in the given executable file
The modules are added to the currently selected module library palette
and can subsequently be instanced using the module command.

mod_read <module filename> { <host name> }

mod_show — Display information about one or more user or system mod-
ules

This command may be used to see the ports and parameters of a module
or some of its internal flags that are not displayed by the module com-
mand. If there is no module specified it will list all modules; otherwise it
will list one or more modules. The -system option lists the modules in the
module libraries that can be instanced.

The basic display for a module is to indicate its basic description:

MODULE <name> (<alias>) TYPE: <type> FLAGS: <various flags>

Using the -inputs, -outputs, -parms, or -all flags will show

INPUT/OUTPUT/PARM [<n>] <name> TYPE: <type> FLAGS: <flags>

Commands

5-20 COMMAND LANGUAGE INTERPRETER

The PARM output also lists range information where appropriate for the
data type.

mod_show { <module> ...} {-all/parms/inputs/outputs }
 {-type data/filter/mapper/render} {-system { -host <host> }}

present — Present a module control panel or a viewer panel
This can pop up the module panels just like hitting the module dimple or
the viewer panels like hitting the viewer pop up list. The viewer names
are those that appear on the main AVS menu buttons and must be given
in their entirety, i.e. "Network Editor", "Geometry Viewer", etc. Names are
case sensitive. The Network Editor accepts two optional values: -closed
enters the editor with the main editor window initially closed; -nobutton
permanently inhibits the Display Network Editor button to prevent the
user from examining the network. The -closed and -nobutton options are
only valid for the "Network Editor" and control the initial appearance of
the Network Editor work space.

present {<module>} | { -tag <tag>} | {<viewer name>} {-closed {-nobutton}}

Parameter Commands

parm_save — Save parameter values - all(default) or individually
This command displays current parameter settings in the form of parm_-
set commands. If no module name or parameter name is given, all cur-
rent parameters are displayed. If a tag is given, only modules in the
tagged group are checked.

The -since flag allows selective display of parameters that have changed
since particular reference points; since the module began execution
(exec), since the module was created (init), or since an arbitrary check-
point (check). Each check request clears the flags on the parameters re-
quested and so updates the "checkpoint" automatically.

The -range option displays the parameter’s minimum and maximum val-
ues when they have been changed by a module because of input data it
has received. The -oneshots option is used to request that oneshot param-
eters be shown as well.

parm_save {-tag <tag>} {-since exec | init | check } { -range }
 { -oneshots} { <module> | <module>:<parm> ... }

parm_set — Set parameter value
If the value is not accepted by the parameter it is ignored and an error
message is displayed. The -range option is only permitted when reading
a network file, to restore the minimum and maximum values that the pa-
rameter originally had when the network was saved.

parm_set <module>:<parm> <value> { -range <minvalue> <maxvalue> }

Port Commands

port_connect — Connect two module ports together

port_connect <module_from>:<output_port> <module_to>:<input_port>

Commands

COMMAND LANGUAGE INTERPRETER 5-21

port_disconnect — Disconnect two modules from each other

port_disconnect <module_from>:<output_port> <module_to>:<input_port>

port_vis — Control visibility of a port

port_vis <module>:<portname> {-on/-off}

port_add — Add port to a macro module

port_add <module>:<portname> <type> {-in/-out}

port_delete — Delete port from a macro module

port_delete <module>:<portnumber> {-in/-out}

Creating Macro Modules From CLI

This section contains information on how macro modules are stored using
CLI commands. The information might be useful to users who want to hand
edit networks, dynamically modify networks, etc.

Macro modules are created with the module command using the -macro op-
tion. For example:

module foobar.user.0 -xy 100,100 -ex /tmp/foo -macro -type 1

The command creates a macro module that has no input or output ports. In-
put and output ports are created for the macro module with the port_add
command. For example:

port_add -in foobar.user.0:"port name" "field 2D 4-vector byte" \
 -flags 0x2

This example adds a single input port to the "foobar" module. The values for
the flags argument (in this case 0x2) should be obtained from the include file
avs.h. In this case we are specifying that the port be OPTIONAL and MULTI-
PLE. This is a good default for macro ports.

Children modules are added to the macro module by adding a -parent option
onto the module command that creates them. The -parent option shouldn’t be
used with existing modules as it is ignored.

Connections are made from modules outside the macro to the macro in the or-
dinary way. Connections are made from modules inside the macro to the
ports of the macro using the IN->... and OUT->... modules. The output ports
of the module called "IN-> foobar.user.0" are used to represent the input ports
of the macro module. Similarly the input ports of "OUT-> foobar.user.0" are
used to represent the outputs of the macro module. Here is an example com-
mand that connects the crop module to the input port of the macro module:

port_connect "IN-> foobar.user.0":0 crop.user.1:0

Commands

5-22 COMMAND LANGUAGE INTERPRETER

Macro Module Description File

The macro module description file (the file created when you save a macro
module) is just a special case of a network file. The first macro module created
in the network is assumed to be the macro that is defined in that file. When
you use the Read Module operation on this file, this is the module whose de-
scription is generated. When you instance a macro module, the network file
that describes it is simply merged into the currently active network.

Another Way to Create Macro Modules From CLI

The above commands describe how the macro module is saved either in the
macro module description file or in a network file that contains the macro
module. One other way to create macro modules from within a network is to
reference the macro module description file. This has the advantage that the
description file is used every time that the network is read, but the disadvan-
tages that you must transport the macro file with the network, and that the
network is sensitive to incompatibile changes made in the module description
file. For example, if you delete a widget or a port in the module description
file, the network file will still contain references to the removed widget or port
and will generate error messages.

module foobar.user.0 -ex /tmp/foo

When this command is encountered in a network file, the macro module de-
scription file, /tmp/foo in this case, is used to start the module, just like any oth-
er module. Also like any other module, this module is loaded into the current
module library.

Geometry Viewer Commands

These commands control the state of the Geometry Viewer and manage
changes to transformation matrices and properties of objects, cameras, lights,
and texture maps. There are several different situations in which a user might
want to use the Geometry Viewer CLI:

• As a command line interface to obtain Geometry Viewer functionality ei-
ther for more precision, to script or batch operations, or to access func-
tionality not available through the Geometry Viewer interface. In
particular, there is functionality for saving Geometry Viewer scenes in
PostScript that is not available through the user interface.

• To edit saved networks, scenes or object script files.
• To control the Geometry Viewer application from a module using the

AVScommand function. The Geometry Viewer CLI provides a slightly
larger set of operations than using the geom data type and also provides 2-
way communication. Using the CLI, the programmer can query as well as
set properties of objects. The Animator module, for example, uses the Ge-
ometry Viewer CLI to control animations in the Geometry Viewer.

Commands

COMMAND LANGUAGE INTERPRETER 5-23

An important note before we begin discussing the details of the geometry
viewer CLI: unlike many other operations in AVS, the Geometry Viewer CLI
commands are meant to be batched. Almost no commands directly cause the
scene to be refreshed themselves. Instead, you must explicitly refresh the
scene when you want to see the results of your changes with the geom_re-
fresh call (see below).

Geometry CLI State

It is often the case that the user will want to use Geometry Viewer commands
without affecting the user visible state. Each stream of Geometry Viewer CLI
commands, therefore, has its own state including a current object stack and a
current scene. Commands that the user types at the CLI prompt will not affect
the state of a script being played back or the state of command received from
a module.

By default, the CLI state corresponds to the state that the user sees. Unless the
user sets it explicitly, the current CLI object will always be the same as the us-
er’s current object. If you are typing commands at the prompt, this may very
well be the behavior that you desire. If, however, you are generating a CLI
script or executing commands from a module, you may not want to change
the properties of a scene or object in a more predictable way. The current us-
er’s state should not affect the objects that you modify in this case.

If you want to control the state yourself, you should first set the current CLI
scene. If you don’t set the scene, it will default to choosing whatever scene the
user has currently selected. You can set the current scene either by creating a
new scene with the command geom_create_scene or by setting an existing
scene with geom_set_scene.

geom_create_scene— Creates a new scene
The new scene becomes the current CLI scene for further CLI commands.
At the time of creating the scene, you can specify the name of the scene
and/or the name of the default camera. These names are useful to refer to
the view or scene in later CLI commands.

geom_create_scene [<X Y W H>] [-view <name>] [-scene <scene name>]

geom_set_scene— Sets the current CLI scene to an existing scene
To set the current CLI scene to an existing scene requires knowing the
name of a geometry viewer or render geometry module, the name of the
scene, or you can set the scene to the user’s current scene with:

geom_set_scene [-module <geom module name>] [-scene <scene name>]
 or with no arguments for the current scene

Once you have selected the scene you are operating on, many commands re-
quire you to specify an object to operate on. Particularly when generating
scripts it is convenient to deal with the notion of a current object rather than
having to specify the object for each command. Since objects in the geometry
viewer are hierarchical, it is most convenient to have the notion of a current
object stack. Unless you are dealing with hierarchies (or editing a script that
does), you don’t need to concern yourself with the object stack. You simply

Commands

5-24 COMMAND LANGUAGE INTERPRETER

change the current object by setting the object on the top of the stack. The
command to control the current CLI object is:

geom_set_cur_cli_obj— sets the current CLI object
When issued with no arguments this command sets the current CLI object
to the same object as the current UI object. If the -push argument is used,
it pushes the current object onto the top of the stack (moving the previous
top of the stack to the second and so on). The -push argument does not
change the current CLI object. If the -pop argument is used, the object on
the top of the stack becomes the current CLI object. If an object name is
specified, the current CLI object is replaced and the stack is unaffected.

geom_set_cur_cli_obj [-push] [-pop] [object name]

Beware that this command is different than the command geom_set_cu-
r_obj which sets the user’s notion of the current object.

Saving/Restoring Scenes and Objects

When a user saves a scene with the Save Scene button or saves an object with
the Save Object button, the state of the scene or object is saved as Geometry
Viewer CLI commands (usually referencing one or more geom files to obtain
the raw geometry information). These files will contain all of the necessary
commands to reproduce the state of the saved object or scene. The only differ-
ence in the file formats used by Save Object and Save Scene is the commands
that are saved. For example, the first line of a file created by Save Scene is
geom_create_scene.

The files saved by the Geometry Viewer commands are just CLI command
scripts. The Geometry Viewer treats them just like other normal CLI com-
mand scripts that might contain network editor commands, etc. In particular,
the Read Object and Read Scene commands do exactly the same thing when
given a file with the .scr suffix except for the fact that the Read Object com-
mand will create a new scene if there is not an existing current scene, whereas
the Read Scene command assumes that the script will create a scene.

Because Geometry Viewer CLI scripts are just lists of commands, users can
create scripts that perform other operations that do not necessarily create ob-
jects or scenes. Scripts can set up different lighting environments, control ob-
ject rotations and viewing environments, or execute geometry animations.

Geometry CLI Versus .obj and .scene Files

AVS supports two additional native file formats .obj and .scene. Any file with
these suffixes are interpreted to be of these formats which were used to store
object and scene files in previous versions of AVS. These file formats can still
be generated by AVS by setting the environment variable: AVS_GEOM_-
WRITE_V30. The CLI format for storing geometry commands is more gener-
al than these other formats because it allows for editing of objects, cameras
and lights rather than simply creating objects cameras and lights.

Commands

COMMAND LANGUAGE INTERPRETER 5-25

Saving Network Geometry State

When a network containing a geometry viewer or render geometry module
is saved, the internal state of those modules are saved as Geometry Viewer
CLI commands. These geometry CLI commands are very similar to those cre-
ated when the Save Scene button is used. There is one significant difference.
When the user saves a file with Save Scene, if the geometry description for a
particular object is not know to be currently saved in a file, the user is prompt-
ed for a file to save this geometry. When saving geometry state as part of a
network though, it is assumed that the modules in the network will regener-
ate all of the geometry necessary to reproduce the scene. This may not always
be the case. If the current settings of the module’s parameters will not regen-
erate all of the geometry, the user will have to save each of these objects’ ge-
ometry by hand using the Save Object button in the Geometry Viewer.

Naming Objects, Cameras and Lights

Many commands operate on an object. In such cases, the object can either be
specified with the -object <name> option. If left unspecified, the object will
choose the current CLI object as mentioned in the above section Geometry
CLI State. Object names, by default, are not given any suffix. For example, if
the object was generated by a module, it will have the appendix ".<n>" where
the number <n> depended on the module instance. To specify the particular
instance of the object, the user would have to type the ".<n>" suffix in addi-
tion to the root of the object name.

If you are dealing with objects generated by a module, it is sometimes conve-
nient to have this suffix automatically appended. You can do this by setting
the "name context" to the name of the module that is generating the geometry.
This is done with the command:

geom_set_name_context— Sets the name context
If given a <module name> argument, it will set the name context to the
name specified. Otherwise it unsets the name context meaning that, in the
future, names will no longer be modified.

geom_set_name_context [<module name>]

Some commands allow the specification of a particular camera. There are two
ways that cameras are named, either sequentially as: "-camera 1", "-camera 2",
etc. where "-camera 1" is the first camera in the current list of cameras or abso-
lutely with the specific camera name as "-view <name>". Note that the num-
bered mechanism may cause problems if you delete cameras. If you delete
"camera 1", then "camera 2" becomes "camera 1". The second method requires
knowing the name of the camera which may not be appropriate for all situa-
tions.

Lights are referred to by number, e.g. "-light 1".

Some commands allow the specification of an object or a camera or a light. In
these cases, if you specify no argument, the default is to choose the current
object. You must specify an option to choose a light or a camera.

Commands

5-26 COMMAND LANGUAGE INTERPRETER

Matrix Operations

geom_get_matrix — Returns the transformation for an object, camera, or
light
The transformation is a 4x4 matrix.

geom_get_matrix {-object <name> } { -camera {1-n}/-view <name> } { -light {1-n} }
 { -absolute } (gives redirected object’s matrix if applicable)

geom_set_matrix — Sets a transformation for an object, camera or light

 geom_set_matrix {-object <name> } { -camera {1-n}/-view <name> } { -light {1-n} }
 { -mat <4x4 mat> -rx,-ry,-rz <angle> -tx,-ty,-tz <val>
 -sx,-sy,-sz,-sxyz <val> }

geom_concat_matrix — Appends a transformation to an object or camera

geom_concat_matrix {-object <name> } { -camera {1-n}/-view <name> } { -light {1-n} }
 { -mat <4x4 mat> -rx,-ry,-rz <angle> -tx,-ty,-tz <val>
 -sx,-sy,-sz,-sxyz <val> }

geom_set_transformable — Sets the transform to object, light, camera or
map

geom_set_transformable { object | light | camera | map

Global Object Commands

geom_set_bounding_box — Turns the object bounding box feature on

geom_set_bounding_box { 1 (on) | 0 (off) }

geom_normalize — Normalizes the specified object

geom_normalize {-object <name> } <camera name>

geom_reset — Resets the specified object

geom_reset {-object <name> } { -camera {1-n}/-view <name> } { -light {1-n} }

geom_refresh — Refreshes the current CLI scene

geom_refresh

geom_get_center — Returns the center of the object

geom_get_center {-object <name> } <object name>

geom_set_center — Sets the center for rotation and scaling of an object

geom_set_center {-object <name> } { -camera {1-n}/-view <name> } { -light {1-n} }
 <X Y Z>

geom_set_position — Sets the position of a camera, light or object

geom_set_position {-object <name> } { -camera {1-n}/-view <name> } { -light {1-n} }
 <X Y Z>

Commands

COMMAND LANGUAGE INTERPRETER 5-27

geom_get_extents — Returns extent information for an object
The extent consists of the xmin, xmax, ymin, ymax, zmin and zmax of the
object.

geom_get_extents {-object <name> } <object name>

Browser Commands

geom_show_prop_editor — Raises the property editor

geom_show_prop_editor

geom_show_texture_editor — Raises the texture editor

geom_show_texture_editor

geom_show_object_info — Raises the object info window

geom_show_object_info

geom_show_object_list — Display the browser of object names

geom_show_object_list

 geom_show_camera_ice— Display the popup camera ICE
Popup the camera color editor widget.

geom_show_camera_ice

 geom_show_lights_ice— Display the popup lights ICE
Popup the lights color editor widget.

geom_show_lights_ice

 geom_show_labels_ice— Display the popup labels ICE
Popup the labels color editor widget.

geom_show_labels_ice

Object Commands

geom_get_cur_obj_name — Returns the name of the user’s current object

geom_get_cur_obj_name {-object <name> }

geom_set_cur_obj — Changes the user’s idea of the current object to the ob-
ject named

geom_set_cur_obj {-object <name> }

geom_set_cur_cli_obj — Changes the cli’s current object to the object speci-
fied
or pushes this name onto the stack or pops the name off of the stack.

geom_set_cur_cli_obj [name] [-push] [-pop]

Commands

5-28 COMMAND LANGUAGE INTERPRETER

geom_get_all_obj_names — Returns the names of all the objects in a scene
This function returns a list of the object names in the current scene. A
newline character is the delimiter between two object names.

geom_get_all_obj_names {-object <name> }

geom_lookup_obj_names — Returns object names associated with a mod-
ule
Only returns the names of objects in the current scene.

geom_lookup_obj_names <module name>

geom_create_obj — Creates an object
The created object will initially have no geometry. If the -unique option is
used, the name will append a suffix to ensure that the object does not ex-
ist. This option is useful if you are trying to create a script that can be read
in multiple times to create different instances of the same object descrip-
tion. The [-mod <module>] will generate the name of the object as though
it had been created by the specified module. A ".<n>" suffix will be ap-
pended to the name.

geom_create_obj {-object <name> } <object name> [-mod <module>] [-unique]

geom_read_geometry— Add geometry to an existing object from a file
This commands reads the geometry from the .geom file specified and adds
this geometry to the current CLI object (or the object specified with the -
object option). If the -replace option is used, any original geometry that
the object had will be discarded. Otherwise, the geometry is added to the
object. If the -subset option is used, only the geometry objects with the
specified group name will be added to the object. See the documentation
on the routine GEOMset_object_group() for information for attaching a
group name to a GEOMobj.

geom_read_geometry {-object <name> } [<filename>] [-subset <name>] [-replace]

geom_read_obj — Reads an object from a geometry file

geom_read_obj <filename.geom> -name <object name>

geom_save_obj — Saves all the current object’s geometries

geom_save_obj <filename>

geom_delete_obj — Deletes the named object

geom_delete_obj {-object <name> }

geom_set_trans_mode — Sets the object’s transform mode
See the documentation for the GEOM libraries for more information on
the transform modes.

geom_set_trans_mode {-object <name> }
 { redirect | normal | notify | parent | ignore }

geom_set_select_mode — Sets the object’s selection mode
See the documentation for the GEOM libraries for more information on
the selection modes.

Commands

COMMAND LANGUAGE INTERPRETER 5-29

geom_set_select_mode {-object <name> } { normal | notify | parent | ignore }

geom_get_visibility — Returns the visibility of the object

geom_get_visibility {-object <name> }

geom_set_visibility — Sets the visibility/state of an object

geom_set_visibility {-object <name> }
 { 0 (invisible) | 1 (visible) | -1 (delete)

geom_get_color — Returns the color of the object
or the background color of the camera or the light color.

geom_get_color {-object <name> } { -camera {1-n}/-view <name } { -light {1-n} }

geom_set_color — Sets the color of an object, light or camera
Sets the object or light color or background color of a camera.

geom_set_color {-object <name> } { -camera {1-n}/-view <name } { -light {1-n} }
 <R G B> (all numbers between 0 and 1)

geom_get_properties — Returns the properties of the object

geom_get_properties {-object <name> }

geom_set_properties — Sets the material properties of an object

geom_set_properties {-object <name> }
 [-amb <val> -diff <val> -spec <val> -exp <val> -trans <val>
 -spec_col <R G B>]

geom_set_parent — Sets the parent for a given object

geom_set_parent {-object <name> } [-mod <module>] parent_name

geom_set_texture — Sets the texture for a given object

geom_set_texture {-object <name> } file name | dynamic

geom_delete_texture — Deletes the current object’s texture map

geom_delete_texture

geom_set_UV_map — Sets the current object’s UV texture map

geom_set_UV_map

geom_set_texture_map — Sets the texture map for a given object

geom_set_texture_map {-object <name> } {sphere | plane}

geom_show_map — Shows the current object’s UV texture map

geom_show_map < 1 (on) | 0 (off)>

geom_get_render_mode — Returns the render mode of the object given

geom_get_render_mode {-object <name> }

Commands

5-30 COMMAND LANGUAGE INTERPRETER

geom_set_render_mode — Sets the render mode for the object

geom_set_render_mode {-object <name> }
 {lines | gouraud | flat | smooth_lines | points | phong}

geom_set_backface_cull — Turns the backface cull feature on

geom_set_backface_cull {-obj <name>} [normal | back | front | flip | inherit]

geom_set_subdiv — Sets the subdivision level for spheres
The subdivision value is the same as the value that is displayed on the
menu.

geom_set_subdiv { -object <name> } <subdiv val: number from 1 -> 8>

geom_set_clip— Sets the clip plane state for the specified object
The Geometry Viewer provides the capability to associate a "clip plane"
with a specific object. The orientation of the clip plane is defined by the
transformation of the object. Such a "clip object" can be used to clip any
object in the scene (including itself). This clipping relationship is set up
with the geom_set_clip command.

This command takes two objects as arguments. The current CLI object (or
the object specified by the -object option) is the object to be clipped. The
object specified as the argument "<clip object name>" in the usage below
is the object to clip the other object (called the "clip object"). The clip object
can either clip the other object to the inside or outside. If the inherit state
is selected, the other object will inherit the clip attribute for this clip ob-
ject. If the ignore option is selected, this other object specifically won’t
clip against this object (this would be used to override a inside or outside
state set to the parent of the other object).

geom_set_clip {-object <name> } <clip object name>
 -state <inside | outside | inherit | ignore>

 geom_set_name_context — Takes a string (usually a module name) to use
to create unique names

geom_set_name_context <module name> or no arguments to reset the context

Light Commands

geom_set_light — Sets the color, type and state of a light

geom_set_light { -light {1-n} }
 -color <R G B> -type <type name> -state <boolean>

geom_get_light — Returns the properties of the light, color, state and type

geom_get_light { -light {1-n} }

geom_show_lights — Shows the position of the current light

geom_show_lights < 1 (on) | 0 (off) >

Commands

COMMAND LANGUAGE INTERPRETER 5-31

Camera Commands

geom_set_scene — Sets the scene to operate on

geom_set_scene [-module <geom module name>] [-scene <scene name>]
 or nothing for the current scene

geom_set_obj_window — Sets the window range for an object for normal-
ization

geom_set_obj_window {-object <name> } <xmin> <xmax> <ymin> <ymax> <zmin> <zmax>

geom_create_scene — Creates a new scene

geom_create_scene <X Y W H> [-view <name>] [-scene <name>]

geom_create_camera — Creates a new camera
Creates a new camera. If a position and size are given, they are used to
determine the position and size of the window otherwise a default size
and position are chosen. If the -view option is given, it determines a cam-
era name that can be used in subsequent camera operations.

geom_create_camera <X Y W H> [-view <name>]

geom_delete_camera — Deletes the specified camera

geom_delete_camera {-camera {1-n}/-view <name>}

geom_read_scene — Reads a scene from a scene file

geom_read_scene <filename.scene>

geom_save_scene — Saves all the current scene

geom_save_scene <filename>

geom_set_renderer — Changes the renderer used to render a camera
The renderer name should be one of the renderers that is supported on
your system. The renderer name is the name that appears in the menu,
e.g. "Software Renderer".

geom_set_renderer { -camera {1-n}/-view <name> } <renderer name>

geom_set_freeze_camera — Turns the freeze camera feature on

geom_set_freeze_camera {-camera {1-n}/-view <name>} < 1 (on) | 0 (off) >

geom_get_view_modes — Returns the viewing modes of the current view

geom_get_view_modes

geom_set_view_modes — Sets the viewing modes for the current scene

geom_set_view_modes {<-depth_cue 1|0> | <-z_buffer 1|0> | <-shadows 1|0> |
 <-global_anti_alias 1|0> | <-perspective 1|0> | <-accelerate 1|0> |
 <-axes_for_scene 1|0> | <-front/back_clipping 1|0> | <-double_buffer 1|0>}

geom_show_camera— Sets the visibility of the camera specified

geom_show_camera { -camera {1-n}/-view <name> } < 1 (show) | 0 (hide) >

Commands

5-32 COMMAND LANGUAGE INTERPRETER

geom_resize_camera— Changes the size of the window of the camera

geom_resize_camera { -camera {1-n}/-view <name> } <width> <height>

geom_set_background— Sets the background color for the current scene

geom_set_background <R G B>

geom_set_camera_params— Sets camera orientation and position
This command sets the parameters that control the camera orientation
and projection. These parameters are: "from" (the from point), "up" (the
up direction), "at" (a point you are looking at), "wsize" (the window size),
"fov" (field of view angle), "front" (the distance from the ’from’ point to
the front clipping plane), "back" (the distance from the ’from’ point to the
back clipping plane).

geom_set_camera_params { -camera {1-n}/-view <name> }
 -from <X> <Y> <Z> -up <VX> <VY> <VZ> -at <X> <Y> <Z>
 -wsize <S> -fov <A> -front <D> -back <D>

geom_save_postscript— Saves the specified camera in a PostScript file
This command implements a feature that is not available elsewhere in the
Geometry Viewer user interface. It has some limitations but provides a
significant piece of functionality. With this command, the user can save a
particular view as a PostScript file. Unlike the image to PostScript mod-
ule, this command outputs lines and text objects as PostScript objects.
This increases the resolution of the primitives from the resolution of the
screen image to the resolution of the printer which is generally much
higher.

The PostScript language does not provide primitives for doing shading or
hidden surface removal. It is best, therefore, to use the image operation
when significant surface information is present. This command attempts
to combine both techniques—using an image to represent surface objects
and using native PostScript primitives to represent lines and labels.

If this command does not perform the function adequately, the Software
Renderer functionality allows you to generate images that are larger than
screen resolution. This is prohibitively slow in many cases however.

NOTE: To use this command, you must enable the Software Renderer on
the specified view or an error will be generated.

The default behavior of this command is to output only the line primi-
tives encountered in the scene. Colors and depth cueing affects are ig-
nored as is the background color of the scene. This will generally produce
a picture with black lines on a white background.

Additional options are:

• -lw <val> — set the line width of the lines to use. The value is in de-
vice coordinate space (1/300th of an inch) for an ordinary laser print-
er.

• -grey — use the greyscale color model. Take the luminence of the ob-
jects and use this as a color. The background color of the window will
be used in this case as well. If lines are vertex colored, the average of
the two colors will be used to draw a solid colored line.

Commands

COMMAND LANGUAGE INTERPRETER 5-33

• -color — use the color of the objects to produce a color PostScript file.
The background color of the window is used. If lines are vertex col-
ored, the average of the two colors will be used to draw a solid col-
ored line.

• -image — include an image that represents the surfaces. Line primi-
tives will be overlayed on top of this image.

• -zbuffer — attempt to perform hidden line removal with the line
primitives. Note that the line removal is generated at the resolution of
the image window. Increasing the size of the window will produce a
more accurate result even if this is used without the -image option.

• -land — output the image in landscape mode where the horizontal
dimension of the image maps to the vertical dimension of the page.

• -eps — output encapsulated PostScript.
• -pw <page width> — set the width of the page in inches (default is

7.5).
• -ph <page height — set the height of the page in inches (default is

10.5).

geom_save_postscript { -camera {1-n}/-view <name> }
 -lw <line width> -zbuffer (zbuffer lines)
 -image (save non-line/labels)
 -color -grey (as opposed to b+w)
 -eps (encapsulated) -land (landscape)
 -pw <page width> -ph <page height>

Action Commands

geom_cycle_store — Sets the state of the Store Frames flag for cycles

geom_cycle_store < 0 (off) | 1 (on) >

geom_append_frame — Appends the current object to the current cycle

geom_append_frame

geom_delete_frame — Deletes the current object from the current cycle

geom_delete_frame

geom_cycle_direction — Sets the direction of cycles

geom_cycle_direction 0 (backwards) | 1 (forwards)

geom_cycle_motion — Sets the motion of cycles

geom_cycle_motion 0 (off) | 1 (continuous) | 2 (bounce)

geom_set_cycle — Makes the specified object a cycle
This command takes an existing object that is a parent object and turns it
in a cycle (or flipbook) of geometries. A flipbook is like a group of objects
except that only one object in the group is visible at a given time. To create
a flipbook from the CLI, first create a parent object, then create your indi-
vidual frames as children of this parent. Before displaying the result, you
set the "cycle" property of the parent object and it becomes a flipbook.

geom_set_cycle {-object <name>} <0 (no cycle) 1 (cycle)>

Commands

5-34 COMMAND LANGUAGE INTERPRETER

Image Viewer Commands

These commands control the state of the Image Viewer and manage changes
to transformation matrices and properties of images, subimages, views, and
other information. The easiest way to get started writing Image Viewer com-
mands is to use AVS interactively to generate a complex scene in the Image
Viewer and to then save it out with Save Scene. The resulting .ims scene file is
written in Image Viewer CLI commands. Also see the directory /usr/avs/demo/
image_viewer for some Image Viewer scripts provided with the AVS distribu-
tion. For more general information, see the AVS User’s Guide chapter on "The
Image Viewer Subsystem".

Scene Commands

image_read_scene — Reads a scene from a scene file

image_read_scene <filename>

image_save_scene — Save a scene to a scene file

image_save_scene <filename>

image_create_scene — Create a new scene with scene location and size

image_create_scene <xlocation ylocation width height>

image_show_image_list — Display the scrolling list of image names

image_show_image_list

image_show_view_ice — Display the Views popup ICE
This command pops up the Viewport Background Color control widget.

image_show_view_ice

image_show_label_ice — Display the Labels popup ICE
This command pops up the label Color Editor widget.

image_show_view_ice

View Commands

image_create_view — Create a new view with view location and size

image_create_view <xlocation ylocation width height>

image_delete_view — Delete a view

image_delete_view

image_set_view_size — Sets the position and size of a view

image_set_view_size <xlocation ylocation width height>

image_get_view_size — Returns the size of a view

image_get_view_size

Commands

COMMAND LANGUAGE INTERPRETER 5-35

image_set_view_transformation — Sets a transformation for a view

image_set_view_transformation { -tx,-ty <val> -sx,-sy,-sxy <val> }

image_get_view_transformation — Returns the transformation of the im-
age or view

image_get_view_transformation

image_set_color — Sets the background color of a view

image_set_color <R G B> (all numbers between 0 and 1)

image_get_color — Returns the background color of the view

image_get_color

Image Commands

image_create_image — Creates a new image without any data associated
with the image

image_create_image { -image <name> }

image_read_image — Reads an image from an image file

image_read_image { -image <name> } <filename>

image_write_image — Writes an image to an image file

image_write_image { -image <name> } <filename>

image_duplicate_image — Duplicate an image

image_duplicate_image { -image <name> }

image_delete_image — Delete an image

image_delete_image { -image <name> }

image_reset — Resets an image position to the initial setting

image_reset { -image <name> }

image_normalize — Normalizes an image position to the current view

image_normalize { -image <name> }

image_set_image_transformation — Sets a transformation for an image

image_set_image_transformation { -image <name> }
 { -tx,-ty <val> -sx,-sy,-sxy <val> }

image_get_image_transformation — Returns the transformation of the im-
age or view

image_get_image_transformation { -image <name> }

Commands

5-36 COMMAND LANGUAGE INTERPRETER

image_set_visibility — Sets the visibility/state of an image

image_set_visibility { -image <name> }
 0 (invisible) | 1 (visible) | -1 (delete)

image_get_visibility — Returns the visibility of the image

image_get_visibility { -image <name> }

image_raise_image — Raise the image

image_raise_image { -image <name> }

image_lower_image — Lower the image

image_lower_image { -image <name> }

image_zoom_in — Zoom in the image

image_zoom_in { -image <name> }

image_zoom_out — Zoom out the image

image_zoom_out { -image <name> }

image_set_scale_control — Sets the scale control buttons (1 = on, 0 = off)

image_set_scale_control <scalex scaley>

image_set_bounding_box — Turn the bounding box on or off (1 = on, 0 =
off)

image_set_bounding_box

Image Processing Technique Commands

image_read_technique — Reads in an image processing technique

image_read_technique <name of technique>

image_set_technique_position — Sets the position and size of the image
processing window

image_set_technique_position { -tx <val> ty <val> -sx <val> sy <val> }

image_zoom_to_image — Applies the current image processing technique
to the entire image

image_zoom_to_image

image_set_technique_window — Sets whether the current image process-
ing technique will be In Place or New Window

image_set_technique_window 0 (New Window) | 1 (In Place)

image_set_current_image — Store the current viewed image into the image
data area

image_set_current_image

Commands

COMMAND LANGUAGE INTERPRETER 5-37

image_restore_current_image — Restores the current viewed image to the
original image

image_restore_current_image

Label Commands

image_label_name — Create a new label for the image

image_label_name { -image <name> } { -label <name> }

image_label_transformation — Sets a transformation for a label

image_label_transformation { -image <name> } { -label <name> }
 { -tx,-ty <val> }

image_get_label_transformation — Returns the transformation for a label

image_get_label_transformation { -image <name> } { -label <name> }
 <xtran ytran>

image_label_color — Sets the color of a label

image_label_color { -image <name> } { -label <name> }
 <R G B> (all numbers between 0 and 1)

image_get_label_color — Returns the color of the label

image_get_label_color { -image <name> } { -label <name> } <R G B>

image_label_height — Sets the height of a label

image_label_height { -image <name> } { -label <name> } (a number between 0 and
1)

image_get_label_height — Returns the height of the label

image_get_label_height { -image <name> } { -label <name> }

image_label_attributes — Sets the display properties of a label

image_label_attributes { -image <name> } { -label <name> }
 [-justify <val> -bold <val> -italic <val> -font_num <val>]

image_get_label_attributes — Returns the attributes of the label

image_get_label_attributes { -image <name> } { -label <name> }
 <justify bold italic font_num>

Cycle Commands

image_read_cycle — Reads a cycle from a cycle file

image_read_cycle <filename>

image_save_cycle — Save a cycle to a cycle file

image_save_cycle <filename>

Commands

5-38 COMMAND LANGUAGE INTERPRETER

image_cycle_read_data — Reads data from an image file (.x) and puts it in
the cycle

image_cycle_read_data { -image <name> } <filename>

image_append_frame — Appends the current image to the current cycle

image_append_frame { -image <name> }

image_delete_frame — Deletes the current image from the current cycle

image_delete_frame { -image <name> }

image_cycle_store — Sets the state of the Store Frames flag for cycles

image_cycle_store { -image <name> } 0 (off) | 1 (on)

image_cycle_direction — Sets the direction of cycles and moves one image
in the new direction

image_cycle_direction { -image <name> } 0 (backwards) | 1 (forwards)

image_cycle_motion — Sets the motion of cycles

image_cycle_motion { -image <name> } 0 (off) | 1 (continuous) | 2 (bounce)

image_cycle_speed — Sets the replay speed of cycles

image_cycle_speed { -image <name> } <0 -> 30>

Graph Viewer Commands

These commands control the state of the Graph Viewer. For more general in-
formation, see the AVS User’s Guide chapter on "The Graph Viewer Sub-
system".

Reading Plot Data

graph_read_ascii_data — Reads in ASCII data file

graph_read_ascii_data <filename.dat>

graph_read_plot_file — Reads in AVS Plot data file

graph_read_plot_file <filename.plt>

graph_read_field_data — Reads in AVS Field data file

graph_read_field_data <filename.fld>

graph_read_ximage — Reads in X Image file

graph_read_ximage <filename.x>

Commands

COMMAND LANGUAGE INTERPRETER 5-39

Modes for Reading Data

graph_set_data_format — Sets the current data format mode

graph_set_data_format 0 (One Column) | 1 (Two Column) | 2 (Multi Column)

graph_set_one_column — Sets the state of one column input

graph_set_one_column X Axis Intervals, Y Axis Column, Color Column

graph_set_two_column — Sets the state of two column input

graph_set_two_column X Axis Column, Y Axis Column, Color Column

graph_set_multi_column — Sets the state of multi column input

graph_set_multi_column Color Selection, Level Selection
 (0 (Auto) | 1 (Value) | 2 (User)), Levels, Start Range, End Range

graph_set_contour_levels — Sets individual contour levels

graph_set_contour_levels <level1 level2 ... leveln>

Writing Plot Data

graph_write_ascii_data — Writes out ASCII data file

graph_write_ascii_data <filename.dat>

graph_write_plot_file — Writes out AVS Plot data file

graph_write_plot_file <filename.plt>

graph_write_postscript — Writes out PostScript

graph_write_postscript <filename.ps>

graph_write_geometry — Writes out AVS Geometry file

graph_write_geometry <filename.geom>

graph_output_image — Send an image to the Graph Viewer module’s out-
put port

graph_output_image

General Plotting

graph_set_plot_mode — Sets the current plot mode

graph_set_plot_mode 0 (Replace) | 1 (Add to) | 2 (Create New)

graph_normalize_plot_data — Sets the state of plot data normalization

graph_normalize_plot_data 1 (normalize on) 0 (normalize off)

graph_delete_plot_window — Deletes the current plot window

graph_delete_plot_window

Commands

5-40 COMMAND LANGUAGE INTERPRETER

graph_delete_plot_dataset — Deletes the current plot dataset

graph_delete_plot_dataset { -graph <number> }

graph_set_plot_size — Sets the size of the plot window

graph_set_plot_size x y

Titles and Labels

graph_set_plot_title — Sets the title for the current plot

graph_set_plot_title <title>

graph_set_title_info — Sets the state of the plot title

graph_set_title_info Font(0-5), Bold(0|1), Italic(0|1), Drop Shdw(0|1),
 Height(0.0-1.0), Position(0|1|2), r(0.0-1.0), g(0.0-1.0), b(0.0-1.0)

graph_set_plot_xlabel — Sets the x axis label for the current plot

graph_set_plot_xlabel <x axis label>

graph_set_xlabel_info — Sets the state of the plot x axis label

graph_set_xlabel_info
 Font(0-5), Bold(0|1), Italic(0|1), Drop Shdw(0|1), Height(0.0-1.0),
 Position(0|1|2), r(0.0-1.0), g(0.0-1.0), b(0.0-1.0)

graph_set_plot_ylabel — Sets the y axis label for the current plot

graph_set_plot_ylabel <y axis label>

graph_set_ylabel_info — Sets the state of the plot y axis label

graph_set_ylabel_info
 Font(0-5), Bold(0|1), Italic(0|1), Drop Shdw(0|1), Height(0.0-1.0),
 Position(0|1|2), r(0.0-1.0), g(0.0-1.0), b(0.0-1.0)

graph_set_ticlabel_info — Sets the state of the plot tic label

graph_set_ticlabel_info
 Font(0-5), Bold(0|1), Italic(0|1), Drop Shdw(0|1), Height(0.0-1.0),
 Position(0|1|2), r(0.0-1.0), g(0.0-1.0), b(0.0-1.0)

Plot Legend

graph_set_legend_pos — Sets position of the legend within the plot

graph_set_legend_pos <x y> (both numbers between 0.0 and 1.0)

graph_set_legend_label — Sets the legend label for a dataset

graph_set_legend_label { -graph <number> } <label>

graph_set_legend_label_info — Sets the state of a legend label

graph_set_legend_label_info { -graph <number> }
 Font(0-5), Bold(0|1), Italic(0|1), Drop Shdw(0|1), Height(0.0-1.0),
 Position(0|1|2), r(0.0-1.0), g(0.0-1.0), b(0.0-1.0)

Commands

COMMAND LANGUAGE INTERPRETER 5-41

Miscellaneous Dataset Information

graph_set_plot_style — Sets the style of the current plot

graph_set_plot_style { -graph <number> }
 0 (Line) | 1 (Scatter) | 2 (Area) | 3 (Bar)

graph_set_plot_color — Sets the color of the current plot

graph_set_plot_color { -graph <number> } r, g, b (0.0 - 1.0)

graph_set_line_thickness — Sets the style of the current line thickness

graph_set_line_thickness { -graph <number> }
 a number between 0 and 50

graph_set_line_style — Sets the style of the current line

graph_set_line_style { -graph <number> }
 0 (Solid) 1 (Dash) 2 (Dot) 3 (Dot-Dash)

graph_set_scatter_symbol — Sets the symbol for the current scatter plot

graph_set_scatter_symbol { -graph <number> } <symbol>

graph_set_scatter_info — Sets the state of the scatter plot symbol

graph_set_scatter_info { -graph <number> } Font, Height

graph_set_xaxis — Sets the state of the x axis

graph_set_xaxis
 Axis Scale(0|1), From, To, Tic Marks(0|1|2|3), Num Tics, Precision

graph_set_yaxis — Sets the state of the y axis

graph_set_yaxis
 Axis Scale(0|1), From, To, Tic Marks(0|1|2|3), Num Tics, Precision

graph_show_line_ice — Presents the Line Color Editor popup

graph_show_line_ice

graph_show_scatter_ice — Presents the Scatter Color Editor popup

graph_show_scatter_ice

graph_show_bar_ice — Presents the Bar Color Editor popup

graph_show_bar_ice

graph_show_area_ice — Presents the Area Color Editor popup

graph_show_area_ice

graph_show_label_ice — Presents the Label Color Editor popup

graph_show_label_ice

Commands

5-42 COMMAND LANGUAGE INTERPRETER

User Interface Layout Commands

Introduction

This section describes the CLI commands used to create or modify the user in-
terface layout of an AVS network. These commands offer additional control
over the user interface to more advanced users or module developers, provid-
ing for complete control over default user interface layouts and supporting
dynamic user interfaces that can be reconfigured to respond to changing con-
ditions during use.

A layout is a arrangement of manipulator widgets, that are used to input data
to module parameters, and panel widgets, which organize other manipulator
or panel widgets into a hierarchy. The choice of which module parameters are
accessible to the user and how they are presented is very important in making
a usable application out of a collection of modules or in making a complex
module with a large number of parameters more manageable. The layout hi-
erarchy may closely parallel the network’s organization as modules; alterna-
tively, it may combine parameters from different modules into shared panels
as appropriate.

A layout may be created and modified in several different ways: the AVS ker-
nel creates default layouts automatically; the user can interactively change the
layout in the Network Editor; or the user or a module can use CLI layout
commands.

The most common approach is to allow the AVS kernel to build a default lay-
out automatically, based on the modules that are used in a network and the
order and data type of the parameters that they define. Through the use of pa-
rameter properties, the module writer can influence how the default layout
will appear. This approach is described more fully in the "AVS Routines" ap-
pendix.

When the default layout is unsatisfactory, the user can interactively alter the
default layout using two different components of the Network Editor: the
Layout Editor and the Parameter Editor. The Layout Editor permits the user
to grab individual widgets and change their position or size, reparent them to
reorganize the hierarchy, change what kind of widget is being used, or delete
them entirely. The Parameter Editor provides a complementary way to
change the type of widget being used without directly controlling placement
or parentage. These facilities are described in the "Network Editor" chapter in
the AVS User’s Guide.

The third approach is to use the CLI layout commands directly to select what
kind of widget is used; its placement, size, and place in the hierarchy; and
other properties, such as visibility. The commands can be used in several
ways. Since networks and their layouts are stored out in the form of CLI com-
mands, a developer can directly edit the network file to fine tune geometry or
widget properties. A more powerful application of the layout commands is to
use them from a module to directly create or reconfigure the module’s own

Commands

COMMAND LANGUAGE INTERPRETER 5-43

user interface. A module with many parameters may be easier to use if its de-
fault layout is reorganized into related groups of parameters on different pan-
els, in a stack panel widget, which shows one child panel at a time, depending
on which button is selected. A more complex module, such as the Module
Generator, can use the layout commands to initially hide portions of its user
interface and only present them when they are appropriate.

Basic Layout Concepts

The layout commands consist of edit commands (manipulator, panel, shell),
which can incrementally create, modify, or reorganize widgets; a general que-
ry command (layout) which will report the current layout of part or all of the
widget hierarchy in terms of edit commands; a general destroy command
(delete_widget); and an environment command (window_mgr) which tells
AVS which window manager environment is in use, to allow it to accurately
determine top level window locations.

The layout widgets are object oriented and organized into a class hierarchy.
All widgets are widgets and can be operated upon by the layout and delete_-
widget commands. There are two major subclasses, manipulators and panels,
each of which has their own editing command (manipulator and panel),
since they respond to slightly different options. Manipulators are widgets that
control the value of a module parameter, and panels organize manipulators
and other panels into a widget hierarchy. Manipulators have subclasses based
on the parameter data type and can be changed to different subclasses of the
same data type (i.e. a real parameter can change from a dial to a slider). A
simplified widget class hierarchy looks like this:

widget
 manipulators
 integer-type widgets
 idial
 islider
 real-type widgets
 dial
 slider
 panels
 panel
 stack

The edit commands take a widget name, and a series of optional clauses spec-
ifying the widget’s class, immediate parent, position, size, properties and
some options such as visibility. An edit command will either create a new
widget or modify an existing one; unspecified options will be set to default
values when creating a new widget. The widget name is the basis for associat-
ing the widget with a module or module parameter and is described at some
length below. For example, if an instance of the "clamp" module had no user
interface, you could create a dial widget and attach it to the "clamp_min" pa-
rameter with the following command:

manipulator clamp.user.0:clamp_min -w dial

Commands

5-44 COMMAND LANGUAGE INTERPRETER

Missing information such as the widget’s parent, location, and size will de-
fault to appropriate values.

The layout command can be used to report on part or all of the widget hierar-
chy, down to a specified level. If we asked about the manipulator widget that
was just created it might look like this:

layout clamp.user.0:clamp_min

and produce:

manipulator clamp.user.0:clamp_min -w dial -p clamp.user.0 \\
 -xy 10,10 -wh 90,130

The delete_widget command destroys one or more widgets by name, leaving
the underlying modules or parameters without any current user interface. To
remove the widget that was just created we would enter:

delete_widget clamp.user.0:clamp_min

The widget can now only be recreated by using a new manipulator or panel
command, as appropriate.

Widget Naming

Panel widgets are used to organize other widgets and may be directly associ-
ated with individual AVS modules. Manipulator widgets are always associat-
ed with parameters. The widget name is the basis for making the association
between the widget and the module or parameter.

A panel with the same name as a module is recognized as that module’s main
control panel and will be the default parent for manipulator widgets attached
to its parameters. The name can either be the standard instance name such as
("clamp.user.0") or an alias name (see "Module Names and Aliases" above);
when referenced from within a module by the AVScommand function, the
name should be the $Module generic name. One or more secondary panels
can also be associated with a module by a name prefixed by the module name
and an exclamation point (!), as in $Module!subpanel. A major advantage of
panels that are associated with a particular module is that they will be auto-
matically deleted when the module is destroyed. For example if the "clamp"
module needed to organize its widgets into subpanels, it might create a new
panel with the following command:

panel $Module!my_subpanel -p $Module

and the new panel would end up being called "clamp.user.0:my_subpanel" if
clamp was the first module in the network or "clamp.user.1:my_subpanel" if it
was the second module. For most of the examples given here, we will use the
instance name as if the commands were being typed into the CLI by the user.

Additional panels are used to organize the module panels and parameter ma-
nipulators. There are several standard system widgets which provide a com-
mon framework for network layouts. The root window is referred to as "ui", a

Commands

COMMAND LANGUAGE INTERPRETER 5-45

shell panel widget; all of its immediate children will be root level windows,
given window decorations by the window manager. The standard Network
Control Panel is an an app_panel panel widget named "Application"; it has the
AVS logo, help/viewers menu, and status bar built into it. The stack panel
widget called "Top Level Stack" is placed within "Application", and serves as
the default parent for all new module panels and "pages" and stacks created
by the Layout Editor. These relationships can be seen in a simplified layout of
a network with two modules, "boolean.user.0", which is contained within
"Top Level Stack" and "clamp.user.1", whose control panel was made a root
window.

shell "ui" shell
 panel Application -w app_panel -p ui
 panel "Top Level Stack" -w master_stack -p Application
 panel boolean.user.0 -w panel -p "Top Level Stack"
 manipulator boolean.user.0:boolean -w toggle -p boolean.user.0
 panel clamp.user.1 -w panel -p ui
 manipulator clamp.user.1:clamp_min -w dial -p clamp.user.1
 manipulator clamp.user.1:clamp_max -w dial -p clamp.user.1

The developer can create panels that are not associated with a particular mod-
ule, either using the Layout Editor or the CLI. The Create Page button in the
Layout Editor creates panel widgets named "page.N"; these are sometimes re-
ferred to as "pages" even though they are standard panel widgets. The Create
Stack button creates new stack panel widgets named "stack.N".

A manipulator widget with the same name as a module parameter will be at-
tached to that parameter (see the "Parameter Names" section above). If the pa-
rameter is modified by the module, the manipulator is automatically updated
to show the current value. When the parameter is destroyed, the widget is au-
tomatically destroyed as well.

In some cases, manipulators are also used to control the internal parameters
of widgets themselves. These are not seen very often but are used to refer to
panel title widgets. The names consist of the name of the widget itself, an ex-
clamation point and the name of the internal parameter.

Geometry

Widget geometry consists of the widget’s position (-xy) within it’s parent
window and its size (-wh). Both sets of coordinates are provided in canonical
screen size coordinates (a standard 1280x1024 screen). On different size
screens, these coordinates are scaled up or down automatically as the com-
mand is interpreted by AVS or saved out to a network.

The widget position does not need to be provided; it’s parent will provide a
default location if necessary, based on its current contents. Some panels, such
as stacks, ignore a requested location, placing all children in the same loca-
tion.

Commands

5-46 COMMAND LANGUAGE INTERPRETER

The widget size information is also optional; it will default to the standard
size established by the widget class. In some cases, widgets will ignore size
information because they are a fixed size.

Module Based Layout Control

Using the layout commands from a module offers the opportunity to prede-
termine the module’s default location or to dynamically change the module’s
interface during operation as changing conditions warrant that certain pa-
rameters appear or disappear. Standard AVS modules such as the Module
Generator or particle advector use these options to improve their user inter-
faces. Specifying Default Layouts

The layout property is a tool for creating a preferred default user interface. It
is a parameter property containing a block of one or more commands that will
be executed when the module is first instanced. This block can contain a sin-
gle command that specifies the manipulator widget that should be attached to
that individual parameter or an entire module user interface, complete with
new panels to regroup the various modules.

The basic procedure to create such a description is the following:

• Make an instance of the module in the Network Editor.
• Using the Layout Editor, rearrange the interface the way you want it.
• Using either the Write Network operation or the layout command direct-

ly from the CLI ("layout -none 0 mod_name > output_file"), write out the
module’s layout.

• Using a text editor make the following changes to make the layout de-
scription into a string block that the C compiler will like:
• Change all instances of the module name to $Module so it is generic.
• Change all quotation marks (") to escape-quote (\\") so that they are

handled as characters by the C compiler.
• At the end of each line, add a newline-continue string (\en\e) so that

the strings will be handled as one big string in C.
• Edit out layout command options that will default reasonably (such

as module panel location, etc.)
• Insert the resulting test as a string block property using an AVSadd_par-

ameter_prop command on the first parameter in the module.

For example, after saving a layout of an instance of the clamp module, and
editing the string into a block in the module description function, the result
might look like the following:

iparm = AVSadd_float_parameter("clamp_min", 0.0, FLOAT_UNBOUND, FLOAT_UNBOUND);

AVSadd_parameter_prop(iparam, "layout", "string_block",
 "panel $Module -w panel -p "Top Level Stack" -wh 200,150\n\
 manipulator $Module:clamp_min -w dial -xy 10,10 \n\
 manipulator $Module:clamp_max -w dial -xy 100,10 ");

Commands

COMMAND LANGUAGE INTERPRETER 5-47

Dynamic Layouts

The AVScommand function can be used from a module’s compute function
to talk to the CLI to query the module’s current layout or to actively rearrange
it through a combination of the manipulator or panel commands. As with the
layout property, some special conventions need to be followed to produce an
acceptable string; the module name should be the generic $Module name,
quotes need to be escaped and newlines need to be handled properly (at least
for multiple line command blocks). The module can issue commands to
change the size of its panel, rearrange widgets into different configurations to
conserve screen space or to change the visibility of individual widgets.

Layout commands

delete_widget — Delete individual widgets
Widgets are either panels (panel or stack class widgets) or manipulators
(widgets that change parameter values). Deleting a panel widget will also
delete all of its children unless they are locked against deletion (some im-
age or pixmap windows) in which case they will pop out of the panel and
become independent widgets. More than one widget may be deleted at a
time.

delete_widget <manipulator | panel> ...

layout — Write description of current layout
This command will list the current layout of selected widgets or all wid-
gets by default. If a panel widget is specified, the layout of all of its chil-
dren are displayed as well as the initial widget itself, depending on the
number of levels desired. Layouts are reported using manipulator or
panel commands. Each reports the widget name, the widget class (-w),
the widget’s parent (-p), the location (-xy), and the size (-wh). Widgets
may also report property values that have been modified from the initial
defaults in the form of -P <property name> <property type> <property
value>. (See also the discussion of the AVSadd_parameter_prop call in
the "AVS Routines" appendix of the AVS Developer’s Guide.

layout { options } { name,... }
 # Options to control how much layout information is presented
 {-l levels} # Number of levels in the hierarchy to report (default all)
 {-root} # Adjust reported window positions for window manager
 {-none 0/1} # Do not report widgets with -none as their widget class
 # (displayed by default)

manipulator — Create or modify a manipulator or list available classes
Manipulators are things like dials and sliders that are used to change
module parameter values. Their names take the form module:parameter.
The widget class must be compatible with the parameter type. Most ma-
nipulator widgets will ignore the size (-wh) option, although all browsers
will recognize it (in pixel coordinates). The parent widget must already
exist. Property values will alter the appearance or behavior of various
widgets. Manipulator options that are not specified will receive reason-
able default values - parameters will be parented to their module’s panel
widget, get a new location, default class, etc.

Commands

5-48 COMMAND LANGUAGE INTERPRETER

The -reconfig (reconfigure) option will request a manipulator to request
its parents to resize themselves. The -no_create option inhibits creating
the widget if it does not already exist. Manipulators may be hidden tem-
porarily from view using the -hide option and then be shown again using
the -show option.

The manipulator command with no arguments will list the current class-
es of widgets for the known parameter types. See the AVS Developer’s
Guide for more information on parameters, widgets, and widget proper-
ties.

For example, to attach a dial to a module parameter called "clam-
p.user.1:clamp_min" the following layout command might be used:

manipulator clamp.user.1:clamp_min -w dial -p clamp.user.1 -xy 10,10

This would attach a dial, parent the widget to an existing panel named clam-
p.user.1 (directly related to the module), and place it at 10,10 in that panel.
Use the Layout Editor to create a basic layout that you want and look at the
resulting network file layout commands for more examples.

manipulator { name {-w class} {-p parent} {-xy x,y} { -wh w,h}}
 { -show/hide } {-no_create} {-reconfig}}
 { {-P <prop name> <prop type> <prop value> } { ... } }

panel — Create or modify a panel widget or list available classes
Panels are widgets that can contain other widgets, such as manipulators
or other panels. Their names are either the names of existing modules (or
module aliases), or generated names such as "page.0", or user supplied
names. The size information may be ignored by certain classes of panels:
stacks will usually determine their own size. While there are a variety of
panel classes, the most useful are panels and stacks; most other classes are
special purpose classes for device managers or AVS system support.

The -reconfig option will request a panel to redetermine its ideal size
from its current collection of children and inform its parents. The -no_cre-
ate option inhibits creating the widget if it does not already exist. Panels
may be hidden temporarily from view using the -hide option and then be
shown again using the -show option. The -xwindow option will report
back the main X window in the panel to allow a module to parent its own
X window into the panel directly.

The panel command with no arguments will list the current classes of
panel widgets available. For more information on panel widgets (panels
and stacks), see the "Layout Editor" section in the "Network Editor" chap-
ter of the AVS User’s Guide.

panel {name {-w class} {-p parent} {-xy x,y} {-wh w,h}
 { -show/hide } {-no_create} {-reconfig}} {-xwindow}
 { {-P <prop name> <prop type> <prop value> } { ... } }

shell — Describe top level widget
This command is a place holder for information about the root widget (ui)
and is ignored by the CLI even though it is written out in layout informa-
tion.

shell (ignored)

Commands

COMMAND LANGUAGE INTERPRETER 5-49

window_mgr — Identify current window manager
The Layout Editor needs to determine the exact location of top level win-
dows. The report locations can be affected by the window manager being
used and the Layout Editor needs to make adjustments for various win-
dow managers to get reasonable values. The argument to this command
specifies the current window manager; with no arguments it will report
the window managers that it currently knows about. If your window
manager is not on the list, try the listed window manager values to see if
one of them is close enough.

window_mgr { <wm> }

Application Commands

These commands were developed to support application modules such as the
Data Viewer module. They provide several basic services such as asking for a
new file, controlling the help browser to present a particular help file, and cre-
ating and modifying the pull down menu bar.

choose_file — Choose file from a browser
This command is useful for applications to popup a browser for a filena-
me to be provided by the user. If the user closes the browser instead of se-
lecting a file, it will return $NULL; otherwise it will return the value
selected, constrained by the list of allowed extensions.

choose_file <choice name> { <directory> { <extensions>} }

doc_browser — Present the documentation browser
If no topic is given, the help browser is presented showing the most re-
cent topic. If a topic is given, the related topic documentation is presented
if possible; if the topic is not found, the default help file is presented in-
stead. The -check option just verifies that the topic can be looked up and
read in. Topic browsers are described in more detail in the "On-Line Help
Facility" appendix.

doc_browser { <topic> {-check} }

menu — Manage a list of menu items and associated callbacks
The menu command defines or modifies a pulldown menu on the menu
bar. Pressing a menu button executes an associated CLI command. A
menu is a named list of name-value pairs. Each <name> is shown as a
button and used when disabling or reenabling the menu item or deleting
it from the menu. A new name-value pair can be added in an initially en-
abled (-add) or disabled state (-add_disabled). The -clear option will
clear out the entire list. A series of -add, -delete, and -clear transactions
can be combined in a single menu command.

The value is either an entire CLI command (by default) or a value to be
sent to the module parameter that is associated with the particular menu.
The -modparm option specifies a particular module:parameter that will
receive the value when the button is hit. The -modparm_lock option re-

Commands

5-50 COMMAND LANGUAGE INTERPRETER

quests a variation in which a button hit will automatically lock the menu
bar until the module unlocks the menu bar using the -unlock option.

Before a menu can be seen it must be made a -pulldown, though it may
be built up and then made a -pulldown in a subsequent menu command.
If a <menuname> is given with no new options or value pairs, its current
contents is shown. If no menu names or options are given, the currently
known menu names are listed. A menu may be deleted from the list using
the -destroy option. You can only change the order by destroying the
menu and recreating it at the end of the list. Menus associated with mod-
ules are deleted automatically when the module is destroy. The menubar
is automatically cleared on a Net Clear operation.

Some operations control the overall menu bar itself: -show and -hide con-
trol its visibility, -lock and -unlock disable or re-enable any menu picking
operations, and -status enables or disables the display of the status bar.
For example, to make a simple menu that will send values to a module
parameter called clamp.user.1:clamp_min, the following commands
would create a menu:

menu ClampMenu -pulldown -modparm clamp.user.1:clamp_min \e
 -add "Min Value" 0.0 -add "Mid Value" 112.5
menu -show

Then later if the Min Value was temporarily an invalid operation, the fol-
lowing would grey out and disable the button until re-enabled:

menu ClampMenu -disable "Min Value"

menu { -show | -lock/unlock | -hide | -status on/off }
 {<menuname> {-modparm/modparm_lock <mod>:<parm>}
 { -pulldown }
 {-clear | -destroy | -add/add_disabled <name> <value> |
 -delete/disable/enable <name>} }

AVS LIBRARY ROUTINES A-1

APPENDIX A AVS
LIBRARY
ROUTINES

Introduction

The routines described in this section are designed for use from within AVS
modules. These routines allow module developers to implement the follow-
ing functions:

• Initializing and describing modules to AVS
• Parameter handling
• Accessing data
• Error handling
• Coroutine event handling

Include File

AVS supplies a number of header files that you should include in each
module. All modules written in C should include /usr/avs/include/avs.h and
all modules written in FORTRAN should include /usr/avs/include/avs.inc.
Although the #include compiler directive is shown in most of the FOR-
TRAN declarations, the include statement is preferred for portability rea-
sons. In addition, other header files are required by some routines. These
files are specified with the individual routine description.

Type Declarations

Many AVS routines can input and/or output different types of data, de-
pending on, for example, the data type the port is designed to handle. In
these situations, the routine’s parameter declaration is specified as:

<type>

AVS provides a variety of data access routines that facilitate access to com-
plex data types, such as AVS fields, AVS colormaps, and user-defined data.
These routines are described in this appendix. Using the AVS user-defined
data facility is described in Chapter 4.

Routine Summary

A-2 AVS LIBRARY ROUTINES

Routine Summary

The following list of AVS routines is organized by functional category. Com-
plete descriptions follow in the remainder of the chapter. Note that some rou-
tines are functions that return values. See the main routine descriptions.

Routines for Module Initialization

AVSinit_modules()
AVSinit_from_module_list(AVSmodule_list, count)
AVSmodule_from_desc(desc)

Routines for Module Description Functions

AVSadd_parameter(name, type, init, minval, maxval)
AVSadd_float_parameter(name, init, minval, maxval)
AVSadd_parameter_prop(param_num, prop_name, prop_type,
AVSautofree_output(out_port)
AVSconnect_widget(param_num, widget_type)
AVScreate_input_port(name, type, flags)
AVScreate_output_port(name, type)
AVSinitialize_output(in_port, out_port)
AVSload_user_data_types(filename)
AVSset_compute_proc(comp_func)
AVSset_destroy_proc(destroy_func)
AVSset_init_proc(init_func)
AVSset_input_class(port, class)
AVSset_module_flags (flag)
AVSset_module_name(name, type)
AVSset_output_class(port, class)
AVSset_output_flags(port, flags)
AVSset_parameter_class(port, class)

Routines for Modifying and Interpreting Parameters

AVSchoice_number(name, string)
AVSmodify_float_parameter(name, flags, init, minval, maxval)
AVSmodify_parameter(name, flags, init, minval, maxval)
AVSmodify_parameter_prop(name, prop_name, prop_type, prop_value)
AVSparameter_visible(name, stat)

Routine Summary

AVS LIBRARY ROUTINES A-3

Routines for Coroutine Modules

AVScorout_event_wait(nfds,readfds,writefds,exceptfds,timeout,mask)
AVScorout_exec()
AVScorout_init(argc, argv, desc)
AVScorout_input(input1, input2, ..., param1, param2, ...)
AVScorout_mark_changed()
AVScorout_output(output1, output2, ...)
AVScorout_set_sync(value)
AVScorout_wait()
AVScorout_X_wait(dpy, timeout, mask)

Status Monitoring Routines

AVSmodule_status(comment, percent)

AVS Command Language Interpreter Routine

AVScommand(destination, command_buffer, output_buffer, error_buffer)

Routines for Selective Computation

AVSinput_changed(port_name, i)
AVSmark_output_unchanged(port_name)
AVSparameter_changed(param_name)

Routines for Creating Fields

AVSPORT_FIELD(PORT_NAME)
AVSdata_alloc(string, dims)
AVSdata_free(type, data_ptr)
AVSfield_alloc(template, dims)
AVSfield_copy_points(field_in, field_out)
AVSfield_free(field)
AVSfield_make_template(field_in, template)
AVSbuild_field(ndim, veclen, uniform, ncoord, type, dim1, dim2, ...,

data, coords)
AVSbuild_2d_field(data, dim1, dim2)
AVSbuild_3d_field(data, dim1, dim2, dim3)

Routine Summary

A-4 AVS LIBRARY ROUTINES

Field Accessor Routines

AVSFIELD_DATA_OFFSET(FIELD, BASEVEC, OFFSET)
AVSfield_data_ptr(field)
AVSfield_get_dimensions(field, dimensions)
AVSfield_get_extent(field, min_extent, max_extent)
AVSfield_get_int(field, selector)
AVSfield_get_label(field, number, label)
AVSfield_get_labels(field, labels, delimiter)
AVSfield_get_minmax(field, min, max)
AVSfield_get_unit(field, number, unit)
AVSfield_get_units(field, units, delimiter)
AVSfield_invalid_minmax(field)
AVSFIELD_POINTS_OFFSET(FIELD, BASEVEC, OFFSET)
AVSfield_points_ptr(field)
AVSfield_reset_minmax(field)
AVSfield_set_extent(field, min_extent, max_extent)
AVSfield_set_int(field, selector, value)
AVSfield_set_labels(field, labels, delimiter)
AVSfield_set_minmax(field, min, max)
AVSfield_set_units(field, units, delimiter)
AVSfield_get_mesh_id(field, mesh_id)
AVSfield_set_mesh_id(field, mesh_id)
AVSget_unique_id()

Colormap Accessor Routines

AVScolormap_get(cmap, max_size, size, lower, upper, hue, saturation,
 value, alpha)
AVScolormap_set(cmap, size, lower, upper, hue, saturation, value,
 alpha)

User Data Accessor Routines

AVSudata_get_double(ptr, name, value, value_elements)
AVSudata_get_int(ptr, name, value, value_elements)
AVSudata_get_real(ptr, name, value, value_elements)
AVSudata_get_string(ptr, name, value, value_elements)
AVSudata_set_double(ptr, name, value, value_elements)
AVSudata_set_int(ptr, name, value, value_elements)
AVSudata_set_real(ptr, name, value, value_elements)
AVSudata_set_string(ptr, name, value, value_elements)

Routine Summary

AVS LIBRARY ROUTINES A-5

FORTRAN Array Accessor Routines

AVSPTR_ALLOC(NAME, NELEM, ELSIZE, CLEAN,
 BASEVEC, ADDR, OFFSET)
AVSPTR_OFFSET(NAME, ELSIZE, BASEVEC, ADDR, OFFSET)

FORTRAN Single Byte Accessor Routines

AVSLOAD_BYTE(BASE, OFFSET)
AVSSTORE_BYTE(BASE, OFFSET, VALUE)

Routines for Handling Errors

AVSdebug(message_format, msg1, msg2, msg3, msg4, msg5, msg6)
AVSerror(message_format, msg1, msg2, msg3, msg4, msg5, msg6)
AVSfatal(message_format, msg1, msg2, msg3, msg4, msg5, msg6)
AVSinformation(message_format, msg1, msg2, msg3, msg4, msg5, msg6)
AVSmessage(version, severity, module, function_name, choices,

message_format, msg1, msg2, msg3, msg4, msg5, msg6)
AVSMESSAGE_SUB(ANSWER, VERSION, SEVERITY, MODULE,
 FUNCTION_NAME,

CHOICES, MESSAGE)
AVSwarning(message_format, msg1, msg2, msg3, msg4, msg5, msg6)

Routines for Module Initialization

A-6 AVS LIBRARY ROUTINES

Routines for Module Initialization

Modules can use routines in this section only in the module description func-
tion. See Chapter 3 for general information on module description functions.

AVSinit_modules

C:
AVSinit_modules()

FORTRAN:
AVSINIT_MODULES()

The AVS programmer defines this routine. AVS invokes this routine when it
loads the modules defined in a file. Each executable file that defines subrou-
tine modules should have one and only one definition for AVSinit_modules.
Use AVSinit_modules as follows:

• Each source file can define more than one module. AVSinit_modules
should contain one call to AVSmodule_from_desc to initialize each mod-
ule defined in the file. Alternately, AVSinit_modules can call AVSinit_-
from_module_list to initialize a list of modules defined in the file.

• In FORTRAN, if the source file defines only one subroutine module, the
module description function itself can simply be called AVSINIT_MOD-
ULES.

A file that defines a coroutine module should not have a definition for AVSin-
it_modules; a coroutine calls AVScorout_init from its main program instead.

AVSinit_from_module_list

C:
AVSinit_from_module_list(AVSmodule_list, count)

int (**AVSmodule_list)();
int count;

AVSinit_from_module_list initializes a list of modules from their description
functions. The AVSmodule_list argument is a list of pointers, one to each mod-
ule description function defined in the file. The count argument is the number
of pointers in the list.

Source files can define more than one module to be built into a single execut-
able. The programmer-supplied routine AVSinit_modules can call AVSinit_-
from_module_list to initialize a list of modules defined in the file.

There is no FORTRAN equivalent for this routine. FORTRAN programmers
must use the routine AVSmodule_from_desc.

Routines for Module Description Functions

AVS LIBRARY ROUTINES A-7

AVSmodule_from_desc

C:
AVSmodule_from_desc(desc)

int (*desc)();

FORTRAN:
AVSMODULE_FROM_DESC(DESC)
 EXTERNAL DESC

AVSmodule_from_desc initializes a module from its description function.
The desc argument is a pointer to the description function.

Source files can define more than one module to be built into a single execut-
able. The programmer-supplied routine AVSinit_modules must contain one
call to AVSmodule_from_desc to initialize each module defined in the file.
Alternately, AVSinit_modules can call AVSinit_from_module_list to initial-
ize a list of modules defined in the file.

In FORTRAN, if the source file defines only one subroutine module, the mod-
ule description function itself can simply be called AVSINIT_MODULES.

Routines for Module Description Functions

AVSadd_parameter

C:
#include <avs/avs.h>
int AVSadd_parameter(name, type, init, minval, maxval)

char *name, *type;
<type> init, minval, maxval;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSADD_PARAMETER(NAME, TYPE, INIT,
 MINVAL, MAXVAL)

CHARACTER*n NAME, TYPE
<type> INIT, MINVAL, MAXVAL

This routine declares a parameter for the module being defined in the current
description function. Each parameter is usually connected to a widget in the
module control panel to allow the user to modify the value of the parameter.

This routine returns an integer parameter identifier that other AVS routines,
such as AVSconnect_widget, use as an argument.

The name argument is a string that appears as the name of the widget associ-
ated with the parameter.

Routines for Module Description Functions

A-8 AVS LIBRARY ROUTINES

The init, minval, and maxval arguments are cast as ints in C and integers in
FORTRAN, but their storage type actually depends on the parameter type.
For any type of parameter, init, minval, and maxval all have the same storage
type. For example, if the parameter is of type "string", all three values must be
char* values (or CHARACTER*(*) in FORTRAN). Each value must fit into an
integer-size memory slot or must be a pointer to a larger memory allocation.
Values representing floats in C must be pointers to allocated memory. The
routine AVSadd_float_parameter handles this allocation automatically. FOR-
TRAN does not have this special requirement.

For many parameter types, init is the initial or default value of the parameter,
and minval and maxval are the inclusive bounds for the acceptable range of
values. When this range is specified, AVS ensures that values passed to the
computation routine are inside this range.

The type argument is a string that represents the parameter type. The follow-
ing table lists the possible values for type. For each type, it lists the C and
FORTRAN data types for init, minval, and maxval. These are also the data
types for parameters passed as arguments to module computation routines.

AVS passes most parameters to the compute function as a single argument.
However, AVS passes fields to FORTRAN computation functions as multiple
arguments by default. It may be desirable to call AVSset_module_flags to in-
struct AVS to pass a single argument instead, which can then be used with
language independent field access routines; see the "AVS Data Types" chapter.
The "INTEGER" declarations listed above for colormaps and fields are for use
when passing these data structures as a single argument.

Following are notes on some of the parameter data types:

integer
The minval argument is the minimum value; the maxval argument is the
maximum value. To specify an unlimited range of possible values, set
both minval and maxval to the constant INT_UNBOUND. Both minval
and maxval must be either bounded or unbounded.

Table A-1 Parameter Types and C/FORTRAN Data Type Declarations

type String C Data Type FORTRAN Data Type

"integer" int INTEGER
"boolean" int INTEGER
"tristate" int INTEGER
"oneshot" int INTEGER
"real" float * REAL
"string" char * CHARACTER*n
"string_block" char * CHARACTER*n
"choice" char * CHARACTER*n
"colormap" AVScolormap * INTEGER
"field" AVSfield * INTEGER
"delta_matrix_4x4" AVSfield * INTEGER

Routines for Module Description Functions

AVS LIBRARY ROUTINES A-9

boolean
Possible values are 0 and 1. The minval and maxval arguments are ignored.

tristate
Possible values are 0, 1, and 2. The minval and maxval arguments are ig-
nored.

oneshot
This is a command-style signal counter. The current value is incremented
by 1 each time the value is set, often by means of a mouse click on a wid-
get. This allows the module to determine how many times the user set the
value since the last module compute invocation. The value is automati-
cally cleared to zero after the module is invoked. The minval and maxval
arguments are ignored.

real
To specify an unlimited range of possible values, set both minval and max-
val to the constant FLOAT_UNBOUND. Both minval and maxval must be
either bounded or unbounded.

string
This is used for both simple strings and file pathnames. The value may be
NULL in C, an empty string ("" or ’ ’ (single space) in FORTRAN), or an
allocated string. FORTRAN must pass a valid string at least one character
in length for the value to be recognized properly. Since trailing spaces are
stripped off, a single space works as an empty string and is also handled
properly when being used as a delimiter value. Widgets often present
NULL values as "$NULL". For a text browser, minval is a comment char-
acter used to suppress display of text lines that begin with that character.
For a file browser, maxval is a list of acceptable file types, separated by pe-
riods. For example, if maxval is ".x.image", only pathnames ending with .x
or .image appear in the file browser attached to this parameter.

string_block
The value is a string that may contain embedded newline characters to
delimit separate lines in a block of text. The entire value is displayed
through several types of widgets for more extensive text output. In all
other respects, it is equivalent to the string data type.

choice
The value is one of an enumerated set of strings. The minval argument is
the set of possible choices separated by a delimiter character, such as "Al-
pha!Beta!Gamma". The maxval argument is the delimiter character, in this
case "!". This delimiter should not be a newline "\n".

colormap
The minval and maxval arguments are ignored.

Routines for Module Description Functions

A-10 AVS LIBRARY ROUTINES

field
The only supported field type is "field 2D scalar real". This is used for
handling 4 x 4 transformation matrices. The minval and maxval arguments
are ignored.

delta_matrix_4x4
This is a synonym for "field 2D scalar real". This is used for handling the 4
x 4 delta matrices used by the Spaceball. The minval and maxval argu-
ments are ignored.

AVSadd_float_parameter

C:
#include <avs/avs.h>
int AVSadd_float_parameter(name, init, minval, maxval)

char *name;
double init, minval, maxval;

This routine declares a parameter of type "real" for the module being defined
in the current description function. The routine is an interface to the AVSad-
d_parameter routine; it allocates space for the init, minval, and maxval argu-
ments automatically. The calling routine should declare these arguments as
float. In C, when a float is passed as an argument, it is converted to a double.

There is no FORTRAN equivalent for this routine; use AVSADD_PARAME-
TER instead.

AVSadd_parameter_prop

C:
AVSadd_parameter_prop(param_num, prop_name, prop_type,
 prop_value)

int param_num;
char *prop_name, *prop_type;
<type> prop_value;

FORTRAN:
AVSADD_PARAMETER_PROP(PARAM_NUM, PROP_NAME,
 PROP_TYPE, PROP_VALUE)

INTEGER PARAM_NUM
CHARACTER*n PROP_NAME, PROP_TYPE
INTEGER PROP_VALUE

This routine adds a property to a parameter for the module being defined in
the current description function. A property usually determines some aspect
of how the user interface presents the parameter. By calling this routine, a
module can customize how the user interface handles the parameter.

Routines for Module Description Functions

AVS LIBRARY ROUTINES A-11

The param_num argument is a parameter identifier returned by AVSadd_par-
ameter or AVSadd_float_parameter. The prop_name argument is a string spec-
ifying the name of the property, and prop_type is a string specifying the type of
property value being provided. The property type must be one of the param-
eter types. Each property has only one permissible property type, and AVS
verifies that the prop_type is permissible for the prop_name supplied.

The prop_value argument is the value of the property. The storage type of
prop_value is the storage type that corresponds to the property type. For a
floating-point value, prop_type is a float rather than a float * in C.

As an example of using AVSadd_parameter_prop, assume that an integer pa-
rameter is attached to a dial widget. By default, when the user manipulates
the widget, AVS reinvokes the module only when the user releases the mouse
button. To cause AVS to reinvoke the module continually as the user manipu-
lates the widget, the description function can use AVSadd_parameter_prop
to attach an "immediate" property to the parameter. This property has a bool-
ean value; a value of 1 causes continuous reinvocation as the mouse moves.

Some properties are not meaningful with all possible widgets. For example,
the "immediate" property is not meaningful with a typein widget, since the
module should be reinvoked only when the user has finished typing in the
new value. If a call to AVSadd_parameter_prop requests a property or prop-
erty value that a widget does not support, AVS ignores the request when it
creates that widget. The property remains attached to the parameter, and AVS
uses the property if the user attaches an appropriate widget at a later time.

Some widgets may allow the user to change properties interactively. When
the user saves a network after making such a change, the property settings are
saved as the user has modified them. When the saved network is subsequent-
ly read, the user’s property settings override the values set by the call to
AVSadd_parameter_prop.

The following table lists each available property name along with its property
type, the C and FORTRAN data types of the property value, and the widget
types that support the property:

Table A-2 Property Name, Data Type, and Widget Type Correspondence

Property
Name

Property
Type

C Data
Type

FORTRAN
Data Type

Widget Types

title string char * character*n dial, idial, slider, islider, toggle,
tristate, oneshot, radio_buttons,
browsers

immediate boolean int integer dial, idial, slider, islider
accumulator boolean int integer dial, idial
editable boolean int integer text
local_range real float real dial, idial

Routines for Module Description Functions

A-12 AVS LIBRARY ROUTINES

The following are notes on some of these types:

title
This property specifies a title label for the widget. The default title is the
parameter name.

immediate
A value of 0 means that AVS should reinvoke the module when the user
has finished manipulating the widget (for example, by releasing the
mouse button for a dial or slider). This is the default. A value of 1 means
that AVS should continually reinvoke the module as the user manipulates
the widget.

accumulator
This property is used with dial widgets. When the parameter bounds are
fixed, a value of 0 means that the parameter range should map to one
complete rotation of the dial. This is the default. A value of 1 means that
the parameter range may extend over multiple rotations of the dial. When
the parameter is unbounded, multiple dial rotations are always allowed.

editable
This property determines whether or not a text widget is editable in the
Layout Editor. A value of 1, the default, specifies that the string is edit-
able. A value of 0 specifies that the string is not editable. Text widgets are
not editable outside the Layout Editor.

local_range
This property is used with dial widgets when the parameter is unbound-
ed or when the "accumulator" property has a value of 1, allowing the pa-
rameter range to extend over multiple rotations of the dial. The value of
the "local_range" property is the range that maps to one complete dial ro-
tation. The default is 200.0.

width integer int integer toggle, tristate, oneshot, typein,
text, browser, text_browser,
radio_buttons,
text_block_browser, textblock
choice_browser

height integer int integer toggle, tristate, oneshot, typein,
browser, text_browser,
radio_buttons,
text_block_browser, textblock
choice_browser

columns integer int integer radio_buttons
layout string_block char * character*n any

Table A-2 Property Name, Data Type, and Widget Type Correspondence

Property
Name

Property
Type

C Data
Type

FORTRAN
Data Type

Widget Types

Routines for Module Description Functions

AVS LIBRARY ROUTINES A-13

width
This property specifies the width of the widget. The value is an integer
between 1 and 20 inclusive and is interpreted as a multiple of the stan-
dard button width, which is approximately 60 pixels. (The application
panel is just over 4 units wide.)

height
This property specifies the height of the widget. The value is an integer
between 1 and 100 inclusive and is interpreted as a multiple of the height
of a text line.

columns
This property specifies the number of columns of buttons in the widget.
The default is 1.

layout
This property is used to specify user interface layout information in the
form of CLI commands. See the CLI chapter for more information.

AVSautofree_output

C:
AVSautofree_output(out_port)

int out_port;

FORTRAN:
AVSAUTOFREE_OUTPUT(OUT_PORT)

INTEGER OUT_PORT

This routine tells AVS to free output data from the previous invocation before
invoking the module being defined in the current description function. If nei-
ther this routine nor AVSinitialize_output is called, AVS does not free output
data from the previous invocation when it invokes a module. The out_port ar-
gument is a port identifier returned by AVScreate_output_port.

AVSconnect_widget

C:
int AVSconnect_widget(param_num, widget_type)

int param_num;
char *widget_type;

FORTRAN:
INTEGER AVSCONNECT_WIDGET(PARAM_NUM, WIDGET_TYPE)

INTEGER PARAM_NUM
CHARACTER*n WIDGET_TYPE

Routines for Module Description Functions

A-14 AVS LIBRARY ROUTINES

This routine allows you to select the kind of widget you want a parameter to
connect to. However, AVS can connect a parameter only to a widget that is
compatible with the parameter’s data type. If a module calls this routine and
selects an incompatible parameter type/widget combination, AVS ignores the
call, issues a warning, and uses the default widget for that type of parameter.
If a module makes no call to this routine, AVS uses the default widget for that
parameter type.

AVSconnect_widget is a function, though its return value is not often used.
(It returns 0 if successful, and -1 for an error.) Thus, it is usually called in ex-
amples as a subroutine. Note that some compilers may require that it be
called as a function with a return value, i.e.:

i = AVSconnect_widget(...)

The param_num argument is a parameter identifier returned by AVSadd_par-
ameter or AVSadd_float_parameter.

The widget_type argument is a string that indicates the type of widget to be
connected to the parameter. If widget_type is "none", no widget is connected to
the parameter. The following table lists the available widgets for each param-
eter type. If a parameter type has more than one possible widget, the widget
type that appears first is the default. For more information on parameter
types, see the documentation for AVSadd_parameter. You can use the
AVSadd_parameter_prop and AVSmodify_parameter_prop routines to
change a widget’s appearance.

Table A-3 Parameter to Widget Correspondence

Parameter
Type

Widget Type Widget Description

[any] none [No widget]
integer idial Round dial with pointer; may be

unbounded.
islider Fixed-length, left-to-right slider;

must be bounded.
typein_integer Direct type-in with title.

boolean toggle On/off toggle switch.
tristate tristate Variant of toggle switch with 3

highlight states.
oneshot oneshot Button to request single actions
real dial Round dial with pointer; may be

unbounded.
slider Fixed-length left-to-right slider;

must be bounded.
typein_real Direct typein with title.

string typein Direct typein with title.
text String button, useful for titling;

editable only in the Layout Editor.

Routines for Module Description Functions

AVS LIBRARY ROUTINES A-15

AVScreate_input_port

C:
#include <avs/avs.h>
int AVScreate_input_port(name, type, flags)

char *name, *type;
int flags;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSCREATE_INPUT_PORT(NAME, TYPE, FLAGS)

CHARACTER*n NAME, TYPE
INTEGER FLAGS

browser File browser. If the string is a
pathname, the initial directory is
set to the directory portion of the
pathname.

text_browser ASCII file browser that displays the
file specified by the string. Skips
comment lines and filters out
embedded nroff directives.

string_block text_block_browser Multiple line text browser. Scrolling
text display window to display arbi-
trarily large amounts of text output.
By default, the display is about twice
the width of the AVS control panel
and four lines high. Parameter prop-
erties can be used to create a browser
of a specific height and width.

text_block Multiple line string block, useful for
titling, or desriptions; not editable.
By default it is the width of the AVS
control panel and four lines high.

choice radio_buttons Set of radio buttons, one for each
choice. The value is a copy of the
selected string or NULL if no string is
selected.

choice_browser Scrolling list of choices of arbitrary
length similar to other browser wid-
gets.

colormap color_editor Colormap editor.
field track Cursor-tracking virtual trackball.
delta_matrix_4x4 spaceball client spaceball
delta_matrix_4x4 dials_matrix_client dialbox

Table A-3 Parameter to Widget Correspondence

Parameter
Type

Widget Type Widget Description

Routines for Module Description Functions

A-16 AVS LIBRARY ROUTINES

This routine declares an input port for the module being defined in the cur-
rent description function. The name of the port is set to the string name. The
type argument is a string that defines the data type of the port, as follows:

The "field" string can contain further specializing words; see the section "De-
claring Fields" in the "AVS Data Types" chapter.

The flags argument consists of an OR’d combination of bitfields indicating op-
tional properties of the input port. Currently supported values are: RE-
QUIRED, meaning that a connection is required, INVISIBLE meaning that
the port is invisible at start up time, and MODIFY_IN meaning that the mod-
ule wishes to modify its input data.

If a port is REQUIRED, the module will not be invoked until a connection is
made and there is data on the output port of the other end of the connection.
The constant OPTIONAL can also be used with this argument but it is the de-
fault and is unnecessary.

The MODIFY_IN flag is used when the module needs to modify its input
data. MODIFY_IN causes the module to receive a copy of the input data that
it can change.

Note: Normally, modules should not directly modify an input, since the use
of shared memory implies that all other modules sharing that port will see the
modified data rather than the original data (usually an undesirable side ef-
fect). Also, it’s generally considered bad practice to modify an input to a rou-
tine. However, there are some circumstances where it may be necessary. In
this instance, do not use MODIFY_IN. Rather, just code the module to modi-
fy its input data. For the module to work, AVS will have to be run as either -
noshm or ReadOnlySharedMemory 0.

This routine returns an integer identifier for the port that is used as an argu-
ment to some other AVS routines, such as AVSinitialize_output.

Table A-4 Data Port Type to String Correspondence

Data Type type String

byte "byte"
integer "integer"
real "real"
string "string"
field "field"
ucd "ucd"
struct "struct xxx"
molecule "molecule"
colormap "colormap"
geometry "geom"
pixel map "pixmap"

Routines for Module Description Functions

AVS LIBRARY ROUTINES A-17

AVScreate_output_port

C:
int AVScreate_output_port(name, type)

char *name, *type;

FORTRAN:
INTEGER AVSCREATE_OUTPUT_PORT(NAME, TYPE)

CHARACTER*n NAME, TYPE

This routine declares an output port for the module being defined in the cur-
rent description function. The name of the port is set to the string name. The
type argument is a string that defines the data type of the port. For possible
values of the type argument, see the documentation for AVScreate_input_-
port.

This routine returns an integer identifier for the port that is used as an argu-
ment to some other AVS routines, such as AVSset_output_flags.

AVSinitialize_output

C:
AVSinitialize_output(in_port, out_port)

int in_port, out_port;

FORTRAN:
AVSINITIALIZE_OUTPUT(IN_PORT, OUT_PORT)

INTEGER IN_PORT, OUT_PORT

This routine tells AVS to preallocate memory for output data before invoking
the module being defined in the current description function. Before each in-
vocation of the module, AVS frees output data from the previous invocation
and then allocates space for an output data structure of the same size and di-
mensions as those of the specified input data structure. AVS does not copy the
input data to the output data. This is useful for modules that transform fields,
producing an output field of the same type and dimensions as the input field.
The in_port argument is a port identifier returned by AVScreate_input_port.
The out_port argument is a port identifier returned by AVScreate_output_-
port.

AVSload_user_data_types

C:
AVSload_user_data_types(filename)

char *filename;

FORTRAN:

Routines for Module Description Functions

A-18 AVS LIBRARY ROUTINES

AVSLOAD_USER_DATA_TYPES(FILENAME)
CHARACTER*n FILENAME

This routine specifies a filename containing a description of one or more user-
defined data types. It is usually called during the description function of the
module. The filename is either an absolute pathname of the file or, if a relative
pathname, the path is interpreted as relative to the directory /usr/avs/include.
See the section on "User-Defined Data Types" in Chapter 4 for more informa-
tion on the contents of this file and how modules use these data types. Also,
see the program /usr/avs/examples/pick_cube.c for an example of using a user-
defined data type for passing upstream data. See the /usr/avs/examples/user_-
data.c and /usr/avs/examples/user_data.f programs for more general examples of
using user-defined data.

AVSset_compute_proc

C:
AVSset_compute_proc(comp_func)

int (*comp_func)();

FORTRAN:
AVSSET_COMPUTE_PROC(COMP_FUNC)

EXTERNAL COMP_FUNC

This routine declares the computation function for the module being defined
in the current description function.

AVSset_destroy_proc

C:
AVSset_destroy_proc(destroy_func)

int (*destroy_func)();

FORTRAN:
AVSSET_DESTROY_PROC(DESTROY_FUNC)

EXTERNAL DESTROY_FUNC

This routine declares an optional destruction function for the module being
defined in the current description function. AVS invokes the destruction func-
tion when the module is destroyed, usually when the user moves the module
icon from the workspace to the "hammer" icon. A destruction function might
take actions such as freeing memory or destroying a window.

AVSset_init_proc

C:
AVSset_init_proc(init_func)

Routines for Module Description Functions

AVS LIBRARY ROUTINES A-19

int (*init_func)();

FORTRAN:
AVSSET_INIT_PROC(INIT_FUNC)

EXTERNAL INIT_FUNC

This routine declares an optional initialization function for the module being
defined in the current description function. AVS invokes the initialization
function when the module is instantiated (usually when the user moves the
module icon from the module palette into the workspace). An initialization
function might take actions such as allocating memory or creating a window.
Since this routine is called during the creation of the module, it cannot use
calls to the AVS kernel that depend on the existance of a fully initialized mod-
ule. Some examples of such calls are: AVSmessage, AVScommand, and AVS-
modify_parameter.

AVSset_input_class,
AVSset_output_class,
AVSset_parameter_class

C:
AVSset_input_class(port, class)

int port;
char *class;

AVSset_output_class(port, class)
int port;
char *class;

AVSset_parameter_class(port, class)
int port;
char *class;

FORTRAN:
AVSSET_INPUT_CLASS(PORT, CLASS)

INTEGER PORT
CHARACTER*n CLASS

AVSSET_OUTPUT_CLASS(PORT, CLASS)
INTEGER PORT
CHARACTER*n CLASS

AVSSET_PARAMETER_CLASS(PORT, CLASS)
INTEGER PORT
CHARACTER*n CLASS

These routines set the port class for an input, output or parameter port. The
"class" for a port or parameter is used to make automatic upstream connec-
tions when particular downstream connections are made.

Routines for Module Description Functions

A-20 AVS LIBRARY ROUTINES

The port argument should be the integer value returned from: AVScreate_in-
put_port, AVScreate_output_port, or AVSadd_parameter for AVSset_-
input_class, AVSset_output_class, and AVSset_parameter_class
respectively.

The class argument is a character string that contains a class name and an op-
tional port name to associate it with. The class name is determined by conven-
tion between the upstream and downstream module. This name is often the
name of the data type of the downstream connection.

An optional port name can be specified as part of the "class" character string.
If so, a ":" character separates the port name from the class name. If the port
name is specified, it indicates that the upstream connection should only be
made if the downstream port is being connected.

See the section on automatic connection of ports in the chapter "Advanced
Topics" for more information and examples on how to use port classes to
cause automatic connections.

AVSset_module_flags

C:
#include <avs/avs.h>
AVSset_module_flags (flag)

unsigned int flags;

FORTRAN:
#INCLUDE <avs/avs.inc>
AVSSET_MODULE_FLAGS(FLAG)

INTEGER FLAGS

This routine specifies a number of special options for how the module is to be
handled or how it receives data during computation. The flags argument con-
sists of an OR’d combination of bitfields indicating optional properties of the
module. The following flags are defined:

The SINGLE_ARG_DATA flag requests that input and output fields be
passed as single arguments instead of multiple arguments to compute func-
tions written in FORTRAN. Colormaps and user-defined data types are also
affected by this flag.

Table A-5 Module Flags and Meaning

Flag Meaning

COOPERATIVE Module can run with others in the executable
REENTRANT Module can run with itself in the executable
SINGLE_ARG_DATA Module expects data to be passed as a single argument
SINGLE_ARG_FIELD Module expects field to be passed as a single argument
COROUT_UNPACK_ARGS Used to request that strings and reals be copied into local

variables directly for FORTRAN coroutines.

Routines for Module Description Functions

AVS LIBRARY ROUTINES A-21

The SINGLE_ARG_FIELD flag is similar to the SINGLE_ARG_DATA flag ex-
cept it does not affect colormaps or user-defined data types.

For FORTRAN coroutines, the COROUT_UNPACK_ARGS flag asks that all
strings and reals be copied into local variables directly instead of being
passed as pointers to strings and reals. See the description of AVScorout_in-
put.

AVSset_module_name

C:
#include <avs/avs.h>
AVSset_module_name(name, type)

char *name;
int type;

FORTRAN:
AVSSET_MODULE_NAME(NAME, TYPE)

CHARACTER*n NAME, TYPE

This routine declares the name and type of the module being defined in the
current description function. The module name is set to the string name and
the type to type, where type is one of the following:

The module name appears in the module icon and other portions of the Net-
work Editor. The module type determines the category in the Network Editor
module palette in which the module icon appears.

AVSset_output_class

See the description at AVSset_input_class.

AVSset_output_flags

C:
#include <avs/avs.h>
int AVSset_output_flags(port, flags)

int port, flags;

Table A-6 Module Types and C/FORTRAN Descriptions

Module Type C Constant FORTRAN string

Data Input MODULE_DATA ’data’
Filter MODULE_FILTER ’filter’
Mapper MODULE_MAPPER ’mapper’
Renderer MODULE_RENDERER ’renderer’

Routines for Modifying and Interpreting Parameters

A-22 AVS LIBRARY ROUTINES

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSSET_OUTPUT_FLAGS(PORT, FLAGS)

INTEGER PORT, FLAGS

This is used by a module in the description function to set some optional
properties of an output port. Currently the only flag that is supported is the
flag INVISIBLE. This flag causes the output port to be invisible by default.

AVSset_parameter_class

See the description at AVSset_input_class.

Routines for Modifying and Interpreting Parameters

You can use the routines in this section only during compute functions.

AVSchoice_number

C:
#include <avs/avs.h>
int AVSchoice_number(name, string)

char *name, *string;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSCHOICE_NUMBER(NAME, STRING)

CHARACTER*n NAME, STRING

This routine is called to interpret a value for a parameter of type "choice"
passed to a module computation routine. The name argument is the name of
the parameter as declared in the call to AVSadd_parameter in the module de-
scription function. The string argument must be a valid value for the choices
allowed or a NULL string.

This routine returns an integer that represents the position of the given choice
in the list of choices provided in the call to AVSadd_parameter in the module
description function. If the choice is the first in the list, this routine returns 1;
if the choice is the second in the list, this routine returns 2; and so on. If the
choice is not in the list of choices, this routine returns 0.

A module computation function can also interpret choices by means of direct
string comparisons of the parameter argument with expected literal strings.

Routines for Modifying and Interpreting Parameters

AVS LIBRARY ROUTINES A-23

AVSmodify_float_parameter

C:
#include <avs/avs.h>
AVSmodify_float_parameter(name, flags, init, minval, maxval)

char *name;
int flags;
double init, minval, maxval;

This routine is called from a module computation routine to change the value
or bounds of a parameter of type "real". The routine is an interface to the AVS-
modify_parameter routine; it allocates space for the init, minval, and maxval
arguments automatically. The calling routine should declare these arguments
as float. In C, when a float is passed as an argument it is converted to a dou-
ble.

See the WARNING in the AVSmodify_parameter routine descripton.

There is no FORTRAN equivalent for this routine; use AVSMODIFY_PA-
RAMETER instead.

AVSmodify_parameter

C:
#include <avs/avs.h>
AVSmodify_parameter(name, flags, init, minval, maxval)

char *name;
int flags

 <type> int, minval, maxval;

FORTRAN:
#include <avs/avs.inc>
AVSMODIFY_PARAMETER(NAME, FLAGS, INIT, MINVAL,
 MAXVAL)

CHARACTER*n NAME
INTEGER FLAGS

 <type> INIT, MINVAL, MAXVAL

This routine is called from a module computation routine to change the value
or bounds of a parameter. AVS first updates the parameter bounds and then
checks the new or existing value for validity against the new bounds. If a wid-
get is connected to the parameter, the widget is then updated to reflect the
new parameter bounds and value.

The name argument is the name of the parameter as declared in the call to
AVSadd_parameter or AVSadd_float_parameter in the module description
function.

Routines for Modifying and Interpreting Parameters

A-24 AVS LIBRARY ROUTINES

The flags argument is a bit mask indicating which combination of value, up-
per bound, and lower bound is to be changed. AVS defines the following con-
stants corresponding to the three items to be changed:

AVS_VALUE
The init argument contains a new value for the parameter.

AVS_MINVAL
The minval argument contains a new minimum value for the parameter.

AVS_MAXVAL
The maxval argument contains a new maximum value for the parameter.

AVS_RECORD_VALUE
The value change provided in the init argument should be recorded if a
CLI script is being generated. This is useful for modules with their own
non-AVS user interface widgets as a way to record activity.

These constants can be combined using a bitwise OR operation to change
more than one item at a time. For example, to change the value and upper
bound but not the lower bound:

 /* C language */
 flags = AVS_VALUE | AVS_MAXVAL;
C FORTRAN
 INTEGER FLAGS
 FLAGS = IOR(AVS_VALUE, AVS_MAXVAL)

AVS changes the value or a bound of a parameter only if the corresponding
bit in the flags argument is on, or if a change in the bounds requires changing
the current value of the parameter to be within the new bounds.

The init, minval, and maxval arguments are interpreted in the same way as the
corresponding arguments to AVSadd_parameter. Note that the meaning and
type of these arguments depend on the parameter type.

The init, minval, and maxval arguments are cast as ints in C and integers in
FORTRAN, but their storage type actually depends on the parameter type.
For any type of parameter, init, minval, and maxval all have the same storage
type. For example, if the parameter is of type "string", all three values must be
char* values (or CHARACTER*(*) in FORTRAN). Each value must fit into an
integer-size memory slot or must be a pointer to a larger memory allocation.
Values representing floats in C must be pointers to allocated memory. The
routine AVSadd_float_parameter handles this allocation automatically. FOR-
TRAN does not have this special requirement.

If the call to AVSmodify_parameter does not change the value, lower bound,
or upper bound, the corresponding init, minval, or maxval argument should be
NULL in C (0 in FORTRAN).

Routines for Modifying and Interpreting Parameters

AVS LIBRARY ROUTINES A-25

WARNING
The arguments to the module computation routine are essentially a
"snapshot" of the parameter values at the time the computation routine is
called. This means that AVSmodify_parameter affects the value and
range of the parameter the next time the computation routine is called; it
does not necessarily affect the corresponding argument value within the
current invocation of the routine. (It may in some cases, particularly floats
and strings.)

If you intend to perform further computations on an argument whose
corresponding parameter you change with AVSmodify_parameter, make
a local copy of the argument before calling AVSmodify_parameter, apply
the same changes to the copy argument, and then perform further com-
putations with the copy, not the original.

AVSmodify_parameter_prop

C:
#include <avs/avs.h>
AVSmodify_parameter_prop(name, prop_name, prop_type, prop_value)

char *name, *prop_name, *prop_type;
int prop_value;

FORTRAN:
#include <avs/avs.inc>
AVSMODIFY_PARAMETER_PROP(NAME, PROP_NAME,
 PROP_TYPE, PROP_VALUE)

CHARACTER*n NAME, PROP_NAME, PROP_TYPE
INTEGER PROP_VALUE

This routine is used to modify a parameter property during computation. The
prop_value argument is treated exactly like the same argument in AVSadd_pa-
rameter_prop. Unlike that function, this one takes the parameter name since it
can be used only by the compute function. The widget attached to the param-
eter may change immediately as in the case of changing the title property of a
parameter. In other cases it has no apparent effect but causes no damage ei-
ther. The property does not have to have been created by AVSadd_parame-
ter_prop first.

AVSparameter_visible

C:
#include <avs/avs.h>
AVSparameter_visible(name, stat)

char *param;
int stat;

FORTRAN:
#include <avs/avs.inc>

Routines for Coroutine Modules

A-26 AVS LIBRARY ROUTINES

AVSPARAMETER_VISIBLE(NAME, STAT)
CHARACTER*n PARAM
INTEGER STAT

This routine controls the visibility of the widget attached to a parameter. The
name argument is the name of the parameter and the stat value is 0 for invisi-
ble and 1 for visible. This routine should be used sparingly in those situations
where certain parameters are not meaningful or valid to modify until other
parameters are set to reasonable values. The best way to use this function is
make undesired widgets invisible in the initial compute function call, once
they have been allocated space in the control panel and then make them visi-
ble when appropriate.

Routines for Coroutine Modules

AVScorout_event_wait

C:
AVScorout_event_wait(nfds,readfds,writefds,exceptfds,timeout,mask)

int nfds;
fd_set readfds,writefds,exceptfds;
struct timeval *timeout;
int *mask;

This routine is used by a coroutine module that needs to simultaneously wait
for data on one or more file descriptors or for its inputs and/or parameters to
change. It can also be used by a module that does not have any file descrip-
tors, but wants to wait for inputs and parameters to change with a timeout
value.

On most systems, this routine uses the "select" system call. It was designed to
mimic the functionality of this utility as much as possible. See the "select" man
page for a complete description of the functionality, including error condi-
tions, etc. The only difference between this routine and the "select" routine is
that it takes an additional parameter which is the "mask" of coroutine events
to wait for. Currently only one coroutine event is supported: COROUT_-
WAIT.

The mask argument, therefore, should be set to COROUT_WAIT before the
call. If a coroutine event occurred, the corresponding bit will be set to indicate
this in the "mask" parameter after the routine returns. The return value indi-
cates the number of events that are ready, including the coroutine event.

The "timeout" parameter behaves just like select. If the value is 0, the routine
blocks until either input or an error occurs. If the value points to a structure,
the structure specifies the time in seconds and microsecond in which to wait.
The timval structure is defined in the include file: <sys/time.h>.

Routines for Coroutine Modules

AVS LIBRARY ROUTINES A-27

There is no FORTRAN equivalent for this routine.

AVScorout_exec

C:
AVScorout_exec()

FORTRAN:
AVSCOROUT_EXEC()

This routine waits until the flow executive has stopped running. It then re-
turns. The routine is useful for delaying output until the network has com-
pletely processed the output of the previous computation.

AVScorout_init

C:
AVScorout_init(argc, argv, desc)

int argc;
char *argv[];
int (*desc)();

FORTRAN:
AVSCOROUT_INIT(DESC)

EXTERNAL DESC

This routine causes AVS to recognize and initialize the coroutine as a module
and sets up the connection between the coroutine and AVS. The coroutine
must call AVScorout_init before calling any other AVS routines. If this rou-
tine is invoked during the module identification pass, it exits; if the routine is
invoked during module instantiation, it returns.

For a C coroutine, the argc and argv arguments are the corresponding argu-
ments to the coroutine main program. The desc argument is a pointer to the
module description function. For a FORTRAN coroutine, the only argument
is the module description function; AVS automatically picks up the program
arguments.

AVScorout_input

C:
int AVScorout_input(input1, input2, ..., param1, param2, ...)

<type> **input1, **input2, ...;
<type> *param1, *param2, ...;

FORTRAN:
INTEGER AVSCOROUT_INPUT(INPUT1, INPUT2, ...,

Routines for Coroutine Modules

A-28 AVS LIBRARY ROUTINES

 PARAM1, PARAM2, ...)
<type> INPUT1, INPUT2,...
<type> PARAM1, PARAM2, ...

A coroutine calls this routine to obtain inputs and parameters from AVS.
There is one argument for each input port and one argument for each param-
eter declared in the module description function. All the input arguments ap-
pear first in the arglist, followed by all the parameter arguments. For most
data types, the argument is a pointer to a pointer to a data item of the appro-
priate type for the input or parameter declared. For some data types, such as
integers, the argument is a pointer to the data item itself. When the function
returns, each argument location contains a pointer to the corresponding input
or parameter value (or the value itself, for data types like integers).

In FORTRAN, most arguments are handled as integers. Simple integer data
types are handled directly as values and complex data types, such as fields
and colormaps, are handled using accessor functions (See the routines in this
appendix in the following sections: Field Accessor Routines, Colormap Acces-
sor Routines, User Data Accessor Routines, FORTRAN Array Accessor Rou-
tines, and FORTRAN Single Byte Accessor Routines.) Character strings are
handled by passing in a buffer large enough for the expected value; the char-
acter data is copied into the provided buffer. The real data type is handled di-
rectly; the argument value is copied into the provided real.

The routine returns 0 if a required input or parameter is missing. Otherwise, it
returns the number of inputs and parameters supplied.

Under AVS, strings and reals are passed as C pointers which are awkward to
handle in FORTRAN. This is the default mode for backward compatibility. To
have strings copied into buffers and reals copied in directly, you MUST set the
module flag, COROUT_UNPACK_ARGS, using the AVSset_module_flags
routine.

AVScorout_mark_changed

C:
AVScorout_mark_changed()

FORTRAN:
AVSCOROUT_MARK_CHANGED()

This routine marks the module as having changed since the last call to
AVScorout_input. The module will continue to be considered "changed" until
the next call to AVScorout_input (or AVScorout_output for modules that
have no inputs and parameters).

This routine can be used by coroutine modules that want to run continuously
as it will cause the routine AVScorout_wait to return rather than wait for the
next input or parameter to change.

Routines for Coroutine Modules

AVS LIBRARY ROUTINES A-29

AVScorout_output

C:
AVScorout_output(output1, output2, ...)

<type> *output1, *output2, ...;

FORTRAN:
AVSCOROUT_OUTPUT(OUTPUT1, OUTPUT2, ...)

<type> OUTPUT1, OUTPUT2, ...

A coroutine calls this routine to send output data to AVS. There is one argu-
ment for each output port declared in the module description function. For
most data types, the argument is a pointer to a data item of the appropriate
type for the output declared. For some data types, such as integers, the argu-
ment is the data item itself.

In FORTRAN, integers and complex data types are passed in as integers
(where necessary, use the AVSdata_alloc routine to allocate a complex data
type). Character strings are passed using local string buffers; the string data is
copied out of the buffer into the port data structure automatically. Reals are
passed directly; their values are copied into the port data structure automati-
cally.

If the user has disabled the module or the flow executive, this routine may
hang for an arbitrary time before returning.

Under AVS, strings and reals are passed as C pointers which are awkward to
handle in FORTRAN. This is the default mode for backward compatibility. To
have strings copied into buffers and reals copied in directly, you MUST set the
module flag, COROUT_UNPACK_ARGS, using the AVSset_module_flags
routine.

AVScorout_set_sync

C:
AVScorout_set_sync(value)

int value;

FORTRAN:
AVSCOROUT_SET_SYNC(VALUE)

INTEGER VALUE

This routine allows you to force a coroutine module execute synchronously
and thereby under the control of the flow-executive. Set the value parameter
as follows: 0 Execute asynchronously 1 Execute synchronously

A coroutine module can call this routine any time after it calls AVScorout_in-
it. Typically, the module calls this routine only once.

Routines for Coroutine Modules

A-30 AVS LIBRARY ROUTINES

By default, coroutine modules run asynchronously. This means that coroutine
modules can run in parallel with other coroutine modules or other subroutine
modules. Sometimes, this may be the desired behavior. However, in certain
situations, modules that execute in parallel can cause the AVS network to be-
have unpredictably and/or might cause the network to execute downstream
modules more than once.

Well behaved coroutine modules can be run synchronously. To run synchro-
nously means that except when the coroutine module is waiting in
AVScorout_wait, AVScorout_X_wait, or AVScorout_event_wait, the flow-
executive executes no other AVS module. This results in the network having a
predictable order of execution.

AVScorout_wait

C:
AVScorout_wait()

FORTRAN:
AVSCOROUT_WAIT()

This routine waits until the module is "changed" and has been "scheduled" by
the flow executive. A module is defined as "changed" when an input or pa-
rameter has been modified or it is marked as changed by the module with the
AVScorout_mark_changed routine.

The module is scheduled by the flow executive when the module is the next
changed module in the run queue. The run queue is only processed when the
flow executive is enabled.

This routine will continue to return until the routine AVScorout_input has
been called. If the routine has no inputs or parameters the AVScorout_output
routine will mark the module as "unchanged".

AVScorout_X_wait

C:
AVScorout_X_wait(dpy, timeout, mask)

Display *dpy;
struct timeval *timeout;
int *mask;

This routine is used by a coroutine module that needs to simultaneously wait
for inputs and/or parameters to change and for X events/errors.

The dpy argument is the X display on which X events/errors are expected.

Status Monitoring Routine

AVS LIBRARY ROUTINES A-31

The timeout argument is a pointer to a "timeval" structure. This structure is de-
fined in the include file: <sys/time.h>. and has two fields: tv_sec and tv_usec
which describe the number of seconds and microseconds to wait respectively.
If the pointer to the timeval structure is NULL, the routine will wait indefi-
nitely, otherwise the timeval structure contains a number of seconds and a
number of microseconds to wait before timing out. A structure containing 0
seconds and 0 microseconds can be used to poll the X socket and the state of
AVS inputs/parameters.

The mask parameter is a pointer to an integer containing the coroutine events
to wait for. Currently there is only one coroutine event: COROUT_WAIT. The
mask argument, therefore, should always be set to the value: COROUT_-
WAIT.

This routine will return a "1" if there are X events/errors waiting to be pro-
cessed. The flags set in mask will indicate the state of the coroutine events that
were waited for. Since COROUT_WAIT is the only supported event, the val-
ue will either be 0, the module was not scheduled to be executed or the value:
COROUT_WAIT (the inputs/parameters did change for this module).

If AVScorout_X_wait returns 0 and the value of mask returned is 0, then the
routine timed out with the timeout value specified.

There is no FORTRAN equivalent for this routine.

Status Monitoring Routine

AVSmodule_status

C:
AVSmodule_status(comment, percent)

char *comment;
int percent;

FORTRAN:
AVSMODULE_STATUS(COMMENT, PERCENT)

CHARACTER*n COMMENT
INTEGER PERCENT

This routine sends the kernel status updates when a long operation is in
progress and is of predictable length. The information may be displayed in
the status bar on the main control panel to inform the user of incremental
progress. A module’s status is considered to be broken into input transmis-
sion (0 - 10%), module operation (10-90%) and output processing (90-100%).
The status percent argument is given in terms of 0-100% of the module opera-
tion and thus shows up as changes between 10 and 90% of the overall opera-
tion. The comment is shown in the status bar for particularly long operations
to show the intermediate operation in progress. For shorter operations, only

AVS Command Language Interpreter Routine

A-32 AVS LIBRARY ROUTINES

the module name might actually show up. If no status calls are made, the sta-
tus bar does not show any intermediate progress between the 10 and 90%
mark.

AVS Command Language Interpreter Routine

The AVS Command Language Interpreter (CLI) allows you write ASCII
scripts that can control most AVS systems. With the CLI, you can save AVS
networks, widget layouts, parameter settings, and can record a sequence of
user interactions. Individual modules can also send CLI commands to AVS.
Allowing modules to issue CLI commands provides opportunities for AVS
application modules to manage AVS network execution in response to chang-
es in their own parameters. By preprogramming a set of instructions that
change the relevant parameters, you can create animations using AVS. For
more information on using CLI, see the "Command Language Interpreter"
chapter.

AVScommand

C:
#include <avs/avs.h>
AVScommand(destination, command_buffer, output_buffer, error_buffer)

char *destination, *command_buffer, **output_buffer,
 **error_buffer;

FORTRAN:
#include <avs/avs.inc>
AVSCOMMAND(DESTINATION, COMMAND_BUFFER,
 OUTPUT_BUFFER, ERROR_BUFFER)

CHARACTER*(*) DESTINATION, COMMAND_BUFFER
CHARACTER*<maxsize> OUTPUT_BUFFER, ERROR_BUFFER

Use this routine to send Command Language Interpreter (CLI) commands to
the AVS kernel. See the CLI chapter for a list of available CLI commands.

The destination argument can have only the value "kernel".

The command_buffer argument specifies a buffer that contains one or more CLI
commands. You can include multiple commands in the same command buff-
er by separating these commands with newline characters.

The output_buffer and error_buffer arguments are used to receive output from
commands and from errors, respectively. In C, each of these two arguments
are provided as the address of a char pointer (char *) which will be changed to
point to the actual buffer by the routine. (i.e. declare a char * variable ("buf")
and pass its address ("&buf").) Memory management for the buffers is pro-
vided by AVScommand and the caller should NOT attempt to free these buff-
ers directly. In FORTRAN, the buffer contents are copied into local buffer

Routines for Selective Computation

AVS LIBRARY ROUTINES A-33

strings provided by the caller. Select a <maxsize> dimension for these buffers
that is adequate to hold the expected output. Output that exceeds the speci-
fied size is lost. The output buffers contain the accumulated output and error
messages resulting from issuing all the commands in the command buffer.

Multiple commands can be included in the same command buffer and should
be separated by newline characters. The accumulated output and and errors
will be in the buffers returned with a single result for the overall operation.

When a module wishes to reference itself in a CLI command, it should use the
variable reference $Module instead of an explicit name like "read image.us-
er.3". This is only needed during an AVScommand call.

The CLI command, debug, provides a switch, AVScommand_debug, that
will tell the AVS kernel to display all CLI commands being received from
modules that are using the AVScommand function. It will also show the re-
sults and error messages that these commands are generating. For example,

debug AVScommand_debug 1

will turn the switch on; a value of 0 will turn the switch back off again. The
debug command is not currently supported, but help may be obtained by
typing "help debug".

Routines for Selective Computation

AVSinput_changed

C:
int AVSinput_changed(port_name, i)

char *port_name;
int i;

FORTRAN:
INTEGER AVSINPUT_CHANGED(PORT_NAME, I)

CHARACTER*n PORT_NAME
INTEGER I

This routine determines whether or not input data has changed since the pre-
vious invocation of the module. The port_name argument is the name of the
input port as declared in the module description function. The second argu-
ment is the number of a connection to that port; the first connection is 0 for
the C routine and 1 for the FORTRAN routine. AVSinput_changed returns 1
if the input data has changed for the specified port and connection. It returns
0 if the input has not changed or if the specified connection does not exist.

Routines for Creating Fields

A-34 AVS LIBRARY ROUTINES

AVSmark_output_unchanged

C:
AVSmark_output_unchanged(port_name)

char *port_name;

FORTRAN:
AVSMARK_OUTPUT_UNCHANGED(PORT_NAME)

CHARACTER*n PORT_NAME

By default, AVS assumes that all output data has changed after each invoca-
tion of a module. This can cause AVS to invoke downstream modules. AVS-
mark_output_unchanged tells AVS that output data for a port has not
changed. The port_name argument is the name of the output port as declared
in the module description function.

AVSparameter_changed

C:
int AVSparameter_changed(param_name)

char *param_name;

FORTRAN:
AVSPARAMETER_CHANGED(PARAM_NAME)

CHARACTER*n PARAM_NAME

This routine determines whether or not a parameter value has changed since
the previous invocation of the module. The param_name argument is the name
of the parameter as declared in the module description function. AVSparame-
ter_changed returns 1 if the parameter value has changed. It returns 0 if the
parameter value has not changed.

Routines for Creating Fields

Use the routines described in this section to construct the AVS field data type.
Refer to the "AVS Data Types" chapter for more information on the field data
type. You should not develop new modules that use the AVSbuild_field,
AVSbuild_2d_field, and AVSbuild_3d_field routines. These routines cannot
use shared memory and may be removed from future releases of AVS. In-
stead, use the AVSdata_alloc and AVSfield_alloc routines described in this
section.

AVSport_field

FORTRAN:
#include <avs/avs.inc>

Routines for Creating Fields

AVS LIBRARY ROUTINES A-35

INTEGER AVSPORT_FIELD(PORT_NAME)
CHARACTER*n PORT_NAME

This routine is used by FORTRAN module writers using the old approach of
passing fields to the computation routine as multiple arguments. It returns
the field pointer required by the new field accessor functions. The integer val-
ue returned by the function is the associated field pointer or 0 if there is no
valid field data associated with that port.

When fields are passed as single arguments, the field pointer is passed direct-
ly as an argument to the computation function. See the documentation for
AVSset_module_flags for a description of how to request single argument
passing.

AVSdata_alloc

C:
#include <avs/avs.h>
char * AVSdata_alloc(string, dims)

char *string;
int *dims;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSDATA_ALLOC(STRING, DIMS)

CHARACTER*n STRING
INTEGER DIMS(ndim)

This routine is similar to AVSfield_alloc, except it takes a character string de-
scribing the field, rather than a field template structure. In C, it returns a
pointer to a char, which should be cast to a pointer to an AVSfield of the cor-
rect type (AVSfield_char, AVSfield_float, etc.). In FORTRAN, it returns an
integer that you can use with the field accessor routines.

You can also use this routine to allocate other complex data types, such as col-
ormaps and user data types.

The dims argument is an array of integers specifying the desired dimensions
of the data; it is used to preallocate storage.

C example:

field = (AVSfield_char *)
 AVSdata_alloc("field 2D 4-vector byte", dims);

FORTRAN example:

ifield = AVSDATA_ALLOC(’field 2D 4-vector byte’, idims)

AVSdata_alloc returns a NULL value if the field allocation fails. It could fail,
for example, allocating memory for the data. Programs should check for this

Routines for Creating Fields

A-36 AVS LIBRARY ROUTINES

eventuality. The following C fragment contains a typo in the field description
that will cause the allocation to fail.

AVSfield_char **yourfield; /*declare return value variable*/
 .
 .
 .
if (*yourfield) AVSfield_free(*yourfield); /*free data from previous invocation*/
dims0[0] = 100;
dims0[1] = 200;
*yourfield = (AVSfield_char *) /*allocate new data area*/
 AVSdata_alloc("field 2D 2-space 4-vector uniform bite "), dims0);
if (*yourfield == NULL) {
 AVSerror("Allocation of output field failed.");
 return(0);
 }

AVSdata_free

C:
#include <avs/avs.h>
void AVSdata_free(type, data_ptr)

char *type, *data_ptr;

FORTRAN:
#include <avs/avs.inc>
AVSDATA_FREE(TYPE, DATA_PTR)

CHARACTER*n TYPE
INTEGER DATA_PTR

This routine frees all memory associated with a data type. This type is the same
string that was usen in the AVSdata_alloc call to create the data. When AVS-
data_alloc is used to create a field, the string includes the word "field" plus
various field descriptors such as "2D uniform". When you are freeing the data,
you should include only the string "field" without the other descriptors. The
data_ptr is the pointer that the AVSdata_alloc call returned when the data
structure was created. The following FORTRAN example would free the field
created in the example under AVSdata_alloc above:

AVSDATA_FREE (’field’, ifield)

AVSfield_alloc

C:
#include <avs/field.h>
char * AVSfield_alloc(template, dims)

AVSfield *template;
int *dims;

FORTRAN:

Routines for Creating Fields

AVS LIBRARY ROUTINES A-37

#include <avs/avs.inc>
INTEGER AVSFIELD_ALLOC(TEMPLATE, DIMS)

INTEGER TEMPLATE
INTEGER DIMS(ndim)

This routine creates and allocates memory for a field. In C, it returns a pointer
to a char, which should be cast to a pointer to an AVSfield.

In FORTRAN, use the integer this routines returns with the Field Accessor
Routines.

The template argument is a pointer to a field to be used as a template for creat-
ing the new field. The dims argument is an array of integers to be used as the
dimensions of the new field in computational space. The length of the array
must be the same as the number of dimensions in the template field. The dims
argument can also be 0; in this case, the dimensions of the template field are
used to create the new field.

This routine copies the nspace, veclen, type, size, and uniform members of the
template field to the new field. If the dims argument is 0, it copies the dimen-
sions array of the template field to the new field; otherwise, it copies the dims
argument to the dimensions array of the new field. This routine allocates mem-
ory for the points array of the new field. If the template field is rectilinear or ir-
regular and if the template field has a points array, this routine copies the
points array of the template field to the new field. This routine allocates mem-
ory for the data array of the new field but does not copy the data array of the
template field to the new field.

The template field can be an existing field, such as an input argument to a
module computation routine, or a template created from an existing field by
AVSfield_make_template. A template created by AVSfield_make_template
is useful when the points array of the template field is not to be copied to the
new field.

Note: AVSfield_alloc does not copy the labels, units, min, max, min_ext, or
max_ext from the template field. It only creates pointers to zero length strings
or null values. These values should be set on the new field with AVSfield_-
set_labels/units/minmax/extent. If you wish the new values to equal those
of the old template field, first use AVSfield_get_labels/units/...etc. to estab-
lish the values, then assign them with AVSfield_set_labels/units/...etc. To
ensure the integrity of field memory allocation, you should always use these
accessor functions rather than attempting to manipulate the field directly.

AVSfield_alloc returns a NULL value if the field allocation fails. Programs
should check for this eventuality. See the example under AVSdata_alloc.

AVSfield_copy_poInts

C:
#include <avs/field.h>

Routines for Creating Fields

A-38 AVS LIBRARY ROUTINES

int AVSfield_copy_points(field_in, field_out)
AVSfield *field_in, *field_out;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSFIELD_COPY_POINTS(FIELD_IN, FIELD_OUT)

INTEGER FIELD_IN, FIELD_OUT

This routine copies the coordinates array from field_in to field_out. Memory
must be allocated for the coordinates array in field_out before this routine is
called. This routine is useful for passing the coordinates array from an input
field to an output field in a module computation routine that operates only on
the computational data of a field and ignores the coordinates. 1=success;
0=failure.

AVSfield_free

C:
#include <avs/field.h>
void AVSfield_free(field)

AVSfield *field;

FORTRAN:
#include <avs/avs.inc>
AVSFIELD_FREE(FIELD)

INTEGER FIELD

This routine frees all memory associated with a field. The field variable is
whatever pointer variable was returned by the AVSfield_alloc routine that
created the field.

AVSfield_make_template

C:
#include <avs/field.h>
AVSfield_make_template(field_in, template)

AVSfield *field_in, *template;

FORTRAN:
#include <avs/avs.inc>
AVSFIELD_MAKE_TEMPLATE(FIELD_IN, TEMPLATE)
 INTEGER FIELD_IN, TEMPLATE

This routine copies the ndim, nspace, veclen, type, size, and uniform members of
field_in to template. It allocates memory for the dimensions array of the template
field and copies the dimensions array of field_in to the template field. This rou-
tine does not allocate memory for the data and points arrays of the template
field; it sets the value of those members of the template field to NULL.

Routines for Creating Fields

AVS LIBRARY ROUTINES A-39

This routine is intended to use an existing field, such as an input argument to
a module computation routine, to create a template for AVSfield_alloc. The
template argument can be created as follows:

AVSfield *template;
template = (AVSfield *) malloc(sizeof(AVSfield));

The FORTRAN routine makes a template field that you can modify using the
AVSFIELD_SET_INT routine and then use it in AVSFIELD_ALLOC. If the
initial value of the template argument is 0, the template structure is allocated
automatically.

NOTE:
As previously stated, you should not develop new modules that use the
AVSbuild_field, AVSbuild_2d_field, and AVSbuild_3d_field routines.
These routines cannot use shared memory and may be removed from fu-
ture releases of AVS. Instead, use the AVSdata_alloc and AVSfield_alloc
routines described in this section.

AVSbuild_field

C:
#include <avs/avs.h>
#include <avs/field.h>
AVSfield * AVSbuild_field(ndim, veclen, uniform, ncoord, type, dim1, dim2, ...,

data, coords)
int ndim, veclen, uniform, ncoord, type;
int dim1, dim2, ...;
unsigned char *data;
float *coords;

FORTRAN:
#include <avs/avs.inc>
AVSBUILD_FIELD(NDIM, IVLEN, IFLAG, NCOORD, ITYPE, IDIM1,

IDIM2, ..., DATA, COORDS)
INTEGER NDIM, IVLEN, IFLAG, NCOORD, ITYPE
INTEGER IDIM1, IDIM2, ...
BYTE DATA(*)
REAL COORDS(*)

NOTE:
This routine is provided for backward compatibility with AVS2 only. New
modules should use the AVSdata_alloc and AVSfield_alloc calls de-
scribed in this section and in Chapter 2 under the heading "Creating
Fields" instead. Modules that use the AVSbuild... series of calls cannot
use shared memory. These routines may be removed from future releases
of AVS.

This routine is a utility that constructs a field from its components. The rou-
tine returns a pointer to an AVSfield structure. Following is a description of
the arguments:

Routines for Creating Fields

A-40 AVS LIBRARY ROUTINES

ndim
A positive integer specifying the number of dimensions in the computa-
tional space of the field.

veclen
A positive integer specifying the length of the data vector at each point.
For a scalar field, the value is 1.

uniform
A constant specifying whether the field is uniform, rectilinear, or irregu-
lar. Possible values are UNIFORM, RECTILINEAR, and IRREGULAR.

ncoord
An integer specifying the number of dimensions in the coordinate space
of nonuniform fields. For uniform fields, the value is 0. For rectilinear
fields, the value is the same as ndim.

type
A constant specifying the type of data in the field. Possible values are
AVS_TYPE_BYTE, AVS_TYPE_INTEGER, AVS_TYPE_REAL, and
AVS_TYPE_DOUBLE.

dim1, dim2, ...
For each dimension, an integer specifying the size of the dimension.

data
The data array, in "FORTRAN" order. The subscript for vector element
varies fastest, then the subscript for the first dimension, then the subscript
for the second dimension, and so on. The storage type for each element
depends on the data type of the field.

coords
For a nonuniform field, an array of floating-point values specifying the
coordinates of the data points. For a rectilinear field, the length of the ar-
ray is the sum of the dimensions of the field in computational space. For
an irregular field, the length of the array is the product of the dimensions
of the field in computational space and the number of dimensions in coor-
dinate space. All the X coordinates are stored first, then all the Y coordi-
nates, and so on. For an irregular field, the subscript for the first field
dimension varies fastest. This argument is omitted for uniform fields.

AVSbuild_2d_field

C:
#include <avs/field.h>
AVSfield * AVSbuild_2d_field(data, dim1, dim2)

float *data;
int dim1, dim2;

FORTRAN:

Routines for Creating Fields

AVS LIBRARY ROUTINES A-41

AVSBUILD_2D_FIELD(DATA, IDIM1, IDIM2)
REAL DATA(IDIM1, IDIM2)
INTEGER IDIM1, IDIM2

NOTE:
This routine is provided for backward compatibility with AVS2 only. New
modules should use the AVSdata_alloc and AVSfield_alloc calls de-
scribed in this section and in Chapter 2 under the heading "Creating
Fields" instead. Modules that use the AVSbuild... series of calls cannot
use shared memory. These routines may be removed from future releases
of AVS.

This routine is a utility that builds a two-dimensional uniform scalar real field
from its components. The routine returns a pointer to an AVSfield structure.
The data argument is the data array, in "FORTRAN" order. The subscript for
the first dimension varies fastest. The dim1 and dim2 arguments are integers
specifying the size of the first and second dimensions, respectively.

AVSbuild_3d_field

C:
#include <avs/field.h>
AVSfield * AVSbuild_3d_field(data, dim1, dim2, dim3)

float *data;
int dim1, dim2, dim3;

FORTRAN:
AVSBUILD_3D_FIELD(DATA, IDIM1, IDIM2, IDIM3)

REAL DATA(IDIM1, IDIM2, IDIM3)
INTEGER IDIM1, IDIM2, IDIM3

NOTE:
This routine is provided for backward compatibility with AVS 2 only.
New modules should use the AVSdata_alloc and AVSfield_alloc calls
described in this section and in Chapter 2 under the heading "Creating
Fields" instead. Modules that use the AVSbuild... series of calls cannot
use shared memory. These routines may be removed from future releases
of AVS.

This routine is a utility that builds a three-dimensional uniform scalar real
field from its components. The routine returns a pointer to an AVSfield struc-
ture. The data argument is the data array, in "FORTRAN" order. The subscript
for the first dimension varies fastest, then the subscript for the second dimen-
sion. The dim1, dim2, and dim3 arguments are integers specifying the size of
the first, second, and third dimensions, respectively.

Field Accessor Routines

A-42 AVS LIBRARY ROUTINES

Field Accessor Routines

AVSfield_data_offset

FORTRAN:
#include <avs/avs.inc>
AVSFIELD_DATA_OFFSET(FIELD, BASEVEC, OFFSET)

INTEGER FIELD
<type> BASEVEC(1)
INTEGER OFFSET

This routine allows the FORTRAN module writer to retrieve an offset index of
the field data array relative to a given local reference array of <type>. The ele-
ment basevec(offset+1) is the same as the first element of the data array. In or-
der for FORTRAN to more conveniently handle this reference, pass this
element to a second FORTRAN function which is expecting a variable size
<type> array. The basevec array should actually be the same type as the field
data array being retrieved (real to get real data, integer for integer data, etc.).

See the description of the AVSPTR_ALLOC routine in this appendix and the
AVSPTR_OFFSET routine in Appendix F for information about related rou-
tines. Also, see the /usr/avs/examples/colorizer_f.f example program.

AVSfield_data_ptr

C:
#include <avs/avs.h>
#include <avs/field.h>
int AVSfield * AVSfield_data_ptr(field)

AVSfield *field;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSFIELD_DATA_PTR(FIELD)

INTEGER FIELD

This routine allows the module writer to retrieve the direct data pointer from
the field structure and is intended primarily for the FORTRAN module writ-
er. In order for a FORTRAN program to "dereference" the returned pointer,
you should pass the the %VAL() (or %LOC() on some systems) of the pointer,
along with the dimensions, to a second FORTRAN subroutine that declares
the incoming argument as a variable size array.

WARNING:
This approach to getting the data array is not portable across all hardware
platforms. Using the AVSfield_data_offset routine is a better approach.

Input

Field Accessor Routines

AVS LIBRARY ROUTINES A-43

field
field to return data pointer for

Output

none

Returns

pointer
pointer to data array

AVSfield_get_dimensions

C:
#include <avs/avs.h>
#include <avs/field.h>
int AVSfield_get_dimensions(field, dimensions)

AVSfield *field;
int *dimensions;

FORTRAN:
#include <avs/avs.inc>

INTEGER AVSFIELD_GET_DIMENSIONS(FIELD, DIMENSIONS)
INTEGER FIELD
INTEGER DIMENSIONS(ndim)

This routine allows the module writer to obtain the dimensions of the field’s
data space. It copies field->ndims elements into the dimensions array. It is up to
the module writer to check that the array passed is at least large enough for
the dimensions of the field.

Input

field
field to get dimensions array for

Output

dimensions
integer array to receive dimensions

Returns

1
valid data

0
invalid data

Field Accessor Routines

A-44 AVS LIBRARY ROUTINES

AVSfield_get_extent

C:
#include <avs/avs.h>
#include <avs/field.h>
int AVSfield_get_extent(field, min_extent, max_extent)

AVSfield *field;
float *min_extent;
float *max_extent;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSFIELD_GET_EXTENT(FIELD, MIN_EXTENT,
 MAX_EXTENT)

INTEGER FIELD
REAL MIN_EXTENT(nspace)
REAL MAX_EXTENT(nspace)

This routine allows the module writer to obtain the extent of the field in n-
space. Please note that min_extent and max_extent are arrays of dimension
field->nspace and must be allocated by the caller.

Input

field
field to get extents in

Outputs

min_extent
coordinates of minimum extent

max_extent
coordinates of maximum extent

Returns

1
valid data

0
invalid data

AVSfield_get_int

C:
#include <avs/avs.h>
#include <avs/field.h>
int AVSfield_get_int(field, selector)

Field Accessor Routines

AVS LIBRARY ROUTINES A-45

AVSfield *field;
int selector;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSFIELD_GET_INT(FIELD, SELECTOR)

INTEGER FIELD
INTEGER SELECTOR

This routine allows the module writer to retrieve one of the integer fields in
the field structure. The selector should be one of the following:

 AVS_FIELD_NDIM
 AVS_FIELD_NSPACE
 AVS_FIELD_VECLEN
 AVS_FIELD_TYPE
 AVS_FIELD_SIZE
 AVS_FIELD_UNIFORM
 AVS_FIELD_FLAGS

Input

field
field to retrieve value from

selector
id of value to be retrieved

Output

none

Return

nonzero
value of integer field specified by selector

0
invalid selector specified

AVSfield_get_label

C:
#include <avs/avs.h>
#include <avs/field.h>
int AVSfield_get_label(field, number, label)

AVSfield *field;
int number;
char *label;

Field Accessor Routines

A-46 AVS LIBRARY ROUTINES

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSFIELD_GET_LABEL(FIELD, NUMBER, LABEL)

INTEGER FIELD
INTEGER NUMBER
CHARACTER*length LABEL

This routine allows the module writer to query the label for an individual
component in the field. It is up to the caller to make sure that the allocated ar-
ray is large enough to hold the label string. The label string can have a maxi-
mum size of AVS_FIELD_LABEL_LEN.

Input

field
field to get label from

number
individual component number

Outputs

label
label string

Returns

1
valid data

0
invalid data

AVSfield_get_labels

C:
#include <avs/avs.h>
#include <avs/field.h>
int AVSfield_get_labels(field, labels, delimiter)

AVSfield *field;
char *labels;
char *delimiter;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSFIELD_GET_LABELS(FIELD, LABELS, DELIMITER)

INTEGER FIELD
CHARACTER*length LABELS
CHARACTER*length DELIMITER

Field Accessor Routines

AVS LIBRARY ROUTINES A-47

This routine allows the module writer to query the labels for each component
in the field. For instance, in the case of a CFD dataset, the module writer
might want to label components of the field as temperature, density, mach
number, etc. In turn, these labels would appear on the dials so that the user
would have a better understanding of which component each dial is attached
to. It is up to the caller to make sure that the labels and delimiter arrays are long
enough to contain the returned strings. These strings can be a maximum
length of AVS_FIELD_LABEL_LEN.

Example

labels = "temp;density;mach number"
delimiter = ";"

Input

field
field to get labels in

Outputs

labels
string with labels and delimiters included

delimiter
delimiter between each individual string

Returns

1
valid data

0
invalid data

AVSfield_get_minmax

C:
#include <avs/avs.h>
#include <avs/field.h>
int AVSfield_get_minmax(field, min, max)

AVSfield *field;
char *min;
char *max;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSFIELD_GET_MINMAX(FIELD, MIN, MAX)

INTEGER FIELD
<type> MIN(veclen)
<type> MAX(veclen)

Field Accessor Routines

A-48 AVS LIBRARY ROUTINES

This routine allows the module writer to obtain the range of the field data.
Note that min and max are arrays of dimension field->veclen of the same type
(BYTE, REAL, INTEGER, DOUBLE) as the computational data in the field. It
is up to the caller to allocate enough space in these arrays to contain the re-
turned information.

Input

field
field to get min/max from

Outputs

min
minimums of data

max
maximums of data

Returns

1
valid min/max

0
invalid min/max

AVSfield_get_unit

C:
#include <avs/avs.h>
#include <avs/field.h>
int AVSfield_get_unit(field, number, unit)

AVSfield *field;
int number;
char *unit;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSFIELD_GET_UNIT(FIELD, NUMBER, UNIT)

INTEGER FIELD
INTEGER NUMBER
CHARACTER*length UNIT

This routine allows the module writer to query the unit string for an individ-
ual component in the field. It is up to the caller to allocate enough space in the
unit array to contain the returned string. This string can be a maximum length
of AVS_FIELD_UNIT_LEN.

Input

Field Accessor Routines

AVS LIBRARY ROUTINES A-49

field
field to get units in

number
individual component number

Outputs

unit
unit string

Returns

1
valid data

0
invalid data

AVSfield_get_units

C:
#include <avs/avs.h>
#include <avs/field.h>
int AVSfield_get_units(field, units, delimiter)

AVSfield *field;
char *units;
char *delimiter;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSFIELD_GET_UNITS(FIELD, UNITS, DELIMITER)

INTEGER FIELD
CHARACTER*length UNITS
CHARACTER*length DELIMITER

This routine allows the module writer to query the units for each component
in the field. The unit label is associated with each vector element in the array
of computational data. It is a character array with a delimiter character as the
first character in the array. The delimiter is followed by string/delimiter pairs,
the number of which is equal to the vector length of the field. The unit labels
are useful for defining measurement units for each variable in the array of
data. For instance, in the case of a CFD dataset, the module writer might want
to specify components of the field as temperature, density, mach number, etc.

It is up to the caller to allocate enough space in the units and delimiter arrays to
contain the returned string. This string can be a maximum length of AVS_-
FIELD_UNIT_LEN.

Example

Field Accessor Routines

A-50 AVS LIBRARY ROUTINES

units = "degrees C;g/cc;mach"
delimiter = ";"

Input

field
field to get units in

Outputs

units
string with units included

delimiter
delimiter between each individual string

Returns

1
valid data

0
invalid data

AVSfield_invalid_minmax

C:
#include <avs/avs.h>
#include <avs/field.h>
void AVSfield_invalid_minmax(field)

AVSfield *field;

FORTRAN:
#include <avs/avs.inc>
AVSFIELD_INVALID_MINMAX(FIELD)

INTEGER FIELD

This routine allows the module writer to set the min/max range of the field
data to be invalid. This function should be used after the field data has been
changed by the module and the module does not want to spend the time call-
ing the routine AVSfield_reset_minmax.

Input

field
field to set min/max invalid

Outputs

none

Field Accessor Routines

AVS LIBRARY ROUTINES A-51

Returns

none

AVSfield_points_offset

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSFIELD_POINTS_OFFSET(FIELD, BASEVEC, OFFSET)

INTEGER FIELD
REAL BASEVEC(n)
INTEGER OFFSET

This routine allows the FORTRAN module writer to retrieve an offset index
for the field’s coordinates array relative to a given local reference array of type
REAL. The element BASEVEC(OFFSET+1) is the same as the first element of
the coordinates array in the field. In order for FORTRAN to more convenient-
ly handle this reference, pass this element to a second FORTRAN function
which declares its incoming argument as a variable size real array.

Returns

1
valid data

0
invalid data

AVSfield_points_ptr

C:
#include <avs/avs.h>
#include <avs/field.h>
int AVSfield_points_ptr(field)

AVSfield *field;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSFIELD_POINTS_PTR(FIELD)

INTEGER FIELD

This routine allows the module writer to retrieve the pointer to the coordi-
nates array from the field structure and is intended primarily for the FOR-
TRAN module writer. In order for the FORTRAN programmer to
"dereference" the pointer, the %VAL() (%LOC() on some systems) of the point-
er - along with the dimensions - should be passed to a second FORTRAN sub-
routine which declares its incoming argument as a variable size real array.

Field Accessor Routines

A-52 AVS LIBRARY ROUTINES

WARNING:
This approach to getting the points array is not portable across all hard-
ware platforms. Using the AVSfield_points_offset routine is a better ap-
proach.

Input

field
field for which coordinates array pointer should be returned

Outputs

none

Returns

pointer
pointer to points array

AVSfield_reset_minmax

C:
#include <avs/avs.h>
#include <avs/field.h>
void AVSfield_reset_minmax(field)

AVSfield *field;

FORTRAN:
#include <avs/avs.inc>
AVSFIELD_RESET_MINMAX(FIELD)

INTEGER FIELD

This routine computes the min and max values for the field’s computational
data and stores them in the field’s data structure.

Input

field
field to set min/max in

Outputs

none (use AVSfield_get_minmax to get the result)

Returns

none

Field Accessor Routines

AVS LIBRARY ROUTINES A-53

AVSfield_set_extent

C:
#include <avs/avs.h>
#include <avs/field.h>
void AVSfield_set_extent(field, min_extent, max_extent)

AVSfield *field;
float *min_extent;
float *max_extent;

FORTRAN:
#include <avs/avs.inc>
AVSFIELD_SET_EXTENT(FIELD, MIN_EXTENT, MAX_EXTENT)

INTEGER FIELD
REAL MIN_EXTENT(nspace)
REAL MAX_EXTENT(nspace)

This routine allows the module writer to specify the extent of the field in n-
space. It should be noted that min_extent and max_extent are arrays of dimen-
sion field->nspace.

Input

field
field to set extents in

min_extent
coordinates of minimum extent

max_extent
coordinates of maximum extent

Returns

none

AVSfield_set_int

C:
#include <avs/avs.h>
#include <avs/field.h>
int AVSfield_set_int(field, selector, value)

AVSfield *field;
int selector;
int value;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSFIELD_GET_INT(FIELD, SELECTOR, VALUE)

Field Accessor Routines

A-54 AVS LIBRARY ROUTINES

INTEGER FIELD
INTEGER SELECTOR
INTEGER VALUE

This routine allows the module writer to set one of the integer fields in the
field structure. You can only perform this operation on a template. Otherwise,
AVS issues an error. See also the AVSfield_make_template routine. See /usr/
avs/examples/colorizer_f.f for an example of a module that uses this call.

The following selectors determine which structure element to change:

 AVS_FIELD_NDIM
 AVS_FIELD_NSPACE
 AVS_FIELD_VECLEN
 AVS_FIELD_TYPE
 AVS_FIELD_SIZE
 AVS_FIELD_UNIFORM
 AVS_FIELD_FLAGS

Input

field
field to in which to change value

selector
id of value to be changed

value
the new value

Output

none

Return

nonzero
value of integer field specified by selector

0
invalid selector specified

AVSfield_set_labels

C:
#include <avs/avs.h>
#include <avs/field.h>
void AVSfield_set_labels(field, labels, delimiter)

AVSfield *field;
char *labels;

Field Accessor Routines

AVS LIBRARY ROUTINES A-55

char *delimiter;

FORTRAN:
#include <avs/avs.inc>
AVSFIELD_SET_LABELS(FIELD, LABELS, DELIMITER)

INTEGER FIELD
CHARACTER*length LABELS
CHARACTER*length DELIMITER

This routine allows the module writer to set the labels for each component in
the field. For instance, in the case of a CFD dataset, the module writer might
want to label components of the field as temperature, density, mach number,
etc. In turn, these labels appear on the dials so the user has a better under-
standing of which component attaches to each dial.

Example

labels = "temp;density;mach number"
delimiter = ";"

Input

field
field to set labels in

labels
string with labels included

delimiter
delimiter between each individual string

Outputs

none

Returns

none

AVSfield_set_minmax

C:
#include <avs/avs.h>
#include <avs/field.h>
void AVSfield_set_minmax(field, min, max)

AVSfield *field;
<type> *min;
<type> *max;

FORTRAN:
#include <avs/avs.inc>

Field Accessor Routines

A-56 AVS LIBRARY ROUTINES

AVSFIELD_SET_MINMAX(FIELD, MIN, MAX)
INTEGER FIELD
<type> MIN(veclen)
<type> MAX(veclen)

This routine allows the module writer to set the range of the field data. It
should be noted that min and max are arrays of dimension field->veclen of the
same type (BYTE, REAL, INTEGER, DOUBLE) as the computational data in
the field, although they are initially declared as byte (i.e., "char") arrays in
AVSfield_set_minmax for generality.

Input

field
field to set min/max in

min
value of minimum data point

max
value of maximum data point

Outputs

none

Returns

none

AVSfield_set_units

C:
#include <avs/avs.h>
#include <avs/field.h>
void AVSfield_set_units(field, units, delimiter)

AVSfield *field;
char *units;
char *delimiter;

FORTRAN:
#include <avs/avs.inc>
AVSFIELD_SET_UNITS(FIELD, UNITS, DELIMITER)

INTEGER FIELD
CHARACTER*length UNITS
CHARACTER*length DELIMITER

This routine allows the module writer to set the unit for each component in
the field. The unit label is associated with each vector element in the array of
computational data. It is a character array with a delimiter character as the

Field Accessor Routines

AVS LIBRARY ROUTINES A-57

first character in the array. The delimiter is followed by string/delimiter pairs,
the number of which is equal to the vector length of the field. The unit labels
are useful for defining measurement units for each variable in the array of
data. For instance, in the case of a CFD dataset, the module writer might want
to specify components of the field as temperature, density, mach number, etc.

Example

units = "degrees C;mg/cc;mach"
delimiter = ";"

Input

field
field to set units in

units
string with units included

delimiter
delimiter between each individual string

Outputs

none

Returns

none

AVSget_unique_id

C:
#include <avs/avs.h>
#include <avs/field.h>
int AVSget_unique_id()

FORTRAN:
#include <avs/avs.inc>
AVSGET_UNIQUE_ID()

The AVSfield_alloc call will assign mesh_ids to field structures when it is
called. The number will be unique and different each time these calls are
made during an AVS session. The allocation routines use the AVSget_u-
nique_id function.

Modules (for example, filters) can signal downstream modules that the mesh
has not changed by allocating their output data area, then copying the
mesh_id from the input data area to the output data area. The downstream
module can then check the mesh id against the previous number. If it is the
same, then the mesh has not changed.

Field Accessor Routines

A-58 AVS LIBRARY ROUTINES

This libflow call is used with field structures to create unique mesh_ids. It re-
turns an integer that is guaranteed to be unique throughout the AVS session.

Input

none

Outputs

none

Returns

unique ID for the field

AVSfield_set_mesh_id

C:
#include <avs/avs.h>
#include <avs/field.h>
void AVSfield_set_mesh_id(field, mesh_id)

AVSfield *field;
int mesh_id;

FORTRAN:
#include <avs/avs.inc>
AVSFIELD_SET_MESH_ID(FIELD, MESH_ID)

INTEGER FIELD
INTEGER MESH_ID

This routine sets the mesh_id of the field structure. It can be used by modules
to set the mesh_id to signal downstream modules that the input mesh (coor-
dinates array) has been changed.

Input

field
field to set mesh_id in

mesh_id
number for new mesh_id

Outputs

none

Returns

none

Colormap Accessor Routines

AVS LIBRARY ROUTINES A-59

AVSfield_get_mesh_id

C:
#include <avs/avs.h>
#include <avs/field.h>
void AVSfield_get_mesh_id(field, mesh_id)

AVSfield *field;
int *mesh_id;

FORTRAN:
#include <avs/avs.inc>
AVSFIELD_GET_MESH_ID(FIELD, MESH_ID)

INTEGER FIELD
INTEGER MESH_ID

This routine gets the mesh_id of the field structure. The mesh id can be used
in field modules to determine if the input mesh (coordinates array) has
changed since the last time the module received the structure from an up-
stream module.

Input

field
field to get mesh_id from

Outputs

mesh_id
number for mesh_id

Returns

none

Colormap Accessor Routines

AVScolormap_get

C:
#include <avs/avs.h>
#include <avs/colormap.h>
int AVScolormap_get(cmap, max_size, size, lower, upper, hue, saturation,
 value, alpha)

AVScolormap *cmap;
int *size;
int max_size;
float *lower, *upper, *hue, *saturation, *value, *alpha;

Colormap Accessor Routines

A-60 AVS LIBRARY ROUTINES

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSCOLORMAP_GET(CMAP, MAX_SIZE, SIZE,
 LOWER, UPPER, HUE, SATURATION,
 VALUE, ALPHA)

INTEGER CMAP, MAX_SIZE, SIZE
REAL LOWER, UPPER
REAL HUE(n), SATURATION(n), VALUE(n), ALPHA(n)

This routine must be used by FORTRAN module writers to access the con-
tents of a colormap input or output when the SINGLE_ARG_DATA flag has
been set using AVSSET_MODULE_FLAGS. For each colormap input or out-
put, the module passes a single integer argument that is a pointer to a color-
map. You can pass the pointer to this routine to get the contents of the
colormap. The HUE, SATURATION, VALUE, and ALPHA data are copied into
the arrays provided by the caller. It is up to the caller to ensure that these ar-
rays are large enough to hold the returned information. AVS issues an error if
the colormap size exceeds the max_size argument.

Input

cmap
pointer to a colormap

max_size
maximum size of the constituent arrays

Outputs

size
size of the constituent arrays

lower, upper
the range of the data values

hue, saturation, value, alpha
the colormap contents arrays (each of which is size elements each)

Returns

1
success

0
failure

AVScolormap_set

C:
#include <avs/avs.h>

Colormap Accessor Routines

AVS LIBRARY ROUTINES A-61

#include <avs/colormap.h>
int AVScolormap_set(cmap, size, lower, upper, hue, saturation, value,
 alpha)

AVScolormap *cmap;
int *size;
float *lower, *upper, *hue, *saturation, *value, *alpha;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSCOLORMAP_SET(CMAP, SIZE, LOWER, UPPER, HUE,
 SATURATION, VALUE, ALPHA)

INTEGER CMAP, SIZE
REAL LOWER, UPPER
REAL HUE(n), SATURATION(n), VALUE(n), ALPHA(n)

This routine must be used by FORTRAN module writers to access the con-
tents of a colormap input or output when the SINGLE_ARG_DATA flag has
been set using AVSSET_MODULE_FLAGS. For each colormap input or out-
put the module is passed a single integer argument that is a pointer to a color-
map. You can pass the pointer to this routine to set the contents of the
colormap. The four arrays for HUE, SATURATION, VALUE, ALPHA are cop-
ied from the provided arrays.

Input

cmap
pointer to a colormap

Outputs

size
size of the constituent arrays

lower, upper
the range of the data values

hue, saturation, value, alpha
the colormap contents

Returns

1
success

0
failure

User Data Accessor Routines

A-62 AVS LIBRARY ROUTINES

User Data Accessor Routines

In C, programmers can directly access the elements in a user-defined struc-
ture by including the type file (see AVSload_user_data_types). In FORTRAN,
when the single_arg_data flag is enabled, you must use the functions in this
section to access the data in user-defined structures. See Chapter 4 for more
information.

AVSudata_get_double

C:
#include <avs/avs.h>
#include <avs/udata.h>
int AVSudata_get_double(ptr, name, value, value_elements)

char *ptr;
char *name;
double *value;
int value_elements;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSUDATA_GET_DOUBLE(PTR, NAME, VALUE,
 VALUE_ELEMENTS)

INTEGER PTR, VALUE_ELEMENTS
CHARACTER*(*) NAME
REAL*8 VALUE
DIMENSION VALUE(VALUE_ELEMENTS)

This routine allows the module writer to retrieve a double precision value
name from a user data type structure. For scalar values, pass 1 for the val-
ue_elements argument. For array values, pass the size of the array that you are
providing. If there is no structure field with the given name or if the field is
not a double precision field, then the function returns an error. This function
is intended primarily for FORTRAN module writers since C programmers
can access the structure elements directly. You must call the function, AVSloa-
d_user_data_types, in the module description function to describe the user
data type. See /usr/avs/examples/user_data_f.f for an example FORTRAN mod-
ule.

Inputs

ptr
pointer to a user written data structure

name
name of a field in the structure

User Data Accessor Routines

AVS LIBRARY ROUTINES A-63

value
variable that the value is to be copied into; from C, this must be a pointer
to the variable

value_elements
number of array elements in the value argument being sent; should be 1
for scalar values

Output

value
retrieved contents of the requested field

Returns

1
success

0
failure

AVSudata_get_int

C:
#include <avs/avs.h>
#include <avs/udata.h>
int AVSudata_get_int(ptr, name, value, value_elements)

char *ptr;
char *name;
int *value;
int value_elements;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSUDATA_GET_INT(PTR, NAME, VALUE,
 VALUE_ELEMENTS)

INTEGER PTR, VALUE_ELEMENTS
CHARACTER*(*) NAME
INTEGER VALUE
DIMENSION VALUE(VALUE_ELEMENTS)

This routine allows the module writer to retrieve an integer value named
"name" from a user data type structure. For scalar values, pass 1 for the val-
ue_elements argument. For array values, pass the size of the array that you
are providing. If there is no structure field with the given name or if the field
is not an integer, then the function returns an error. This function is intended
primarily for FORTRAN module writers since C programmers can access the
structure fields directly. You must call the function, AVSload_user_-
data_types, in the module description function to describe the user data type.

User Data Accessor Routines

A-64 AVS LIBRARY ROUTINES

Inputs

ptr
pointer to a user written data structure

name
name of a field in the structure

value
variable that the value is to be copied into; from C, this must be a pointer
to the variable

value_elements
number of array elements in the value argument being sent; should be 1
for scalar values

Output

value
retrieved contents of the requested field

Returns

1

success

0
failure

AVSudata_get_real

C:
#include <avs/avs.h>
#include <avs/udata.h>
int AVSudata_get_real(ptr, name, value, value_elements)

char *ptr;
char *name;
float *value;
int value_elements;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSUDATA_GET_REAL(PTR, NAME, VALUE,
 VALUE_ELEMENTS)

INTEGER PTR, VALUE_ELEMENTS
CHARACTER*(*) NAME
REAL VALUE
DIMENSION VALUE(VALUE_ELEMENTS)

User Data Accessor Routines

AVS LIBRARY ROUTINES A-65

This routine allows the module writer to retrieve a floating point value
named "name" from a user data type structure. For scalar values, pass 1 for
the value_elements argument. For array values, pass the size of the array that
you are providing. If there is no structure field with the given name or if the
field is not floating point, then the function returns an error. This function is
intended primarily for FORTRAN module writers since C programmers can
access the structure fields directly. You must call the function, AVSloa-
d_user_data_types, in the module description function to describe the user
data type.

Inputs

ptr
pointer to a user written data structure

name
name of a field in the structure

value
variable that the value is to be copied into; from C, this must be a pointer
to the variable

value_elements
number of array elements in the value argument being sent; should be 1
for scalar values

Output

value
retrieved contents of the requested field

Returns

1
success

0
failure

AVSudata_get_string

C:
#include <avs/avs.h>
#include <avs/udata.h>
int AVSudata_get_string(ptr, name, value, value_elements)

char *ptr;
char *name;
char *value;
int value_elements;

User Data Accessor Routines

A-66 AVS LIBRARY ROUTINES

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSUDATA_GET_STRING(PTR, NAME, VALUE,
 VALUE_ELEMENTS)

INTEGER PTR, VALUE_ELEMENTS
CHARACTER*(*) NAME
CHARACTER VALUE
DIMENSION VALUE(VALUE_ELEMENTS)

This routine allows the module writer to retrieve a string value name from a
user data type structure. For scalar values, pass 1 for the value_elements ar-
gument. For array values, pass the size of the array that you are providing. If
there is no structure field with the given name or if the field is not a string,
then the function returns an error. This function is intended primarily for
FORTRAN module writers since C programmers can access the structure
fields directly. You must call the function, AVSload_user_data_types, in the
module description function to describe the user data type.

Inputs

ptr
pointer to a user written data structure

name
name of a field in the structure

value
variable that the value is to be copied into; from C, this must be a pointer
to the variable

value_elements
number of array elements in the value argument being sent; should be 1
for scalar values

Output

value
retrieved contents of the requested field

Returns

1
success

0
failure

User Data Accessor Routines

AVS LIBRARY ROUTINES A-67

AVSudata_set_double

C:
#include <avs/avs.h>
#include <avs/udata.h>
int AVSudata_set_double(ptr, name, value, value_elements)

char *ptr;
char *name;
double *value;
int value_elements;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSUDATA_SET_DOUBLE(PTR, NAME, VALUE,
 VALUE_ELEMENTS)

INTEGER PTR, VALUE_ELEMENTS
CHARACTER NAME(n)
REAL*8 VALUE
DIMENSION VALUE(VALUE_ELEMENTS)

This routine allows the module writer to store a double precision value name
into a user data type structure. For scalar values, pass 1 for the value_elements
argument. For array values, pass the size of the array that you are providing.
If there is no structure field with the given name or if the field is not a double
precision field, then the function returns an error. This function is intended
primarily for FORTRAN module writers since C programmers can access the
structure fields directly. You must call the function, AVSload_user_-
data_types, in the module description function to describe the user data type.

Inputs

ptr
pointer to a user written data structure

name
name of a field in the structure

value
variable that the value is to be copied into; from C, this must be a pointer
to the variable

value_elements
number of array elements in the value argument being sent; should be 1
for scalar values

Outputs

none

Returns

User Data Accessor Routines

A-68 AVS LIBRARY ROUTINES

1
success

0
failure

AVSudata_set_int

C:
#include <avs/avs.h>
#include <avs/udata.h>
int AVSudata_set_int(ptr, name, value, value_elements)

char *ptr;
char *name;
int *value;
int value_elements;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSUDATA_SET_INT(PTR, NAME, VALUE,
 VALUE_ELEMENTS)

INTEGER PTR, VALUE_ELEMENTS
CHARACTER*(*) NAME
INTEGER VALUE
DIMENSION VALUE(VALUE_ELEMENTS)

This routine allows the module writer to store an integer value name into a
user data type structure. For scalar values, pass 1 for the value_elements argu-
ment. For array values, pass the size of the array that you are providing. If
there is no structure field with the given name or if the field is not an integer,
then the function returns an error. This function is intended primarily for
FORTRAN module writers since C programmers can access the structure
fields directly. You must call the function, AVSload_user_data_types, in the
module description function to describe the user data type.

Inputs

ptr
pointer to a user written data structure

name
name of a field in the structure

value
variable that the value is to be copied into; from C, this must be a pointer
to the variable

value_elements
number of array elements in the value argument being sent; should be 1
for scalar values

User Data Accessor Routines

AVS LIBRARY ROUTINES A-69

Outputs

none

Returns

1
success

0
failure

AVSudata_set_real

C:
#include <avs/avs.h>
#include <avs/udata.h>
int AVSudata_set_real(ptr, name, value, value_elements)

char *ptr;
char *name;
float *value;
int value_elements;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSUDATA_SET_REAL(PTR, NAME, VALUE,
 VALUE_ELEMENTS)

INTEGER PTR, VALUE_ELEMENTS
CHARACTER*(*) NAME
REAL VALUE
DIMENSION VALUE(VALUE_ELEMENTS)

This routine allows the module writer to store a floating point value name into
a user data type structure. For scalar values, pass 1 for the value_elements ar-
gument. For array values, pass the size of the array that you are providing. If
there is no structure field with the given name or if the field is not floating
point, then the function returns an error. This function is intended primarily
for FORTRAN module writers since C programmers can access the structure
fields directly. You must call the function, AVSload_user_data_types, in the
module description function to describe the user data type.

Inputs

ptr
pointer to a user written data structure

name
name of a field in the structure

User Data Accessor Routines

A-70 AVS LIBRARY ROUTINES

value
variable that the value is to be copied into; from C, this must be a pointer
to the variable

value_elements
number of array elements in the value argument being sent; should be 1
for scalar values

Outputs

none

Returns

1
success

0
failure

AVSudata_set_string

C:
#include <avs/avs.h>
#include <avs/udata.h>
int AVSudata_set_string(ptr, name, value, value_elements)

char *ptr;
char *name;
char *value;
int value_elements;

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSUDATA_SET_STRING(PTR, NAME, VALUE,
 VALUE_ELEMENTS)

INTEGER PTR, VALUE_ELEMENTS
CHARACTER*(*) NAME
CHARACTER VALUE
DIMENSION VALUE(VALUE_ELEMENTS)

This routine allows the module writer to store a string value name into a user
data type structure. For scalar values, pass 1 for the value_elements argument.
For array values, pass the size of the array that you are providing. If there is
no structure field with the given name or if the field is not a string, then the
function returns an error. This function is intended primarily for FORTRAN
module writers since C programmers can access the structure fields directly.
You must call the function, AVSload_user_data_types, in the module de-
scription function to describe the user data type.

Inputs

FORTRAN Array Accessor Routines

AVS LIBRARY ROUTINES A-71

ptr
pointer to a user written data structure

name
name of a field in the structure

value
variable that the value is to be copied into; from C, this must be a pointer
to the variable

value_elements
number of array elements in the value argument being sent; should be 1
for scalar values

Outputs

none

Returns

1
success

0
failure

FORTRAN Array Accessor Routines

Since dynamic memory allocation is not a standard FORTRAN concept, rely-
ing on nonstandard extensions such as pointers makes modules less portable.
The use of the SINGLE_ARG_DATA flag allows AVSdata_alloc to do most
memory allocations automatically. When additional memory allocation ser-
vices are required, there are two AVS interface functions that allow blocks of
data passed into the compute routines to be referenced in a completely porta-
ble way. In particular, these functions avoid use of pointer variables and the
POINTER statement. See /usr/avs/example/test_field_f.f for an example using
these techniques. These two calls are useful but they are largely superceeded
by the use of AVSfield_alloc, etc.

AVSptr_alloc

FORTRAN:
INTEGER AVSPTR_ALLOC(NAME, NELEM, ELSIZE, CLEAN,
 BASEVEC, ADDR, OFFSET)

INTEGER NELEM, ELSIZE, CLEAN, OFFSET, ADDR
DIMENSION BASEVEC(1)
CHARACTER*(*) NAME

FORTRAN Array Accessor Routines

A-72 AVS LIBRARY ROUTINES

AVSptr_alloc allocates a new data block for the given pointer. The parame-
ters are as follows:

name
The name of the AVS output port that the pointer belongs to. Use a name
consisting of a single SPACE character if the data block is not associated
with an output port.

nelem
The number of array elements to allocate.

elsize
The element size in bytes (INTEGER*4 is 4, REAL*8 is 8, etc).

clean
If 1, the new elements are initialized to 0. Otherwise they are not initial-
ized.

basevec
The start of the local array, used as a reference location. This array can be
dimensioned with 1 element.

addr
The data block memory pointer. Initialize this to 0 if the data block is be-
ing used for a local array instead of for an output port.

offset
The offset index relative to the basevec array that corresponds to the first
element of the data block pointed to by addr.

If addr points to an existing data block, that block is first freed and then a new
block is allocated. If the requested memory cannot be allocated, a value of 0 is
returned.

The sample program colorizer_f.f in /usr/avs/examples provides an example of
using this routine.

AVSptr_offset

FORTRAN:
INTEGER AVSPTR_OFFSET(NAME, ELSIZE, BASEVEC, ADDR, OFFSET)

INTEGER ELSIZE, OFFSET, ADDR
DIMENSION BASEVEC(1)
CHARACTER*(*) NAME

AVSptr_offset gets the offset index for an existing data block without reallo-
cating it. The parameters are the same as for AVSptr_alloc. If addr is 0 (no
space allocation), a value of 0 is returned. Otherwise a value of 1 is returned.

FORTRAN Array Accessor Routines

AVS LIBRARY ROUTINES A-73

Once the offset index is returned, there are several ways that it can be used,
depending on the circumstances:

• For 1D arrays, add the offset value to all of the local reference array, as in
basevec(offset+i). The read_image_f example module in /usr/avs/examples
uses this approach.

• For multi-dimensional arrays, a statement function can be used to per-
form the index arithmetic. The threshold_f example module in /usr/avs/
examples uses this approach:

 integer function threshold(f, nx, ny, nz,
 * gp, mx, my, mz, fmin, fmax)
 dimension f(nx, ny, nz)
 integer gp, goffset
 dimension g(1)
 real fmin, fmax

 gi(i,j,k) = goffset + j + (mx * ((j-1) + my * (k-1)))

 iresult = AVSptr_offset(’output field’, 4, g, gp, goffset)
 ...
 g(gi(i,j,k)) = 0.0

• A more convenient approach to handling arrays of any dimension is to
pass the offset element of the local reference array to a second function
that is expecting an array. This effectively "dereferences" the pointer and
allows you to directly reference array elements. The test_field_f example
module in /usr/avs/examples uses this approach.

 integer function test_field_compute(pfield,ni,nj,nk,
 * coordflag,nspace,pcoords,
 * ires,spacing,gridtype)
 integer pfield, pcoords, ofield,ocoords
 integer coordflag,ires,iresult
 character*32 gridtype
 real field(1),coords(1)

 iresult = AVSptr_alloc(’field’, ires*ires*ires, 4, 0, field,
 * pfield, ofield)
 iresult = AVSptr_alloc(’field’, ires*ires*ires*3, 4, 0, coords,
 * pcoords, ocoords)
 test_field_compute=test_field_compute2(field(ofield+1),ni,nj,nk,
 * coordflag,nspace,coords(ocoords+1),ires,spacing,gridtype)
 return
 end

 integer function test_field_compute2(field,ni,nj,nk,
 * coordflag,nspace,coords,ires,spacing,gridtype)
 integer coordflag,ires
 character*32 gridtype
 real field(ires,ires,ires),coords(ires,ires,ires,3)
 ...
 field(i,j,k)=dist/dmax

FORTRAN Single Byte Accessor Routines

A-74 AVS LIBRARY ROUTINES

FORTRAN Single Byte Accessor Routines

See /usr/avs/colorizer_f.f for an example of a module that uses these calls.

AVSload_byte

FORTRAN:
#include <avs/avs.inc>
INTEGER AVSLOAD_BYTE(BASE, OFFSET)

INTEGER BASE, OFFSET

This function loads a byte from memory. This is useful for FORTRAN’s that
do not have a BYTE data type and do not allow LOGICAL*1 to be used as a
numeric value.

Inputs

BASE
base address

OFFSET
byte offset from the base address (the first byte is number 1)

Outputs

none

Returns

value of an unsigned byte

AVSstore_byte

FORTRAN:
#include <avs/avs.inc>
AVSSTORE_BYTE(BASE, OFFSET, VALUE)

INTEGER BASE, OFFSET, VALUE

This subroutine stores a byte into memory. This is useful for FORTRAN’s that
do not have a BYTE data type and do not allow LOGICAL*1 to be used as a
numeric value.

Inputs

BASE
base address

Routines for Handling Errors

AVS LIBRARY ROUTINES A-75

OFFSET
byte offset from the base address (the first byte is number 1)

VALUE
new value for byte (only the low order 8 bits are used)

Outputs

none

Returns

none

Routines for Handling Errors

These routines provide the module with access to dialog boxes that they can
use to warn users or provide choices to users. See the AVSmessage routine
for a description of the severity levels that you can assign. See /usr/avs/exam-
ples/widgets.c and usr/avs/examples/widgets_f.f for examples of modules that use
these calls.

AVSdebug

C:
AVSdebug(message_format, msg1, msg2, msg3, msg4, msg5, msg6)

char *message_format;
char *msg1, *msg2, *msg3, *msg4, *msg5, *msg6;

FORTRAN:
AVSDEBUG(MESSAGE)

CHARACTER*length MESSAGE

This routine is an interface to the AVSmessage routine. It presents a message
of severity AVS_Debug.

C language: To produce the message to be presented to the user, AVS calls
sprintf(3S) with message_format as the format string and msg1 through msg6 as
the arguments. The msg1 through msg6 arguments can be of any type valid for
sprintf. Only as many arguments as the format string requires need be sup-
plied.

FORTRAN: The message to be presented to the user is the message argument.

This routine presents the user with only the default choice, "Ok". It returns no
meaningful value.

Routines for Handling Errors

A-76 AVS LIBRARY ROUTINES

AVSerror

C:
AVSerror(message_format, msg1, msg2, msg3, msg4, msg5, msg6)

char *message_format;
char *msg1, *msg2, *msg3, *msg4, *msg5, *msg6;

FORTRAN:
AVSERROR(MESSAGE)

CHARACTER*length MESSAGE

This routine is an interface to the AVSmessage routine. It presents a message
of severity AVS_Error.

C language: To produce the message to be presented to the user, AVS calls
sprintf(3S) with message_format as the format string and msg1 through msg6 as
the arguments. The msg1 through msg6 arguments can be of any type valid for
sprintf. Only as many arguments as the format string requires need be sup-
plied.

FORTRAN: The message to be presented to the user is the message argument.

This routine presents the user with only the default choice, "Ok". It returns no
meaningful value.

AVSfatal

C:
AVSfatal(message_format, msg1, msg2, msg3, msg4, msg5, msg6)

char *message_format;
char *msg1, *msg2, *msg3, *msg4, *msg5, *msg6;

FORTRAN:
AVSFATAL(MESSAGE)

CHARACTER*length MESSAGE

This routine is an interface to the AVSmessage routine. It presents a message
of severity AVS_Fatal.

C language: To produce the message to be presented to the user, AVS calls
sprintf(3S) with message_format as the format string and msg1 through msg6 as
the arguments. The msg1 through msg6 arguments can be of any type valid for
sprintf. Only as many arguments as the format string requires need be sup-
plied.

FORTRAN: The message to be presented to the user is the message argument.

This routine presents the user with only the default choice, "Ok". It returns no
meaningful value.

Routines for Handling Errors

AVS LIBRARY ROUTINES A-77

AVSinformation

C:
AVSinformation(message_format, msg1, msg2, msg3, msg4, msg5, msg6)

char *message_format;
char *msg1, *msg2, *msg3, *msg4, *msg5, *msg6;

FORTRAN:
AVSINFORMATION(MESSAGE)

CHARACTER*length MESSAGE

This routine is an interface to the AVSmessage routine. It presents a message
of severity AVS_Information.

C language: To produce the message to be presented to the user, AVS calls
sprintf(3S) with message_format as the format string and msg1 through msg6 as
the arguments. The msg1 through msg6 arguments can be of any type valid for
sprintf. Only as many arguments as the format string requires need be sup-
plied.

FORTRAN: The message to be presented to the user is the message argument.

This routine presents the user with no choices and returns no meaningful val-
ue.

AVSmessage

C:
#include <avs/avs.h>
char * AVSmessage(version, severity, module, function_name, choices,

message_format, msg1, msg2, msg3, msg4, msg5, msg6)
char *version;
AVS_MESSAGE_SEVERITY severity;
integer module;
char *function_name, *choices, *message_format;
char *msg1, *msg2, *msg3, *msg4, *msg5, *msg6;

FORTRAN:
#include <avs/avs.inc>
AVSMESSAGE(VERSION, SEVERITY, MODULE, FUNCTION_NAME,

CHOICES, MESSAGE)
CHARACTER*length VERSION
INTEGER SEVERITY(length)
INTEGER MODULE
CHARACTER*length FUNCTION_NAME
CHARACTER*length CHOICES, MESSAGE

This routine causes AVS to present the user with a message from a module
computation routine, along with information about the module and function

Routines for Handling Errors

A-78 AVS LIBRARY ROUTINES

sending the message. If the sender indicates that the message represents a
warning or error, AVS also stops executing and presents the message in a dia-
log box, along with a set of choices. The user must acknowledge the message
by selecting one of the choices before AVS can continue. The icon for the mod-
ule that sends the message is highlighted in yellow in the Network Editor.
The AVSmessage routine also records the message in a log file (/tmp/avslog.<-
process ID>) for later review.

Following is a description of the arguments:

version
A string indicating what version of the module is reporting the error. This
can be any string, but it should be a meaningful identification for the code
developer.

In some source code management systems, updating the version string
can be handled automatically. In SCCS, for example, you can insert a line
into a C source file declaring a global string variable that matches SCCS id
keywords. The string is updated each time a delta is made. For example:

static char file_version[] = "%W% %E%";

severity
A value indicating the relative importance of the message being sent. This
determines how AVS presents the message to the user and whether or not
the user must acknowledge the message before AVS can continue. If the
message appears in a dialog box, the border of the dialog box is color cod-
ed to indicate the severity. Following are the possible values:

AVS_Information
The message does not indicate an error. The message is written to
stderr, and AVS continues executing. No choices are presented to
the user.

AVS_Debug
The message does not indicate an error; it conveys information dur-
ing module testing. The message is written to stderr, and AVS con-
tinues executing. No choices are presented to the user.

AVS_Warning
The message indicates a problem that is not fatal to module execu-
tion. The message and choices are presented in a dialog box with a
yellow border. The user must make a choice before AVS can contin-
ue.

AVS_Error
The message indicates a serious problem that is not fatal to module
execution. The message and choices are presented in a dialog box
with a red border. The user must make a choice before AVS can con-
tinue.

AVS_Fatal
The message indicates a problem that is fatal to module execution.
The message and choices are presented in a dialog box with a black
border. The user must make a choice before AVS can continue. The

Routines for Handling Errors

AVS LIBRARY ROUTINES A-79

module is marked as dead, and the module icon in the Network
Editor workspace turns black. The flow executive no longer exe-
cutes the module.

module
The module sending the message. This value should always be
NULL in C (0 in FORTRAN). AVS automatically identifies the mod-
ule sending a message and highlights its icon in yellow.

function
The name of the function sending the message.

choices
A string containing the names of options to be presented to the
user. The choices are separated by exclamation points (!). For exam-
ple, "Ok!Kill Module!Exit" is presented as three choices: "Ok", "Kill
Module", and "Exit". If the value is NULL in C (0 in FORTRAN) or
the empty string, AVS presents a default choice, "Ok". AVS can add
choices to those specified in the choices argument.

message_format, msg1, msg2, msg3, msg4, msg5, msg6
C language: To produce the message to be presented to the user,
AVS calls sprintf(3S) with message_format as the format string and
msg1 through msg6 as the arguments. The msg1 through msg6 argu-
ments can be of any type valid for sprintf. Only as many arguments
as the format string requires need be supplied.

FORTRAN: The message to be presented to the user is the message
argument.

AVSmessage returns a string containing the choice the user made. A C lan-
guage routine can use strcmp(3C) to identify the choice, as in this example:

char *answer;

answer = AVSmessage(...,"Ok!Reset!Exit", ...)
if (!strcmp(answer,"Reset")) { /* reset action */ }
else if (!strcmp(answer,"Exit") { exit(1); }

A FORTRAN routine should declare AVSMESSAGE to return CHARAC-
TER*n, where n is the maximum length of the string to be returned. The
string is padded on the right with spaces. The routine can use the .EQ. opera-
tor to identify the choice, as in this example:

 ...
 EXTERNAL AVSMESSAGE
 CHARACTER*32 AVSMESSAGE
 CHARACTER*32 RESPONSE
 RESPONSE = AVSMESSAGE(’Version 1’, AVS_Error, 0,
 + ’MY_ROUTINE’, ’Ok!Reset!Exit’,
 + ’Attempt to divide by zero.’)
 IF (RESPONSE(1:2) .EQ. ’Ok’) THEN
C Process ’Ok’ choice
 ELSE IF (RESPONSE(1:5) .EQ. ’Reset’) THEN
C Process ’Reset’ choice
 ELSE IF (RESPONSE(1:4) .EQ. ’Exit’) THEN

Routines for Handling Errors

A-80 AVS LIBRARY ROUTINES

C Process ’Exit’ choice
 ELSE
C Process other choices added by AVS
 END IF
 ...

Because AVS can add choices to those supplied in the choices argument, the re-
turned value might not be one of the substrings in choices. For messages of se-
verity AVS_Information and AVS_Debug, no choices are presented to the
user, and the returned value is the empty string.

All messages sent through the AVS message mechanism are written to a log
file named /tmp/avslog.<process ID> in the current working directory. The log
file may contain additional information beyond that presented in the dialog
box, including the version string.

AVSmessage_sub

FORTRAN:
#include <avs/avs.inc>
AVSMESSAGE_SUB(ANSWER, VERSION, SEVERITY, MODULE,
 FUNCTION_NAME,

CHOICES, MESSAGE)
CHARACTER*length ANSWER
CHARACTER*length VERSION
INTEGER SEVERITY
INTEGER MODULE
CHARACTER*length FUNCTION_NAME
CHARACTER*length CHOICES, MESSAGE

This subroutine is a preferred alternative to AVSMESSAGE for FORTRAN
module writers which modifies the answer argument rather than returning it
as a function result. This approach is more portable between AVS implemen-
tations on different hardware platforms.

AVSwarning

C:
AVSwarning(message_format, msg1, msg2, msg3, msg4, msg5, msg6)

char *message_format;
char *msg1, *msg2, *msg3, *msg4, *msg5, *msg6;

FORTRAN:
AVSWARNING(MESSAGE)

CHARACTER*length MESSAGE

This routine is an interface to the AVSmessage routine. It presents a message
of severity AVS_Warning.

Routines for Handling Errors

AVS LIBRARY ROUTINES A-81

C language: To produce the message to be presented to the user, AVS calls
sprintf(3S) with message_format as the format string and msg1 through msg6 as
the arguments. The msg1 through msg6 arguments can be of any type valid for
sprintf. Only as many arguments as the format string requires need be sup-
plied.

FORTRAN: The message to be presented to the user is the message argument.

This routine presents the user with only the default choice, "Ok". It returns no
meaningful value.

Routines for Handling Errors

A-82 AVS LIBRARY ROUTINES

AVS C LANGUAGE FIELD MACROS B-1

APPENDIX B AVS C
LANGUAGE
FIELD MACROS

Macros for Obtaining the Dimensions of a Field

MAXX

#include <avs/field.h>
MAXX(field)

AVSfield *field;

MAXX provides the size of the first dimension of a field.

MAXY

#include <avs/field.h>
MAXY(field)

AVSfield *field;

MAXY provides the size of the second dimension of a field.

MAXZ

#include <avs/field.h>
MAXZ(field)

AVSfield *field;

MAXZ provides the size of the third dimension of a field.

Macros for Obtaining Elements of a Scalar Data Array

I2D

#include <avs/field.h>
I2D(field, i, j)

Macros for Obtaining Elements of a Vector Data Array

B-2 AVS C LANGUAGE FIELD MACROS

AVSfield *field;
int i, j;

For a two-dimensional field, I2D provides the element of the data array that
corresponds to index i of the first dimension and index j of the second dimen-
sion. Note that the index "arguments" are in order of the field dimensions; if
the indices were used directly as subscripts into the data array, they would be
in reverse order.

I3D

#include <avs/field.h>
I3D(field, i, j, k)

AVSfield *field;
int i, j, k;

For a three-dimensional field, I3D provides the element of the data array that
corresponds to index i of the first dimension, index j of the second dimension,
and index k of the third dimension. Note that the index "arguments" are in or-
der of the field dimensions; if the indices were used directly as subscripts into
the data array, they would be in reverse order.

I4D

#include <avs/field.h>
I4D(field, i, j, k, l)

AVSfield *field;
int i, j, k, l;

For a four-dimensional field, I4D provides the element of the data array that
corresponds to index i of the first dimension, index j of the second dimension,
index k of the third dimension, and index l of the fourth dimension. Note that
the index "arguments" are in order of the field dimensions; if the indices were
used directly as subscripts into the data array, they would be in reverse order.

Macros for Obtaining Elements of a Vector Data Array

I1DV

#include <avs/field.h>
I1DV(field, i)

AVSfield *field;
int i;

Macros for Obtaining Elements of a Vector Data Array

AVS C LANGUAGE FIELD MACROS B-3

For a one-dimensional field, I1DV provides a pointer to the first element of
the vector in the data array that corresponds to index i.

I2DV

#include <avs/field.h>
I2DV(field, i, j)

AVSfield *field;
int i, j;

For a two-dimensional field, I2DV provides a pointer to the first element of
the vector in the data array that corresponds to index i of the first dimension
and index j of the second dimension. Note that the index "arguments" are in
order of the field dimensions; if the indices were used directly as subscripts
into the data array, they would be in reverse order, with the vector index as
the last subscript.

I3DV

#include <avs/field.h>
I3DV(field, i, j, k)

AVSfield *field;
int i, j, k;

For a three-dimensional field, I3DV provides a pointer to the first element of
the vector in the data array that corresponds to index i of the first dimension,
index j of the second dimension, and index k of the third dimension. Note that
the index "arguments" are in order of the field dimensions; if the indices were
used directly as subscripts into the data array, they would be in reverse order,
with the vector index as the last subscript.

I4DV

#include <avs/field.h>
I4DV(field, i, j, k, l)

AVSfield *field;
int i, j, k, l;

For a four-dimensional field, I4DV provides a pointer to the first element of
the vector in the data array that corresponds to index i of the first dimension,
index j of the second dimension, index k of the third dimension, and index l of
the fourth dimension. Note that the index "arguments" are in order of the field
dimensions; if the indices were used directly as subscripts into the data array,
they would be in reverse order, with the vector index as the last subscript.

Macros for Obtaining Rectilinear Coordinate Arrays

B-4 AVS C LANGUAGE FIELD MACROS

Macros for Obtaining Rectilinear Coordinate Arrays

RECT_X

#include <avs/field.h>
RECT_X(field)

AVSfield *field;

For a rectilinear field, RECT_X provides a pointer to the first element of the
coordinate array that corresponds to the first dimension of computational
space.

RECT_Y

#include <avs/field.h>
RECT_Y(field)

AVSfield *field;

For a rectilinear field, RECT_Y provides a pointer to the first element of the
coordinate array that corresponds to the second dimension of computational
space.

RECT_Z

#include <avs/field.h>
RECT_Z(field)

AVSfield *field;

For a rectilinear field, RECT_Z provides a pointer to the first element of the
coordinate array that corresponds to the third dimension of computational
space.

Macros for Obtaining Coordinates for 3D Data Elements

COORD_X_3D

#include <avs/field.h>
COORD_X_3D(field, i, j, k)

AVSfield *field;
int i, j, k;

For a three-dimensional uniform field, COORD_X_3D "returns" i. For a three-
dimensional rectilinear or irregular field, COORD_X_3D provides the X co-

Macros for Obtaining Coordinates for 3D Data Elements

AVS C LANGUAGE FIELD MACROS B-5

ordinate from the coordinate array that corresponds to the data element spec-
ified by the indices i, j, and k.

COORD_Y_3D

#include <avs/field.h>
COORD_Y_3D(field, i, j, k)

AVSfield *field;
int i, j, k;

For a three-dimensional uniform field, COORD_Y_3D "returns" j. For a three-
dimensional rectilinear or irregular field, COORD_Y_3D provides the Y coor-
dinate from the coordinate array that corresponds to the data element speci-
fied by the indices i, j, and k.

COORD_Z_3D

#include <avs/field.h>
COORD_Z_3D(field, i, j, k)

AVSfield *field;
int i, j, k;

For a three-dimensional uniform field, COORD_Z_3D "returns" k. For a
three-dimensional rectilinear or irregular field, COORD_Z_3D provides the
Z coordinate from the coordinate array that corresponds to the data element
specified by the indices i, j, and k.

Macros for Obtaining Coordinates for 3D Data Elements

B-6 AVS C LANGUAGE FIELD MACROS

EXAMPLES OF AVS MODULES C-1

APPENDIX C EXAMPLES
OF
AVS MODULES

Introduction

This appendix contains example source code for three AVS modules:

• A C language subroutine module that computes the threshold of a field
of floating-point numbers.

• A FORTRAN version of the first example.
• A C language coroutine module that creates a geometry object.

For files that contain source code for these and other examples, see the di-
rectory /usr/avs/examples.

AVS Example Modules

The following list describes the examples located in the /usr/avs/examples di-
rectory:

Makefile
The examples Makefile is a good template for module makefiles for
both FORTRAN and C modules. It sets up library and include file refer-
ences so they can be redirected and it picks up definitions from the AVS
Makeinclude file for the local hardware platform. For FORTRAN, it sets
up a link to the include directory to allow the use of the FORTRAN in-
clude statement in FORTRAN modules.

avs_client.c
An example of an external process that can attach to AVS using the -
server option and send it CLI commands to drive it remotely or for ani-
mations.

menus.c
This example shows how to control panels of widgets using a module.
It centers on two techniques: setting up the panels using the AVSad-
d_parameter_prop function and controlling the panel visibility using
the AVScommand function in the compute routine of the module.

Introduction

C-2 EXAMPLES OF AVS MODULES

camera.c
This example demonstrates the use of the routine: GEOMedit_projection
to define the camera projection. This module allows you to specify a cam-
era position.

pick_cube.c
This example demonstrates how to use upstream data from the render ge-
ometry module to pick geometric objects. Functionally, this module gen-
erates a "cube". The user selects a face of the cube and the module
regenerates the cube with the selected face highlighted in red. It places a
green sphere over the closest vertex to the selection, and a blue sphere
over the selected point.

polygon.c
This example creates a geometric object. In this example, the original data
is kept in an ascii description file. This module converts disjoint polygon
information into geom format. It assumes that the polygons have no nor-
mals or colors (but you can easily modified it to include either or both).
The vertices of the polygons can either be shared by all of the polygons
(in which case they are be smooth shaded), or unshared (in which case
they are flat shaded).

qix.c
This example draws disjoint lines in a random pattern. Instead of provid-
ing a compute module function that AVS calls whenver a parameter or in-
put changes, this module determines when it wants to provide new data
to the network. Many existing applications fit into this model more easily
than the "compute function" model.

read_image.c
This example reads an image from a file ".x" format.

read_plot3d.c
This example reads a plot3d format file (this is the source for the unsup-
ported module "Read Plot3D").

read_scans.c
This example reads a 3D scalar field that is organized as a set of different
files.

read_ucd.c
This example reads a file (ascii or binary) that is in the ucd format. The ex-
ample is slightly out of date, since it reads AVS 3 binary format ucd files,
not the newer AVS 4 format. (The ASCII file format is unchanged.)

threshold.c
This example computes the threshold of a 3D scalar field of floating point
numbers. The threshold function examines each element of a field to see
whether it falls within the range specified by the minimum and maxi-
mum parameters (controlled by dials). Elements in the range are passed

Introduction

EXAMPLES OF AVS MODULES C-3

unchanged to the output field, elements outside the range are set to zero
in the output field.

This example module is not as general as the standard threshold module.
It does not handle rectilinear and irregular data.

ucd_extract.c
This example extracts a single data component of a UCD structure. It cre-
ates an output UCD structure that contains all the cells and nodes of the
input UCD sructure, but with only one scalar or vector data component.
It illustrates both creating UCD structures and accessing the elements of
existing structures.

ucd_thresh.c
This example computes the threshold of a UCD structure. It examines
each cell of a UCD structure to see whether it falls within the range speci-
fied by minimum and maximum parameters supplied by the ucd legend
module. It illustrates both creating UCD structures and accessing the ele-
ments of existing structures.

user_data.c
This example demonstrates using the user_data data type defined in the
include file: ex_user_data.h.

widgets.c
This examples demonstrates the use of widgets. If you have questions
about how to do something with widgets/parameters, you may find an
example of it in this file.

colorizer_f.f
This example to takes a scalar volume and computes a colorized volume.
In this example, the init (AVSint_modules) function calls two init routines
to create two different modules. This is useful when modules share a sub-
stantial amount of code or when there is an advantage to letting them run
in the same process (reduced data passing, etc).

gen_ucd.f
This example uses the ucd function calls. It creates a block of hexahedra
using either scalar or vector data.

polygon_f.f
This example is a FORTRAN version of the polygon.c example discussed
in the C Example Modules section.

qix_f.f
This example is a FORTRAN version of the qix.c example discussed in the
C Example Modules section.

read_image_f.f
This example is a FORTRAN version of the read_image.c example dis-
cussed in the C Example Modules section.

A C Language Subroutine Module

C-4 EXAMPLES OF AVS MODULES

read_vol_f.f
This example is a FORTRAN version of the read_vol.c example discussed
in the C Example Modules section.

test_field_f.f
This example generates a dummy 3D field. You can specify irregular, rec-
tilinear or uniform and it outputs a field of that type. The computational
space is a layered sphere, ranging from 0.0 to 1.0. If you select either recti-
linear or irregular field types, it is possible to adjust the spacing between
grid elements, based on an exponential function. This is a good module
for learning about what the parameters these data types can use. You can
use this module with a volume bounds object to understand the field it
producs.

test_fld2_f.f
This example is a modified version of test_field_f.f that uses the single ar-
gument FORTRAN field passing convention.

threshold_f.f
This example is a FORTRAN version of the threshold.c example dis-
cussed in the C Example Modules section.

user_data_f.f
Example of using the user_data data type defined in ex_user_data.h.

widgets_f.f
This example is a FORTRAN version of the widgets.c example discussed
in the C Example Modules section.

chemistry
A subdirectory that contains examples of modules that manipulate the
molecule data type.

imagenode
(Only with the Animator product.) A subdirectory containing sample
source to do output from AVS to a VCR to perform single frame record-
ing.

A C Language Subroutine Module

#include <avs/avs.h>
#include <avs/field.h>

/**/

/*
 * This is a C example to compute the threshold of a 3D scalar field of
 * floating point numbers.
 */

/*

A C Language Subroutine Module

EXAMPLES OF AVS MODULES C-5

 * The threshold function examines each element of a field to see
 * whether it falls within the range specified by a minimum and maximum
 * parameter (controlled by dials). Elements in the range are passed
 * unchanged to the output field, elements outside the range are
 * set to zero in the output field.
 */

/*
 * The function AVSinit_modules is called from the main() routine supplied
 * by AVS. In it, we call AVSmodule_from_desc with the name of our
 * description routine.
 */

AVSinit_modules()
{
 void threshold();

 AVSmodule_from_desc(threshold);
}

/* The routine "threshold" is the description routine. */

threshold()
{
 int thresh_compute(); /* declare the compute function (below) */
 int in_port, out_port; /* temporaries to hold the port numbers */

 /* Set the module name and type */
 AVSset_module_name("ex1-threshold", MODULE_FILTER);

 /* Create an input port for the required field input */
 in_port =
 AVScreate_input_port("Input Field",
 "field 3D uniform scalar float", REQUIRED);

 /* Create an output port for the result */
 out_port = AVScreate_output_port("Output Field",
 "field 3D uniform scalar float");

 /* Tell AVS to allocate space for the output data based on the size */
 /* of the input data - note that this only works when the output */
 /* port has the same type as the input port */

 AVSinitialize_output(in_port, out_port);

 /* Add two floating point parameters, both unbounded. Min has */
 /* an initial value of zero, max of 255 */

 AVSadd_float_parameter("thresh_min", 0.0, FLOAT_UNBOUND, FLOAT_UNBOUND);
 AVSadd_float_parameter("thresh_max", 255.0, FLOAT_UNBOUND, FLOAT_UNBOUND);

 /* Tell avs what subroutine to call to do the compute */
 AVSset_compute_proc(thresh_compute);
}

/*

A FORTRAN Subroutine Module

C-6 EXAMPLES OF AVS MODULES

 * thresh_compute is the compute routine. It is called whenever AVS wants to
 * compute new threshold results. The arguments are: the value of the input
 * field, the new output field (doubly indirected), the minimum parameter
 * value and the maximum parameter value. Note the order is always inputs,
 * outputs, parameters. The min comes before the max because in the
 * description routine above, the min is declared before the max.
 */

thresh_compute(input, output, pmin, pmax)
AVSfield_float *input, **output;
float *pmin, *pmax;
{
 register int i, j, k;
 register float min = *pmin;
 register float max = *pmax;

 /*
 * We use a triply nested loop to traverse the field. The macros MAXX,
 * MAXY, and MAXZ determine the maximum extent of the field in each of
 * the three dimensions. We know this will be a 3-dimensional
 * field because of the declaration in the description routine, so
 * we don’t need to check. When we want to reference an element of the
 * field we use the I3D macro which picks an element of a 3D field.
 * Note that the first index (i) varies the fastest in memory, so we
 * make that the innermost loop.
 */

 for (k = 0; k < MAXZ(input); k++)
 for (j = 0; j < MAXY(input); j++)
 for (i = 0; i < MAXX(input); i++)
 if (I3D(input, i, j, k) > max) {
 I3D(*output, i, j, k) = 0.0;
 } else if (I3D(input, i, j, k) < min) {
 I3D(*output, i, j, k) = 0.0;
 } else {
 I3D(*output, i, j, k) = I3D(input, i, j, k);
 }

 /* When we’re done, we return 1 to indicate success */
 return(1);
}

A FORTRAN Subroutine Module

C This is a FORTRAN example to compute the threshold of a 3D scalar
C field of floating point numbers.

C The threshold function examines each element of a field to see
C whether it falls within the range specified by a minimum and maximum
C parameter (controlled by dials). Elements in the range are passed
C unchanged to the output field, elements outside the range are
C set to zero in the output field.

A FORTRAN Subroutine Module

EXAMPLES OF AVS MODULES C-7

C The AVS startup routines will call AVSinit_modules to initialize the
C modules. This is the description routine for the module.

 subroutine AVSinit_modules
 include ’avs/avs.inc’
 integer iport, oport, iparm
 external threshold

C Set the module name and type
 call AVSset_module_name(’threshold f’, ’filter’)

C Create an input port for the required field input

 iport = AVScreate_input_port(’input field’,
 $ ’field 3D scalar uniform float’, REQUIRED)

C Create an output port for the result

 oport = AVScreate_output_port(’output field’,
 $ ’field 3D scalar uniform float’)

C Tell AVS to allocate space for the output data based on the size
C of the input data - note that this only works when the output
C port has the same type as the input port

 call AVSinitialize_output(iport, oport)

C Add two floating point parameters, both unbounded. Min has
C an initial value of zero, max of 255

 iparm = AVSadd_parameter(’min’, ’float’, 0.0,
 $ FLOAT_UNBOUND, FLOAT_UNBOUND)
 iparm = AVSadd_parameter(’max’, ’float’, 255.0,
 $ FLOAT_UNBOUND, FLOAT_UNBOUND)

C Tell AVS what function to call to do the compute

 call AVSset_compute_proc(threshold)

 return
 end

C Threshold is the compute function. The first four arguments
C represent the input field: f, nx, ny, nz. The second four arguments
C represent the output field: gp, mx, my, mz. Since we used
C AVSinitialize_output in the description routine, gp, mx, my, and mz
C will already have the appropriate values.
C
C Note that for output field, we set up the an integer to receive a
C POINTER to the data field. We declare a local array g of size 1 and
C will use it as a base array in conjunction with an offset (goffset)
C that is obtained by calling AVSptr_offset to determine the distance
C between the base array G and the actual output data array pointed to

A FORTRAN Subroutine Module

C-8 EXAMPLES OF AVS MODULES

C by gp.
C
C The last two arguments are the minimum and the maximum, read from
C dials manipulated by the user. Note that they are presented to the
C subroutine in the order they are declared in the description routine.

 integer function threshold(f, nx, ny, nz,
 $ gp, mx, my, mz, fmin, fmax)
 dimension f(nx, ny, nz)
 integer gp, goffset,gi
 real fmin, fmax, g
 dimension g(1)

C
C One option is to then define a statement function that will handle
C the index calculations, to simplify making references into the base
C array local array
C
 gi(i,j,k) = goffset + i + (mx * ((j-1) + my * (k-1)))

C call AVSPTR_OFFSET(NAME, ELSIZE, BASEVEC, ADDR, OFFSET)
C where:
C
C NAME - the name of the port / parameter the data is associated
C with
C ELSIZE - the size of the elements = 4 bytes in our case
C BASEVEC - the an array name to use for indexing = G in our case
C ADDR - the address of the actual data storage = GP
C OFFSET - the offset to use in indexing = GOFFSET
C
 i = AVSptr_offset(’output field’, 4, g, gp, goffset)

 do k = 1, nz
 do j = 1, ny
 do i = 1, nx
 if (f(i, j, k) .gt. fmax) then

C For each reference to array G use the index calculation function
C GI(i,j,k)

 g(gi(i,j,k)) = 0.0
 elseif (f(i, j, k) .lt. fmin) then
 g(gi(i,j,k)) = 0.0
 else
 g(gi(i,j,k)) = f(i, j, k)
 endif
 enddo
 enddo
 enddo

C When we’re done, we return 1 to indicate success

 threshold = 1
 return
 end

A C Language Coroutine Module

EXAMPLES OF AVS MODULES C-9

A C Language Coroutine Module

#include <stdio.h>
#include <avs/avs.h>
#include <avs/field.h>
#include <avs/geom.h>

/**/

/*
 * This is a C example to create a geometry object. In this example,
 * the "simulation" program flow of control is used. Instead of providing
 * a compute module function that is called whenever a parameter or input
 * has changed, this module can determine when it wants to provide new
 * data to the network. Many existing applications will fit into this
 * model much more easily than the "compute function" model.
 */

/*
 * The routine "qix" is the description routine. It provides
 * AVS some necessary information such as: name, input and output ports,
 * parameters etc.
 */
qix()
{
 int out_port; /* temporary to hold the port number */
 int parm; /* temporary to hold the parm number */

 /* Set the module name and type */
 AVSset_module_name("qix", MODULE_DATA);

 /* There are no input ports for this module */

 /* Create an output port for the result */
 out_port = AVScreate_output_port("Output Geometry", "geom");

 /* Add one parameter: an enable/disable toggle for the scope */
 (void) AVSadd_parameter("sleep", "boolean", 1, 0, 1);

 /* There is no compute function for this module */
}

#define MAXV 200
#define PERFRAME 6

typedef float FLOAT3[3];

main(argc,argv)
int argc;
char *argv[];
{
 int qix();
 int count = MAXV;
 FLOAT3 verts[2], move0, move1, colors[2], movec0, movec1;
 int sleep = 1;

A C Language Coroutine Module

C-10 EXAMPLES OF AVS MODULES

 GEOMobj *obj = NULL;
 GEOMedit_list output = NULL;
 int i;

 AVScorout_init(argc,argv,qix);

 while(1) {
 /* If we are told to sleep, we’ll just wait until a parameter changes */
 if (sleep) AVScorout_wait();

 /* Get input parameter (any inputs would be here as well) */
 AVScorout_input(&sleep);

 for (i = 0; i < PERFRAME; i++) {
 if (count >= MAXV) {
 start(verts,colors,move0,move1,movec0,movec1);
 count = 0;
 if (obj) GEOMdestroy_obj(obj);
 obj = GEOMcreate_obj(GEOM_POLYTRI,NULL);
 }
 else next(verts,colors,move0,move1,movec0,movec1);
 GEOMadd_disjoint_line(obj,verts,colors,2,GEOM_COPY_DATA);
 count++;
 }

 output = GEOMinit_edit_list(output);
 GEOMedit_geometry(output,"qix",obj);
 AVScorout_output(output);
 }
}

#define RA 5.0
#define DD 0.2
#define DC 0.05

start(verts,colors,move0,move1,movec0,movec1)
FLOAT3 *verts;
FLOAT3 *colors;
FLOAT3 move0, move1;
FLOAT3 movec0, movec1;
{
 float ran();

 verts[0][0] = ran(RA); verts[0][1] = ran(RA); verts[0][2] = ran(RA);
 verts[1][0] = ran(RA); verts[1][1] = ran(RA); verts[1][2] = ran(RA);

 move0[0] = ran(DD); move0[1] = ran(DD); move0[2] = ran(DD);
 move1[0] = ran(DD); move1[1] = ran(DD); move1[2] = ran(DD);

 colors[0][0] = ran(1.0); colors[0][1] = ran(1.0); colors[0][2] = ran(1.0);
 colors[1][0] = ran(1.0); colors[1][1] = ran(1.0); colors[1][2] = ran(1.0);

 movec0[0] = ran(DC); movec0[1] = ran(DC); movec0[2] = ran(DC);
 movec1[0] = ran(DC); movec1[1] = ran(DC); movec1[2] = ran(DC);
}

A C Language Coroutine Module

EXAMPLES OF AVS MODULES C-11

next(verts,colors,move0,move1,movec0,movec1)
FLOAT3 *verts;
FLOAT3 *colors;
FLOAT3 move0, move1;
FLOAT3 movec0, movec1;
{
 int i;
 for (i = 0; i < 3; i++) {
 verts[0][i] = verts[0][i] + move0[i];
 verts[1][i] = verts[1][i] + move1[i];
 colors[0][i] = colors[0][i] + movec0[i];
 colors[1][i] = colors[1][i] + movec1[i];
 if (verts[0][i] > RA && move0[i] > 0.0) {
 verts[0][i] = RA; move0[i] = -move0[i];
 }
 if (verts[0][i] < -RA && move0[i] < 0.0) {
 verts[0][i] = -RA; move0[i] = -move0[i];
 }
 if (verts[1][i] > RA && move1[i] > 0.0) {
 verts[1][i] = RA; move1[i] = -move1[i];
 }
 if (verts[1][i] < -RA && move1[i] < 0.0) {
 verts[1][i] = -RA; move1[i] = -move1[i];
 }

 if (colors[0][i] < 0.0 && movec0[0] < 0.0) {
 colors[0][i] = 0.0; movec0[i] = -movec0[i];
 }
 if (colors[0][i] > 1.0 && movec0[0] > 0.0) {
 colors[0][i] = 1.0; movec0[i] = -movec0[i];
 }
 if (colors[1][i] < 0.0 && movec1[1] < 0.0) {
 colors[1][i] = 0.0; movec1[i] = -movec1[i];
 }
 if (colors[1][i] > 1.0 && movec1[0] > 0.0) {
 colors[1][i] = 1.0; movec1[i] = -movec1[i];
 }
 }
}

float
ran(n)
float n;
{
 double drand48();
 return(n * drand48());
}

A C Language Coroutine Module

C-12 EXAMPLES OF AVS MODULES

ON-LINE HELP FACILITY D-1

APPENDIX D ON-LINE
HELP
FACILITY

Introduction

AVS makes it easy to supplement the on-line help facility with documenta-
tion for your own modules and/or networks. You can create a series of help
files and have them accessible through the Help buttons and the Show
Module Documentation button in the Module Editor window.

Help Files - Format and Naming Conventions

Each help screen in AVS is implemented as an ASCII text file, with a .txt file-
name suffix. In order to be portable the filename should be no more than 14
characters long including the .txt extension. The file is displayed in a Help
Browser window using a monospace font (all characters have the same
width). Thus, however you create the help file using a text editor is exactly
how it appears in the browser. If you use TAB characters in help text files,
be sure to set the tab stops in your text editor to every 8 columns. It may be
safer to use SPACE characters to align columnar material instead.

You can include comment lines in your help files. Any line that begins with
a period (.), pound-sign (#), or dash (-) character is suppressed when the
file is displayed.

AVS looks for a help file based on either a topic string (module or network
name) or a filename which is derived from the topic string. In order to gener-
ate the filename from a topic string, it takes the name of the module or net-
work and replaces SPACE characters with underscores and appends ".txt".
For example:

Module/Network Name Help Filename
clarify edge clarify_edge.txt
easy vu 2 easy_vu_2.txt

When possible, name your help file with a name that matches this conven-
tion. Obviously, with longer topic names, the filenames can become cum-
bersome and easily exceed the allowable length for filenames (14 characters
on many systems).

Integrating Your Help Files into the Help System

D-2 ON-LINE HELP FACILITY

A second and more convenient way is through the use of a topics file in the di-
rectory containing the help files. A list of all help topics, along with associated
filenames, is stored in the ASCII file .topics which can be generated automati-
cally by AVS or manually using a text editor. This file allows topic matching
on longer names that may contain spaces and eliminates the need for the file-
name to follow the conventions mentioned above. There is one such file for
each directory under /usr/avs/runtime/help. For example, /usr/avs/runtime/help/
.topics contains the following:

avs_cmdopt.txt THE AVS COMMAND AND COMMAND-LINE OPTIONS
avs_dta.txt AVS DATA FILES
avs_envvar.txt AVS ENVIRONMENT VARIABLES
avs_mods.txt AVS MODULES
avs_start.txt AVS STARTUP FILE
avs_subsys.txt IMAGE VIEWER
fld_dtafmt.txt FIELD DATA FILE FORMAT
geo_dtafmt.txt GEOMETRY DATA FILE FORMAT
img_dtafmt.txt IMAGE DATA FILE FORMAT
vol_dtafmt.txt VOLUME DATA FILE FORMAT

Each line of the .topics file lists the name of one help file and the file’s topic.
This file can be written manually using any text editor or can be generated au-
tomatically by AVS using the -reindex option. For manual pages, the topic is
automatically extracted from the line that follows the "NAME" heading. AVS
looks for a pattern like the following:

AVS Modules read image(6)

NAME
 read image - read image file from disk into a field

AVS picks up "read image - read image from ..." as the topic line. It then
searches for a match up to the first dash (-). For other help files, the topic line
is just the first non-comment line. TAB characters are replaced by SPACE
characters, and multiple SPACEs are compressed to a single SPACE.

When the Help Browser arrives in a particular directory of the help tree, it
displays all the topics in that directory’s .topics file, in place of the actual file-
names. If a file in the directory does not have an entry in the .topics file, the
filename itself is displayed. When the user clicks a particular topic, the Brows-
er displays the corresponding file. When the Show Module Documentation
operation is performed, it also uses the topics file to augment its search to
match for module names based on topic name rather than filename.

Integrating Your Help Files into the Help System

There are two aspects to having your help files become part of the on-line
help system. First, integrating the files into the AVS help facility. Second, inte-
grating the files into the standard "man command" facility.

Integrating Your Help Files into the Help System

ON-LINE HELP FACILITY D-3

AVS Help

By default, AVS searches for help files in the directories under /usr/avs/runt-
ime/help. It is not advisable to store your help files in this location (in general, it
is a bad idea to place user data in a "system" area). System areas may not be
backed up, since they can be rebuilt from distribution tapes. Moreover, mix-
ing user data and system data can cause problems when installing AVS re-
leases in the future.

If you are writing your own modules for inclusion in the AVS system, create a
help file for each module and place all the help files in a directory (e.g. /usr/
derek/avs/help). For portability, choose names with no more than 14 characters
for the help files. Once this is done you need to create a .topics file for your di-
rectory and make that directory part of the search path that AVS uses when it
is looking for help files.

You can set the AVS help search path using an environment variable
(AVS_HELP_PATH) or an avsrc file option (HelpPath). A search path consists
of a colon-separated list of complete pathnames of directories that contain
help files or subdirectories of help files. The search path is used in addition to
the standard /usr/avs/runtime/help directory.

The -reindex Option and AVS_HELP_PATH

The command avs -reindex causes AVS to recreate the .topics file in each di-
rectory of the help tree. This command does not start an AVS session, but sim-
ply returns you to the UNIX prompt.

You can set the environment variable AVS_HELP_PATH to a colon-separated
list of complete pathnames. If this variable is set, specifying the -reindex op-
tion (re)creates .topics files in the directory tree under each pathname in
AVS_HELP_PATH. If this variable is not set, -reindex (re)creates .topics files in
the standard directory tree, under /usr/avs/runtime/help.

Another alternative: instead of using AVS_HELP_PATH to specify a colon-
separated list of complete pathnames, you can place the list on the AVS com-
mand line:

avs -reindex path : path ...

An explicit argument overrides the current value of AVS_HELP_PATH, if any.
Set your AVS_HELP_PATH environment variable:

setenv AVS_HELP_PATH /usr/derek/avs/help

Then, create a .topics file for the new help directory:

avs -reindex

The next time you run AVS, the new help files will be accessible through the
Help Browser. You’ll need to use the New Dir button to change to help direc-
tory /usr/derek/avs/help. AVS automatically finds a module’s help file when

Integrating Your Help Files into the Help System

D-4 ON-LINE HELP FACILITY

you click Show Module Documentation in the Module Editor window, since
AVS_HELP_PATH specifies the help file’s directory tree.

AVS Help Search

The AVS_HELP_PATH variable is used by the Network Editor as follows:

• When you click the Help button in the Network Control Panel window
(along the left edge of the screen), the name of the current network is con-
verted to a filename by replacing SPACE characters with underscores and
appending a .txt suffix. The help facility searches for either that filename
or the unmodified topic string (module name or network) in the entire di-
rectory hierarchy under the first entry in AVS_HELP_PATH. If such a file
exists or a matching topic entry in the .topics file is found, it is displayed
in a Help Browser window. If not, the next entry in AVS_HELP_PATH is
used, and so on.
If no help file is found among all the AVS_HELP_PATH entries, a final
search is made in the default help location, /usr/avs/runtime/help. If this
fails, an error message window pops up.

• The module icon for a user-written module includes the same small
square as the AVS-supplied icons. You can click this square with the mid-
dle or right mouse button to bring up the Module Editor window. When
you click the Show Module Documentation button, the help facility con-
verts the module name to a filename and searches for the file, just as de-
scribed in the preceding paragraph.

Man Command

You can use the man(1) command to view the AVS module help files. Installa-
tion of the help files into your hardware platform’s man system is system de-
pendent. Please consult your system documentation to find the procedure.

UNSTRUCTURED CELL DATA LIBRARY E-1

APPENDIX E UNSTRUCTURED
CELL DATA
LIBRARY

Overview

The UCD package is a library containing the data structures and subrou-
tines that allow users to write modules that handle Unstructured Cell Data
(UCD). In particular, the UCD package can be used to create modules for Fi-
nite Element Analysis (FEA) and Computational Fluid Dynamics (CFD).

This chapter page is organized as follows:

SYNOPSIS section:

• Compiling and linking information
• Summary list of ucd routines, showing their parameters

DESCRIPTION section:

• An overview of how unstructured cell data is set up
• An overview of how ucd routines should be used
• A list of global variables
• Typedefs that are specific to unstructured cell data
• The file format for UCD data files

ROUTINES section:

• Structure Manipulation Routines
• Structure Query Routines
• Cell Manipulation Routines
• Cell Query Routines
• Node Manipulation Routines
• Node Query Routines

EXAMPLES section:

• C and FORTRAN examples of allocating and filling in a UCD struc-
ture

Synopsis

E-2 UNSTRUCTURED CELL DATA LIBRARY

Synopsis

A C language module that uses ucd routines must use the following header
file:

/usr/avs/include/ucd_defs.h

For example, in C:

#include<ucd_defs.h>

A FORTRAN language module that uses ucd routines must use the following
header file:

/usr/avs/include/avs.inc

For example, in FORTRAN:

#include<avs.inc>

A module that uses ucd routines must be linked with the following libraries:

• C module

/usr/avs/lib/libflow_c.a

• C coroutine module

/usr/avs/lib/libsim_c.a

• FORTRAN module

/usr/avs/lib/libflow_f.a

• FORTRAN coroutine module

/usr/avs/lib/libsim_f.a

ucd Routine Summary

UNSTRUCTURED CELL DATA LIBRARY E-3

ucd Routine Summary

The following list of ucd routines is organized by functional category.

Structure Manipulation Routines

UCDstructure_alloc (name, data_veclen, name_flag, ncells, cell_tsize,
 cell_veclen, nnodes, node_csize, node_veclen, util_flag)
UCDstructure_free (structure)
UCDstructure_set_data (structure, data)
UCDstructure_set_data_labels (structure, labels, delimiter)
UCDstructure_set_data_units (structure, labels, delimiter)
UCDstructure_set_extent (structure, min_extent, max_extent)
UCDstructure_set_header_flag (structure, util_flag)
UCDstructure_set_mesh_id (structure, mesh_id)

Structure Query Routines

UCDstructure_get_data (structure, data)
UCDstructure_get_data_label (structure, number, label)
UCDstructure_get_data_labels (structure, labels, delimiter)
UCDstructure_get_data_unit (structure, number, label)
UCDstructure_get_data_units (structure, labels, delimiter)
UCDstructure_get_extent (structure, min_extent, max_extent)
UCDstructure_get_header (structure, name, data_veclen, name_flag, ncells,
 cell_veclen, nnodes, node_veclen, util_flag)
UCDstructure_get_mesh_id (structure, mesh_id)

Cell Manipulation Routines

UCDcell_set_information (structure, cell, name, element_type,
 material_type, cell_type, mid_edge_flags, node_list)
UCDstructure_invalid_cell_minmax (structure)
UCDstructure_set_cell_active (structure, active)
UCDstructure_set_cell_components (structure, components, number)
UCDstructure_set_cell_data (structure, data)
UCDstructure_set_cell_labels (structure, labels, delimiter)
UCDstructure_set_cell_minmax (structure, min, max)
UCDstructure_set_cell_units (structure, labels, delimiter)

Cell Query Routines

UCDcell_get_information (structure, cell, name, element_type,
 material_type, cell_type, mid_edge_flags, node_list)
UCDstructure_get_cell_active (structure, active)

ucd Routine Summary

E-4 UNSTRUCTURED CELL DATA LIBRARY

UCDstructure_get_cell_components (structure, components)
UCDstructure_get_cell_data (structure, data)
UCDstructure_get_cell_label (structure, number, label)
UCDstructure_get_cell_labels (structure, labels, delimiter)
UCDstructure_get_cell_minmax (structure, min, max)
UCDstructure_get_cell_unit (structure, number, label)
UCDstructure_get_cell_units (structure, labels, delimiter)

Node Manipulation Routines

UCDnode_set_information (structure, node, name, ncells, cell_list)
UCDstructure_invalid_node_minmax (structure)
UCDstructure_set_node_active (structure, active)
UCDstructure_set_node_components (structure, components, number)
UCDstructure_set_cell_connect (structure)
UCDstructure_set_node_data (structure, data)
UCDstructure_set_node_labels (structure, labels, delimiter)
UCDstructure_set_node_minmax (structure, min, max)
UCDstructure_set_node_positions (structure, x, y, z)
UCDstructure_set_node_units (structure, labels, delimiter)

Node Query Routines

UCDnode_get_information (structure, node, name, ncells, cell_list)
UCDstructure_get_node_active (structure, active)
UCDstructure_get_node_components (structure, components)
UCDstructure_get_node_data (structure, data)
UCDstructure_get_node_label (structure, number, label)
UCDstructure_get_node_labels (structure, labels, delimiter)
UCDstructure_get_node_minmax (structure, min, max)
UCDstructure_get_node_positions (structure, x, y, z)
UCDstructure_get_node_unit (structure, number, label)
UCDstructure_get_node_units (structure, labels, delimiter)

Description

UNSTRUCTURED CELL DATA LIBRARY E-5

Description

The Setup of the UCD Structure

In order to represent the unstructured data models found in FEA and CFD, a
hierarchical model for the data structures has been chosen. At the top level,
there is the object (objects will be referred to as structures). Each structure is
composed of multiple cells. The cells occupy the second level in the hierarchy.
Each cell, in turn, is composed of multiple nodes. The nodes are at the third
level in the hierarchy. It is possible that more than one cell can contain the
same node. An example of this three level hierarchy is seen in Figure E-1:

 Structure
 / | \
 / | \
 / | \
 cell1 cell2 cell3
 / \ /| / | \
 / \ / | / | \
 / \ / | / | \
node1 node2 node3 node4 node5

 Figure E-1 Hierarchical Structure of Model, Cells and Nodes

Description

E-6 UNSTRUCTURED CELL DATA LIBRARY

 Cells, Nodes, and Mid-Edge Nodes

The ucd data structure has eight different cell types. InFigure E-2 each of the
cell types is pictured, with its nodes and mid-edge nodes correctly labeled.

0

3 5

1 2
4

7
0 3

4 6

1 25

UCD _TRIANGLE UCD_QUADRILATERAL UCD_LINE

0

1

2 3

4

5 6

7

8

9

1

2 3

4

5

6 7

0

8

9

10

11

12

12

UCD_TETRAHEDRON UCD_PYRAMID

0

1

2

3

4

5

6 7

8

9

0

10

11
12

13 14

UCD_PRISM

0

1 2

3

4

5 6

7

8

9

10

11

12

13

14

15

16

17
18

19

UCD_HEXAHEDRON UCD_POINT

0

 Figure E-2 UCD Cell Types, Nodes, Mid-Edge Nodes, and Node Numbering

Description

UNSTRUCTURED CELL DATA LIBRARY E-7

Node connectivity (the list of nodes associated with each cell) should follow
this numbering convention in UCD files and in the UCD structure.

Nodes are required. Mid-edge nodes are optional. The integer variable mid_-
edge_flags in the UCD structure indicates which mid-edge nodes are present
for a particular cell. Each bit, starting from the most right, indicates the pres-
ence of one mide-edge node. The arrangement is ordinal.

For example, if a cell is UCD_TRIANGLE and has 2 mid-edge nodes, 3 and 5,
then the bits of the "mid_edge_flags" will be:

00........00101

The first rightmost bit indicates that the first mid-edge node present in a
UCD_TRIANGLE, number 3, is present. The second mid-edge node in a
UCD_TRIANGLE, number 4, is not present. The third mid-edge node, num-
ber 5, is present.

The following UCD modules supplied with this release of this product pro-
cess mid-edge nodes:

read ucd
write ucd
ucd rslice
ucd probe
ucd to geom

Other modules ignore mid-edge nodes. Users can use the UCD library to
write modules that manipulate mid-edge nodes.

UCD Data Structure and Type Definitions

typedef union { /* name union */
 char *c; /* character string for label names */
 int i; /* integer for numerical names */
} UCD_name;

typedef struct UCD_structure_ {

 /*--------- Structure Header Information ---------*/
 char *name; /* structure name */
 int name_flag; /* are node/cell names chars or ints */
 int ncells; /* number of cells */
 int nnodes; /* number of nodes */
 float min_extent[3]; /* structure extent */
 float max_extent[3]; /* structure extent */
 int data_veclen; /* length of data vector for struct */
 float *data; /* data for the structure */
 char *data_labels; /* labels for data components */

Description

E-8 UNSTRUCTURED CELL DATA LIBRARY

 char *data_units; /* labels for data units */
 int util_flag; /* utility flag: all but the 16 */
 /* rightmost bits can be used */
 int mesh_id; /* unique id of the mesh instance */

 /*--------- Cell Information ---------*/
 UCD_name *cell_name; /* cell names */
 char **element_type; /* cell element types */
 int *material_type; /* user defined material types */
 int *cell_type; /* cell types (see above defines) */
 int cell_veclen; /* length of data vector */
 float *cell_data; /* data for cell-based datasets */
 float *min_cell_data; /* min val for cell data components */
 float *max_cell_data; /* max val for cell data components */
 char *cell_labels; /* labels for cell data components */
 char *cell_units; /* labels for cell data units */
 int *cell_components;/* array of cell component mix */
 int *cell_active; /* array of active cell components */
 int *mid_edge_flags; /* cell edges with mid edge nodes */
 int node_conn_size; /* size of the node connectivity list*/
 int *node_list; /* node list of connectivity */
 int *node_list_ptr; /* location of a cell’s node list */
 int ucd_last_cell; /* number of last cell */

 /*--------- Node Information ---------*/
 UCD_name *node_name; /* node names */
 float *x, *y, *z; /* position of the nodes */
 int node_veclen; /* length of data vector */
 float *node_data; /* data vector for the nodes */
 float *min_node_data; /* min val for node data components */
 float *max_node_data; /* max val for node data components */
 char *node_labels; /* labels for node data components */
 char *node_units; /* labels for node data units */
 int *node_components;/* array of node component mix */
 int *node_active; /* array of active node components */
 int cell_conn_size; /* size of the cell connectivity list*/
 int *cell_list; /* cell list of connectivity */
 int *cell_list_ptr; /* location of a node’s cell list */
 int ucd_last_node; /* number of last node */

 /*--------- Allocation Information (INTERNAL USE ONLY) ----------*/
 enum {
 UCD_ONE_BLOCK,
 UCD_RW_SHM,
 UCD_RO_SHM
 } alloc_case; /* storage allocation strategy */
 int shm_key; /* shared memory key */
 int shm_id; /* shared memory id */
 char *shm_base; /* shared memory base */
} UCD_structure;

Description

UNSTRUCTURED CELL DATA LIBRARY E-9

The name_flag in the structure header information can be used to allocate
space for just those optional components that are actually used in your UCD
structure, substantially reducing memory requirements for the data. Some of
the structure elements (cell_name, element_type, material_type, mid_edge_-
flags and node_name) are pointers to data storage that is optional. See the dis-
cussion under the UCDstructure_alloc call.

File Format for UCD Data Files

The UCD file format is a relatively simple format that can be written out in ei-
ther binary or ASCII. The module read ucd can read files saved in this format.

NOTE: Binary files can be read in much faster. If you write your data file in
ASCII, you can shorten the time it takes to read the file by converting it to bi-
nary format. In order to do this conversion, build a network with read ucd
connected to write ucd and set write ucd’s output parameter to binary.

NOTE: Although cell- and model-based data can be stored within a ucd
structure, and you can use the ucd library to manipulate such data, most of
the ucd mapper modules supplied with AVS (e.g. ucd iso) will only work
with node-based data. You can use the ucd cell to node module to convert
cell data into a node data representation that can be processed by the supplied
module set.

ASCII UCD File Format

The general order of the data is:

1. Numbers defining the overall structure, including the number of
nodes, the number of cells, and the total length of the vector of data
associated with the nodes, cells, and the model.

2. For each node, its node-id and the coordinates of that node in
space. The UCD library allows node-ids to be either chars or inte-
gers (UCDstructure_alloc’s name_flag argument). However, the
read ucd module only accepts integer node-ids. Any number, in-
cluding non-sequential numbers, can be used. Mid-edge nodes are
treated like any other node.

3. For each cell: its cell-id, material, type (hexahedral, pyramid, etc.),
and the list of node-ids that correspond to each of the cell’s verti-
cies. This is the "node connectivity list". See above for the order in
which node-ids are applied to a cell.)

4. For the data vector associated with nodes, how many components
that vector is divided into, followed by the number of elements in
each component (e.g., a vector of 5 floating point numbers may be
treated as 3 components: a scalar, a vector of 3, and another scalar,
which would be specified as 3 1 3 1).

Description

E-10 UNSTRUCTURED CELL DATA LIBRARY

5. For each node data component, a component label/unit label pair,
separated by a comma.

6. For each node, the vector of data values associated with it.
7. That is the end of the node definitions. Cell-based data descrip-

tions, if present, then follow in the same order and format as items
4, 5, and 6.

8. The single model-based data descriptions, if present, comes last.

The input file cannot contain blank lines or lines with leading blanks. Com-
ment lines, denoted with a # sign in the first column, can occur before the data
starts, but cannot be inserted within the data, either as an additional comment
line, or at the end of a data line. The numbers down the left correspond to the
above descriptions and are not part of the ASCII file.

 # <comment 1>
 .
 .
 .
 # <comment n>
 1. <num_nodes> <num_cells> <num_ndata> <num_cdata> <num_mdata>
 2. <node_id 1> <x> <y> <z>
 <node_id 2> <x> <y> <z>
 .
 .
 .
 <node_id num_nodes> <x> <y> <z>
 3. <cell_id 1> <mat_id> <cell_type> <cell_vert 1> ... <cell_vert n>
 <cell_id 2> <mat_id> <cell_type> <cell_vert 1> ... <cell_vert n>
 .
 .
 .
 <cell_id num_cells> <mat_id> <cell_type> <cell_vert 1> ... <cell_vert n>
 4. <num_comp for node data> <size comp 1> <size comp 2>...<size comp n>
 5. <node_comp_label 1> , <units_label 1>
 <node_comp_label 2> , <units_label 2>
 .
 .
 .
 <node_comp_label num_comp> , <units_label num_comp>
 6. <node_id 1> <node_data 1> ... <node_data num_ndata>
 <node_id 2> <node_data 1> ... <node_data num_ndata>
 .
 .
 .
 <node_id num_nodes> <node_data 1> ... <node_data num_ndata>
 7. <num_comp for cell’s data> <size comp 1> <size comp 2>...<size comp n>
 <cell-component-label 1> , <units-label 1>
 <cell-component-label 2> , <units-label 2>
 .
 .
 .

Description

UNSTRUCTURED CELL DATA LIBRARY E-11

 <cell-component-label n> , <units-label n>
 <cell-id 1> <cell-data 1> ... <cell-data num_cdata>
 <cell-id 2> <cell-data 1> ... <cell-data num_cdata>
 .
 .
 .
 <cell-id num_cells> <cell-data 1> <cell-data num_cdata>
 8. <num_comp for model’s data> <size comp 1> <size comp 2>...<size comp n>
 <model-component-label 1> , <units-label 1>
 <model-component-label 2> , <units-label 2>
 .
 .
 .
 <model-component-label n> , <units-label n>
 <model-id> <model-data 1> <model-data num_mdata>

NOTE: mat_id = material id

NOTE: possible cell types are: (pt, line, tri, quad, tet, pyr, prism, hex)

The UCD structure and library will support either integer or character node-,
cell-, and model-ids, (referred to in the library documentation as names).
However, the read ucd module only accepts integer node-ids, cell-ids, and
model-ids. This is shown in the example below.

Also note that, at present, most of the UCD modules do not make use of cell
and model-based data, thus the input data examples all show "0" for <num-
cdata> and <num-mdata>. User-written modules can use the UCD library to
manipulate cell- and model-based data.

Example 1: The following is an example of a simple UCD file. This UCD
structure has 8 nodes in 1 hexahedral cell. Associated with each node is a sin-
gle scalar data value, making up one component that this person labels
"stress," and specifies a "lb/in**2" unit label. There is no cell- or model-based
data.

 8 1 1 0 0 <-1. 8 nodes, 1 cell, 1 component of node data
 1 0.000 0.000 1.000 <-2. for each node, its id and node coordinates
 2 1.000 0.000 1.000
 3 1.000 1.000 1.000
 4 0.000 1.000 1.000
 5 0.000 0.000 0.000
 6 1.000 0.000 0.000
 7 1.000 1.000 0.000
 8 0.000 1.000 0.000
 1 1 hex 1 2 3 4 5 6 7 8 <-3. cell id, material id, cell type, cell vertices
 1 1 <-4. num data components, size of each component
 stress, lb/in**2 <-5. component label, units label
 1 4999.9999 <-6. data vector for each node
 2 18749.9999
 3 37500.0000
 4 56250.0000
 5 74999.9999

Description

E-12 UNSTRUCTURED CELL DATA LIBRARY

 6 93750.0001
 7 107500.0003
 8 5000.0001

Example 2: This example has eight nodes in one hexahedral cell. Each node
has three scalar components associated with it that are labelled "stress ...", and
have "lb/in**2" unit strings. There is no cell or model data.

 8 1 3 0 0
 1 0.000 0.000 1.000
 2 1.000 0.000 1.000
 3 1.000 1.000 1.000
 4 0.000 1.000 1.000
 5 0.000 0.000 0.000
 6 1.000 0.000 0.000
 7 1.000 1.000 0.000
 8 0.000 1.000 0.000
 1 1 hex 1 2 3 4 5 6 7 8
 3 1 1 1
 stress sxx, lb/in**2
 stress syy, lb/in**2
 stress szz, lb/in**2
 1 4999.9999 2187.5003 4999.9999
 2 18749.9999 0.0003 5624.9999
 3 37500.0000 0.0000 11250.0000
 4 56250.0000 0.0000 16875.0000
 5 74999.9999 0.0001 22499.9999
 6 93750.0001 -0.0003 28125.0001
 7 107500.0003 -2187.5006 28750.0003
 8 5000.0001 2187.4997 5000.0001

Example 3: This example has eight nodes in one hexahedral cell. Each node
has four data components (three scalar and one 3-vector). Therefore, num_n-
data is equal to six. The cell has one scalar component associated with it la-
belled "compression" in units of "lb/in**2". The model has a character
identifier "cube", two components, the first a scalar and the second a three-
vector, which are labelled, but have no units.

 8 1 6 1 4
 1 0.000 0.000 1.000
 2 1.000 0.000 1.000
 3 1.000 1.000 1.000
 4 0.000 1.000 1.000
 5 0.000 0.000 0.000
 6 1.000 0.000 0.000
 7 1.000 1.000 0.000
 8 0.000 1.000 0.000
 1 1 hex 1 2 3 4 5 6 7 8
 4 1 1 1 3
 stress sxx, lb/in**2
 stress syy, lb/in**2
 stress szz, lb/in**2
 disp, inches
 1 4999.9999 2187.5003 4999.9999 0.234 0.0 0.023
 2 18749.9999 0.0003 5624.9999 0.204 0.12 0.114
 3 37500.0000 0.0000 11250.0000 0.224 0.10 0.114

Description

UNSTRUCTURED CELL DATA LIBRARY E-13

 4 56250.0000 0.0000 16875.0000 0.224 0.12 0.124
 5 74999.9999 0.0001 22499.9999 0.234 0.12 0.124
 6 93750.0001 -0.0003 28125.0001 0.134 0.12 0.124
 7 107500.0003 -2187.5006 28750.0003 0.134 0.12 0.134
 8 5000.0001 2187.4997 5000.0001 0.234 0.12 0.134
 1 1
 compression, lb/in**2
 1 25947.0000
 2 1 3
 time ,
 x mag,
 y mag,
 z mag,
 cube 60 0.756 2.332 -4.079

Binary UCD File Format

The following describes the binary format for the UCD data files.

This AVS binary format is different from the binary UCD format in AVS 3.
First, it has been reorganized. Following the magic number, there is all-struc-
ture information, then all-cell information, then all-model information. Sec-
ond, the amount of space allocated for component label and unit character
storage has been enlarged from 100 to 1024 bytes. Third, the size of the node,
cell, and model component list has been made variable, depending upon the
number of components and their vector length. It is no longer a fixed size that
limits the total vector length of all components to 20 integers.

The read ucd module will read either AVS 3 or AVS 4 format binary data.
write ucd writes AVS 4 format binary data.

 1 byte - magic number. this should be 7.

 4 bytes - number of nodes. (int)

 4 bytes - number of cells. (int)

 4 bytes - number of node data. (int)

 4 bytes - number of cell data. (int)

 4 bytes - number of model data. (int)

 4 bytes - number of nlist nodes (for cell topology). (int)

 (num_cells*16) bytes - cell information. (4 ints per cell:
 id, material id, number of nodes, cell type).

 (num_nlist_nodes*4) bytes - cell topology lists. (ints)

 (num_nodes*4) bytes - x coordinates for nodes. (floats)

 (num_nodes*4) bytes - y coordinates for nodes. (floats)

Description

E-14 UNSTRUCTURED CELL DATA LIBRARY

 (num_nodes*4) bytes - z coordinates for nodes. (floats)

If there is node data:

 1024 bytes - node data labels. (string)

 1024 bytes - node data units. (string)

 4 bytes - number of node components. (int)

 (num_node_data*4)bytes - node component list. (ints)

 (num_node_data*4) bytes - minimums for node data. (floats)

 (num_node_data*4) bytes - maximums for node data. (floats)

 (num_nodes*num_node_data*4) bytes - node data. (floats)

 (num_node_data*4) bytes - node active list. (ints)

If there is cell data:

 1024 bytes - cell data labels. (string)

 1024 bytes - cell data units. (string)

 4 bytes - number of cell components. (int)

 (num_cell_data*4) bytes - cell component list. (ints)

 (num_cell_data*4) bytes - minimums for cell data. (floats)

 (num_cell_data*4) bytes - maximums for cell data. (floats)

 (num_cells*num_cell_data*4) bytes - cell data. (floats)

 (num_cell_data*4) bytes - cell active list. (ints)

If there is model data:

 1024 bytes - model data labels. (string)

 1024 bytes - model data units. (string)

 4 bytes - number of model components. (int)

 (num_model_data*4) bytes - model component list. (ints)

 (num_model_data*4) bytes - minimums for model data. (floats)

 (num_model_data*4) bytes - maximums for model data. (floats)

 (num_model_data*4) bytes - model data. (floats)

 (num_model_data*4) bytes - model active list. (ints)

Structure Manipulation Routines

UNSTRUCTURED CELL DATA LIBRARY E-15

Structure Manipulation Routines

UCDstructure_alloc

C:

#include <ucd_defs.h>
char *UCDstructure_alloc (name, data_veclen, name_flag,
 ncells, cell_tsize, cell_veclen,
 nnodes, node_csize, node_veclen, util_flag)
char *name;
int data_veclen;
int name_flag;
int ncells;
int cell_tsize;
int cell_veclen;
int nnodes;
int node_csize;
int node_veclen;
int util_flag;

FORTRAN:

#include <avs.inc>
CHARACTER*(*) UCDstruct_alloc (name, data_veclen, name_flag,
 ncells, cell_tsize, cell_veclen,
 nnodes, node_csize, node_veclen, util_flag)
CHARACTER*(*) name
INTEGER data_veclen
INTEGER name_flag
INTEGER ncells
INTEGER cell_tsize
INTEGER cell_veclen
INTEGER nnodes
INTEGER node_csize
INTEGER node_veclen
INTEGER util_flag

This function creates a new top level structure and returns a pointer to that
structure. If a new structure could not be allocated then NULL is returned.

Following is a description of the arguments:

Input

name
structure name

data_veclen
length of structure data vector

Structure Manipulation Routines

E-16 UNSTRUCTURED CELL DATA LIBRARY

name_flag
Indicates what information is stored in the UCD structure. It can be com-
bined out of several flags using the "|" operator. The flags are:

UCD_CELL_NAMES
allocates space for cell_name in the UCD structure

UCD_CELL_TYPES
allocates space for element_type in the UCD structure

UCD_MATERIAL_IDS
allocates space for material_type in the UCD structure

UCD_MID_EDGES
allocates space for mid_edge_flags in the UCD structure

UCD_NODE_NAMES
allocates space for node_name in the UCD structure

We recommend that you examine your data for all these components and use
only those flags that are needed for modules that you are planning to use.
This will reduce the memory requirements for the UCD structure. For exam-
ple if you want to allocate space for just the material ids and mid edge nodes,
then you would set name_flag to UCD_MATERIAL_IDS | UCD_MID_-
EDGES. By setting name_flag to zero, you will allocate none of the optional
components.

ncells
number of cells in the structure

cell_tsize
expected size of the cell’s connectivity list

cell_veclen
length of cell data vector

nnodes
number of nodes in the structure

node_csize
expected size of the node’s connectivity list

node_veclen
length of node data vector

util_flag
utility flag for general usage (do NOT use 2 rightmost bits)

UCDstructure_free

C:

Structure Manipulation Routines

UNSTRUCTURED CELL DATA LIBRARY E-17

#include <ucd_defs.h>
int UCDstructure_free (structure)
UCD_structure *structure;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_free (structure)
INTEGER structure

This function frees the storage used by structure. It returns 1 if successful and
0 if failure.

Following is a description of the arguments:

Input

structure
structure to free

UCDstructure_set_data

C:

#include <ucd_defs.h>
int UCDstructure_set_data (structure, data)
UCD_structure *structure;
float *data;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_data (structure, data)
INTEGER structure
REAL data

This function copies the data from the array pointed to by "data" into the
structure’s data array. There should be data_veclen data elements in this ar-
ray. It returns 1 if successful and 0 if failure.

Following is a description of the arguments:

Input

structure
structure to find information

data
pointer to the data vector

Structure Manipulation Routines

E-18 UNSTRUCTURED CELL DATA LIBRARY

UCDstructure_set_data_labels

C:

#include <ucd_defs.h>
int UCDstructure_set_data_labels (structure, labels, delimiter)
UCD_structure *structure;
char *labels;
char *delimiter;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_data_labels (structure, labels, delimiter)
INTEGER structure
CHARACTER*(*) labels
CHARACTER*(*) delimiter

This routine allows the module writer to set the labels for each component in
the structure. These labels are for cases when there is structure based data. It
returns 1 if successful and 0 if failure.

For instance, in the case of a CFD dataset, the module writer might want to la-
bel components of the field as temperature, density, mach number, etc. In
turn, these labels would appear on the dials so that the user would have a bet-
ter understanding of which component each dial is attached to.

Example: labels = "temp;density;mach number"
 delimiter = ";"

Following is a description of the arguments:

Input:

structure
structure to find information

labels
string with labels included

delimiter
delimiter between each label

UCDstructure_set_data_units

C:

#include <ucd_defs.h>
int UCDstructure_set_data_units (structure, labels, delimiter)
UCD_structure *structure;

Structure Manipulation Routines

UNSTRUCTURED CELL DATA LIBRARY E-19

char *labels;
char *delimiter;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_data_units (structure, labels, delimiter)
INTEGER structure
CHARACTER*(*) labels
CHARACTER*(*) delimiter

This routine allows the module writer to set the unit labels for each compo-
nent in the structure. These labels are for cases when there is structure based
data. It returns 1 if successful and 0 if failure.

For instance, in the case of a CFD dataset, the module writer might want to la-
bel components of the field as degrees, meters, etc.

Example: labels = "degrees;meters"
 delimiter = ";"

Following is a description of the arguments:

Input:

structure
structure to find information

labels
string with labels included

delimiter
delimiter between each label

UCDstructure_set_extent

C:

#include <ucd_defs.h>
int UCDstructure_set_extent (structure, min_extent, max_extent)
UCD_structure *structure;
float *min_extent;
float *max_extent;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_extent (structure, min_extent, max_extent)
INTEGER structure
REAL min_extent
REAL max_extent

Structure Manipulation Routines

E-20 UNSTRUCTURED CELL DATA LIBRARY

This routine allows the module writer to set the extent of the structure. It re-
turns 1 if successful and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

min_extent
coordinate extent of structure

max_extent
coordinate extent of structure

UCDstructure_set_header_flag

C:

#include <ucd_defs.h>
int UCDstructure_set_header_flag (structure, util_flag)
UCD_structure *structure;
int util_flag;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_header_flag (structure, util_flag)
INTEGER structure
INTEGER util_flag

This function sets the header flag bits. This bit flag can be used for any pur-
pose that the module writer wishes. It returns 1 if success, 0 if failure.

NOTE: in util_flag, the eight rightmost bits are reserved for internal usage.

Following is a description of the arguments:

Input:

structure
structure to find information

util_flag
utility flag

Structure Query Routines

UNSTRUCTURED CELL DATA LIBRARY E-21

UCDstructure_set_mesh_id

C:

#include <ucd_defs.h>
int UCDstructure_set_mesh_id (structure, mesh_id)
UCD_structure *structure;
int mesh_id;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_mesh_id (structure, mesh_id)
INTEGER structure
INTEGER mesh_id

This function sets the mesh_id. It can be used by modules to set the mesh_id
to signal downstream modules that the structure’s mesh (i.e. node x,y,z posi-
tions) has changed. The mesh_id is originally set by the UCDstructure_alloc
function.

Following is a description of the arguments:

Input:

structure
structure to find information

mesh_id
new mesh_id

Structure Query Routines

UCDstructure_get_data

C:

#include <ucd_defs.h>
int UCDstructure_get_data (structure, data)
UCD_structure *structure;
float **data;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_data (structure, data)
INTEGER structure
REAL data

Structure Query Routines

E-22 UNSTRUCTURED CELL DATA LIBRARY

This function returns a pointer to the array containing the data vector for the
structure. It returns 1 if success, 0 if failure.

Following is a description of the arguments:

Input

structure
structure to find information

data
pointer to the structure data vector

UCDstructure_get_data_label

C:

#include <ucd_defs.h>
int UCDstructure_get_data_label (structure, number, label)
UCD_structure *structure;
int number;
char *label;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_data_label (structure, number, label)
INTEGER structure
INTEGER number
CHARACTER*(*) label

This routine allows the module writer to query the label for an individual
component in the structure. It returns 1 if success, 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to get labels in

number
individual component number

Output:

labels
string with labels included

Structure Query Routines

UNSTRUCTURED CELL DATA LIBRARY E-23

UCDstructure_get_data_labels

C:

#include <ucd_defs.h>
int UCDstructure_get_data_labels (structure, labels, delimiter)
UCD_structure *structure;
char *labels;
char *delimiter;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_data_labels (structure, labels, delimiter)
INTEGER structure
CHARACTER*(*) labels
CHARACTER*(*) delimiter

This routine allows the module writer to get the labels for each component in
the structure. These labels are for cases when there is structure based data. It
returns 1 if success, 0 if failure.

For instance, in the case of a CFD dataset, the module writer might want to la-
bel components of the field as temperature, density, mach number, etc. In
turn, these labels would appear on the dials so that the user would have a bet-
ter understanding of which component each dial is attached to.

Example: labels = "temp;density;mach number"
 delimiter = ";"

Following is a description of the arguments:

Input:

structure
structure to find information

Output:

labels
string with labels included

delimiter
delimiter between each label

UCDstructure_get_data_unit

C:

Structure Query Routines

E-24 UNSTRUCTURED CELL DATA LIBRARY

#include <ucd_defs.h>
int UCDstructure_get_data_unit (structure, number, label)
UCD_structure *structure;
int number;
char *label;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_data_unit (structure, number, label)
INTEGER structure
INTEGER number
CHARACTER*(*) label

This routine allows the module writer to query the label for an individual unit
in the structure. It returns 1 if success, 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to get labels in

number
individual component number

Output:

labels
string with labels included

UCDstructure_get_data_units

C:

#include <ucd_defs.h>
int UCDstructure_get_data_units (structure, labels, delimiter)
UCD_structure *structure;
char *labels;
char *delimiter;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_data_units (structure, labels, delimiter)
INTEGER structure
CHARACTER*(*) labels
CHARACTER*(*) delimiter

Structure Query Routines

UNSTRUCTURED CELL DATA LIBRARY E-25

This routine allows the module writer to get the unit labels for each compo-
nent in the structure. These labels are for cases when there is structure based
data. It returns 1 if success, 0 if failure.

For instance, in the case of a CFD dataset, the module writer might want to la-
bel components of the field as degrees, meters, etc.

Example: labels = "degrees;meters"
 delimiter = ";"

Following is a description of the arguments:

Input:

structure
structure to find information

Output:

labels
string with labels included

delimiter
delimiter between each label

UCDstructure_get_extent

C:

#include <ucd_defs.h>
int UCDstructure_get_extent (structure, min_extent, max_extent)
UCD_structure *structure;
float *min_extent;
float *max_extent;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_extent (structure, min_extent, max_extent)
INTEGER structure
REAL min_extent
REAL max_extent

This routine allows the module writer to obtain the extent of the structure. It
returns 1 if success, 0 if failure.

Following is a description of the arguments:

Input:

Structure Query Routines

E-26 UNSTRUCTURED CELL DATA LIBRARY

structure
structure to find information

Output:

min_extent
coordinate extent of structure

max_extent
coordinate extent of structure

UCDstructure_get_header

C:

#include <ucd_defs.h>
int UCDstructure_get_header (structure, name, data_veclen, name_flag, ncells,

UCD_structure *structure;
char *name;
int *data_veclen;
int *name_flag;
int *ncells;
int *cell_veclen;
int *nnodes;
int *node_veclen;
int *util_flag;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_header (structure, name, data_veclen, name_flag,
 ncells, cell_veclen, nnodes,
 node_veclen, util_flag)
INTEGER structure
CHARACTER*(*) name
INTEGER data_veclen
INTEGER name_flag
INTEGER ncells
INTEGER cell_veclen
INTEGER nnodes
INTEGER node_veclen
INTEGER util_flag

This function finds out all the header information about a UCD_structure and
returns those values. It returns 1 if success, 0 if failure.

Following is a description of the arguments:

Input:

Structure Query Routines

UNSTRUCTURED CELL DATA LIBRARY E-27

structure
structure to find information

Output:

name
structure name

data_veclen
length of structure data vector

name_flag
are node/cell names chars or ints; char = UCD_CHAR, int = UCD_INT

ncells
number of cells in the structure

cell_veclen
length of cell data vector

nnodes
number of nodes in the structure

node_veclen
length of node data vector

util_flag
utility flag

UCDstructure_get_mesh_id

C:

#include <ucd_defs.h>
int UCDstructure_get_mesh_id (structure, mesh_id)
UCD_structure *structure;
int *mesh_id;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_mesh_id (structure, mesh_id)
INTEGER structure
INTEGER mesh_id

This function gets the mesh_id from a UCD structure. It can be used by UCD
modules to determine if the input mesh (i.e. node x,y,z positions) has changed
since the last time the module received the structure input from an upstream
module.

Cell Manipulation Routines

E-28 UNSTRUCTURED CELL DATA LIBRARY

Following is a description of the arguments:

Input:

structure
structure to find information

Output:

mesh_id
current mesh_id for the structure

Cell Manipulation Routines

UCDcell_set_information

C:

#include <ucd_defs.h>
int UCDcell_set_information (structure, cell, name, element_type,
 material_type, cell_type,
 mid_edge_flags, node_list)
UCD_structure *structure;
int cell;
int name;
char *element_type;
int material_type;
int cell_type;
int mid_edge_flags;
int *node_list;

FORTRAN:

#include <avs.inc>
INTEGER UCDcell_set_information (structure, cell, name,
 element_type, material_type,
 cell_type, mid_edge_flags,
 node_list)
INTEGER structure
INTEGER cell
INTEGER name
CHARACTER*(*) element_type
INTEGER material_type
INTEGER cell_type
INTEGER mid_edge_flags
INTEGER node_list

This function sets all the information about a particular cell. It returns 1 if suc-
cess, 0 if failure.

Cell Manipulation Routines

UNSTRUCTURED CELL DATA LIBRARY E-29

Following is a description of the arguments:

Input:

structure
structure to find information

cell
cell to find information

name
cell name

element_type
name of element type

material_type
user defined material type

cell_type
cell type (e.g. UCD_TRIANGLE)

mid_edge_flags
does the cell have mid edge nodes

node_list
array of node numbers

UCDstructure_invalid_cell_minmax

C:

#include <ucd_defs.h>
int UCDstructure_invalid_cell_minmax (structure)
UCD_structure *structure;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_invalid_cell_minmax (structure)
INTEGER structure

This routine allows the module writer to set the min/max range of the struc-
ture cell data to be invalid. This function should be used after the structure
data has been changed by the module and the module does not want to spend
the time recomputing the cell minmax. It returns 1 if success, 0 if failure.

Following is a description of the arguments:

Input:

Cell Manipulation Routines

E-30 UNSTRUCTURED CELL DATA LIBRARY

structure
structure to set cell min/max invalid

UCDstructure_set_cell_active

C:

#include <ucd_defs.h>
int UCDstructure_set_cell_active (structure, active)
UCD_structure *structure;
int *active;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_cell_active (structure, active)
INTEGER structure
INTEGER active

This function sets the array containing the cell active component list. For in-
stance, if there are four different components in the cell data vector and the
module is using the second component, the list would be: (0 1 0 0) It returns 1
if success, 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

active
pointer to the cell active component list

UCDstructure_set_cell_components

C:

#include <ucd_defs.h>
int UCDstructure_set_cell_components (structure, components, number)
UCD_structure *structure;
int *components;
int number;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_cell_components (structure, components,
 number)

Cell Manipulation Routines

UNSTRUCTURED CELL DATA LIBRARY E-31

INTEGER structure
INTEGER components
INTEGER number

This function copies the array containing the cell component list. For instance,
if there are four different components in the cell data vector (e.g. scalar, 3-vec-
tor, 2-vector, scalar), the component list would be: (1 3 2 1) It returns 1 if suc-
cess, 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

components
pointer to the cell component list

number
number of components in the list

UCDstructure_set_cell_data

C:

#include <ucd_defs.h>
int UCDstructure_set_cell_data (structure, data)
UCD_structure *structure;
float *data;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_cell_data (structure, data)
INTEGER structure
REAL data

This function copies the cell data from the array pointed to by "data" into the
structure’s cell data array. There should be cell_veclen*ncells data elements in
this array. It returns 1 if success, 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

Cell Manipulation Routines

E-32 UNSTRUCTURED CELL DATA LIBRARY

data
pointer to the cell data vectors

UCDstructure_set_cell_labels

C:

#include <ucd_defs.h>
int UCDstructure_set_cell_labels (structure, labels, delimiter)
UCD_structure *structure;
char *labels;
char *delimiter;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_cell_labels (structure, labels, delimiter)
INTEGER structure
CHARACTER*(*) labels
CHARACTER*(*) delimiter

This routine allows the module writer to set the labels for each component in
the structure. These labels are for cases when there is cell based data. It re-
turns 1 if success, 0 if failure.

For instance, in the case of a CFD dataset, the module writer might want to la-
bel components of the field as temperature, density, mach number, etc. In
turn, these labels would appear on the dials so that the user would have a bet-
ter understanding of which component each dial is attached to.

Example: labels = "temp;density;mach number"
 delimiter = ";"

Following is a description of the arguments:

Input:

structure
structure to find information

labels
string with labels included

delimiter
delimiter between each label

UCDstructure_set_cell_minmax

C:

Cell Manipulation Routines

UNSTRUCTURED CELL DATA LIBRARY E-33

#include <ucd_defs.h>
int UCDstructure_set_cell_minmax (structure, min, max)
UCD_structure *structure;
float *min;
float *max;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_cell_minmax (structure, min, max)
INTEGER structure
REAL min
REAL max

This routine allows the module writer to set the range of the structure cell
data. It should be noted that min and max are arrays of dimension structure-
>cell_veclen. It returns 1 if success, 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to set min/max in

min
value of minimum data point

max
value of maximum data point

UCDstructure_set_cell_units

C:

#include <ucd_defs.h>
int UCDstructure_set_cell_units (structure, labels, delimiter)
UCD_structure *structure;
char *labels;
char *delimiter;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_cell_units (structure, labels, delimiter)
INTEGER structure
CHARACTER*(*) labels
CHARACTER*(*) delimiter

Cell Query Routines

E-34 UNSTRUCTURED CELL DATA LIBRARY

This routine allows the module writer to set the unit labels for each compo-
nent in the structure. These labels are for cases when there is cell based data. It
returns 1 if success, 0 if failure.

For instance, in the case of a CFD dataset, the module writer might want to la-
bel components of the field as degrees, meters, etc.

Example: labels = "degrees;meters"
 delimiter = ";"

Following is a description of the arguments:

Input:

structure
structure to find information

labels
string with labels included

delimiter
delimiter between each label

Cell Query Routines

UCDcell_get_information

C:

#include <ucd_defs.h>
int UCDcell_get_information (structure, cell, name, element_type,
 material_type, cell_type,
 mid_edge_flags, node_list)
UCD_structure *structure;
int cell;
int *name;
char *element_type;
int *material_type;
int *cell_type;
int *mid_edge_flags;
int **node_list;

FORTRAN:

#include <avs.inc>
INTEGER UCDcell_get_information (structure, cell, name, element_type,
 material_type, cell_type,
 mid_edge_flags, node_list)
INTEGER structure

Cell Query Routines

UNSTRUCTURED CELL DATA LIBRARY E-35

INTEGER cell
INTEGER name
CHARACTER*(*) element_type
INTEGER material_type
INTEGER cell_type
INTEGER mid_edge_flags
INTEGER node_list

This function finds out all the information about a particular cell and returns
those values. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

cell
cell to find information

Output:

name
cell name

element_type
name of element type

material_type
user defined material type

cell_type
cell type (e.g. UCD_TRIANGLE) data

data
data for cell -based datasets

mid_edge_flags
does the cell have mid edge nodes

node_list
array of node numbers

UCDstructure_get_cell_active

C:

#include <ucd_defs.h>
int UCDstructure_get_cell_active (structure, active)

Cell Query Routines

E-36 UNSTRUCTURED CELL DATA LIBRARY

UCD_structure *structure;
int **active;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_cell_active (structure, active)
INTEGER structure
INTEGER active

This function returns a pointer to the array containing the cell active compo-
nent list. For instance, if there are four different components in the cell data
vector and the module is using the second component, the list would be: (0 1
0 0) The active list is useful when trying to communicate from one module to
another which component in the cell data is being worked on. It returns 1 if
success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

Output:

active
pointer to the cell active component list

UCDstructure_get_cell_components

C:

#include <ucd_defs.h>
int UCDstructure_get_cell_components (structure, components)
UCD_structure *structure;
int **components;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_cell_components (structure, components)
INTEGER structure
INTEGER components

This function returns pointers to the array containing the cell component list.
For instance, if there are four different components in the cell data vector (e.g.
scalar, 3-vector, 2-vector, scalar), the component list would be: (1 3 2 1) It re-
turns 1 if success and 0 if failure.

Following is a description of the arguments:

Cell Query Routines

UNSTRUCTURED CELL DATA LIBRARY E-37

Input:

structure
structure to find information

Output:

components
pointer to the cell component list

UCDstructure_get_cell_data

C:

#include <ucd_defs.h>
int UCDstructure_get_cell_data (structure, data)
UCD_structure *structure;
float **data;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_cell_data (structure, data)
INTEGER structure
REAL data

This function returns a pointer to the array containing the data vectors for all
of the cells in the structure. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

Output:

data
pointer to the cell data vectors

UCDstructure_get_cell_label

C:

#include <ucd_defs.h>
int UCDstructure_get_cell_label (structure, number, label)
UCD_structure *structure;

Cell Query Routines

E-38 UNSTRUCTURED CELL DATA LIBRARY

int number;
char *label;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_cell_label (structure, number, label)
INTEGER structure
INTEGER number
CHARACTER*(*) label

This routine allows the module writer to query the label for an individual
component in the structure. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to get labels in

number
individual component number

Output:

labels
string with labels included

UCDstructure_get_cell_labels

C:

#include <ucd_defs.h>
int UCDstructure_get_cell_labels (structure, labels, delimiter)
UCD_structure *structure;
char *labels;
char *delimiter;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_cell_labels (structure, labels, delimiter)
INTEGER structure
CHARACTER*(*) labels
CHARACTER*(*) delimiter

This routine allows the module writer to get the labels for each component in
the structure. These labels are for cases when there is cell based data. It re-
turns 1 if success and 0 if failure.

Cell Query Routines

UNSTRUCTURED CELL DATA LIBRARY E-39

For instance, in the case of a CFD dataset, the module writer might want to la-
bel components of the field as temperature, density, mach number, etc. In
turn, these labels would appear on the dials so that the user would have a bet-
ter understanding of which component each dial is attached to.

Example: labels = "temp;density;mach number"
 delimiter = ";"

Following is a description of the arguments:

Input:

structure
structure to find information

Output:

labels
string with labels included

delimiter
delimiter between each label

UCDstructure_get_cell_minmax

C:

#include <ucd_defs.h>
int UCDstructure_get_cell_minmax (structure, min, max)
UCD_structure *structure;
float *min;
float *max;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_cell_minmax (structure, min, max)
INTEGER structure
REAL min
REAL max

This routine allows the module writer to obtain the range of the structure cell
data. It should be noted that min and max are arrays of dimension structure-
>cell_veclen. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to get min/max in

Cell Query Routines

E-40 UNSTRUCTURED CELL DATA LIBRARY

Output:

min
value of minimum data point

max
value of maximum data point

UCDstructure_get_cell_unit

C:

#include <ucd_defs.h>
int UCDstructure_get_cell_unit (structure, number, label)
UCD_structure *structure;
int number;
char *label;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_cell_unit (structure, number, label)
INTEGER structure
INTEGER number
CHARACTER*(*) label

This routine allows the module writer to query the label for an individual unit
in the structure. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to get labels in

number
individual component number

Output:

labels
string with labels included

UCDstructure_get_cell_units

C:

Node Manipulation Routines

UNSTRUCTURED CELL DATA LIBRARY E-41

#include <ucd_defs.h>
int UCDstructure_get_cell_units (structure, labels, delimiter)
UCD_structure *structure;
char *labels;
char *delimiter;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_cell_units (structure, labels, delimiter)
INTEGER structure
CHARACTER*(*) labels
CHARACTER*(*) delimiter

This routine allows the module writer to get the unit labels for each compo-
nent in the structure. These labels are for cases when there is cell based data. It
returns 1 if success and 0 if failure.

For instance, in the case of a CFD dataset, the module writer might want to la-
bel components of the field as degrees, meters, etc.

Example: labels = "degrees;meters"
 delimiter = ";"

Following is a description of the arguments:

Input:

structure
structure to find information

Output:

labels
string with labels included

delimiter
delimiter between each label

Node Manipulation Routines

UCDnode_set_information

C:

#include <ucd_defs.h
int UCDnode_set_information (structure, node, name, ncells, cell_list)
UCD_structure *structure;
int node;

Node Manipulation Routines

E-42 UNSTRUCTURED CELL DATA LIBRARY

int name;
int ncells;
int *cell_list;

FORTRAN:

#include <avs.inc>
INTEGER UCDnode_set_information (structure, node, name, ncells, cell_list)
INTEGER structure
INTEGER node
INTEGER name
INTEGER ncells
INTEGER cell_list

This function sets all the information about a particular node. It returns 1 if
success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

node
node to find information

name
node name

ncells
number of cells in cell_list

cell_list
array of cell numbers

UCDstructure_invalid_node_minmax

C:

#include <ucd_defs.h>
int UCDstructure_invalid_node_minmax (structure)
UCD_structure *structure;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_invalid_node_minmax (structure)
INTEGER structure

Node Manipulation Routines

UNSTRUCTURED CELL DATA LIBRARY E-43

This routine allows the module writer to set the min/max range of the struc-
ture node data to be invalid. This function should be used after the structure
data has been changed by the module and the module does not want to spend
the time recomputing the node minmax. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to set node min/max invalid

UCDstructure_set_cell_connect

C:

#include <ucd_defs.h>
int UCDstructure_set_cell_connect (structure)
UCD_structure *structure;
float *min_extent;
float *max_extent;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_cell_connect (structure)
INTEGER structure
REAL min_extent
REAL max_extent

This routine calculates and sets the cell connectivity list (the list of cells con-
nected to each node) for the structure. (Terminology note: The "cell connectiv-
ity list" is, for each node, the list of cells of which it is a member. It is defined
by the variable cell_list in the node data structure. This call calculates and sets
this value. The "node connectivity list" is, for each cell, the list of nodes that
are a member of it. It is defined by the variable node_list in the cell data struc-
ture. It is defined explicitly for each cell in the input data.)

The space for the cell connectivity list (cell_conn_size) must be allocated by
UCDstructure_alloc(); its argument node_csize must be the maximum possi-
ble size of the cell connectivity list (usually no more than cell_tsize).

The programmer would use this call instead of UCDnode_set_information’s
cell_list parameter; cell_list requires that the programmer supply the cell con-
nectivity explicitly.

The information produced by this call can be retrieved with the UCDnode_-
get_information call’s cell_list argument.

The function returns 1 if successful and 0 if failure.

Node Manipulation Routines

E-44 UNSTRUCTURED CELL DATA LIBRARY

The following is a description of the arguments:

Input:

structure
UCD structure whose cell connectivity list to calculate.

UCDstructure_set_node_active

C:

#include <ucd_defs.h>
int UCDstructure_set_node_active (structure, active)
UCD_structure *structure;
int *active;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_node_active (structure, active)
INTEGER structure
INTEGER active

This function sets the array containing the node active component list. For in-
stance, if there are four different components in the node data vector and the
module is using the second component, the list would be: (0 1 0 0) The active
list is useful when trying to communicate from one module to another which
component in the node data is being worked on. It returns 1 if success and 0 if
failure.

Following is a description of the arguments:

Input:

structure
structure to find information

active
pointer to the node active component list

UCDstructure_set_node_components

C:

#include <ucd_defs.h
int UCDstructure_set_node_components (structure, components, number)
UCD_structure *structure;
int *components;
int number;

Node Manipulation Routines

UNSTRUCTURED CELL DATA LIBRARY E-45

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_node_components (structure, components, number)
INTEGER structure
INTEGER components
INTEGER number

This function copies the array containing the node component list. For in-
stance, if there are four different components in the node data vector (e.g. sca-
lar, 3-vector, 2-vector, scalar), the component list would be: (1 3 2 1) It returns
1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

components
pointer to the node component list

number
number of components in the list

UCDstructure_set_node_data

C:

#include <ucd_defs.h>
int UCDstructure_set_node_data (structure, data)
UCD_structure *structure;
float *data;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_node_data (structure, data)
INTEGER structure
REAL data

This function copies the node data from the array pointed to by "data" into the
structure’s node data array. There should be node_veclen*nnodes data ele-
ments in this array. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

Node Manipulation Routines

E-46 UNSTRUCTURED CELL DATA LIBRARY

structure
structure to find information

data
pointer to the node data vectors

UCDstructure_set_node_labels

C:

#include <ucd_defs.h>
int UCDstructure_set_node_labels (structure, labels, delimiter)
UCD_structure *structure;
char *labels;
char *delimiter;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_node_labels (structure, labels, delimiter)
INTEGER structure
CHARACTER*(*) labels
CHARACTER*(*) delimiter

This routine allows the module writer to set the labels for each component in
the structure. These labels are for cases when there is node based data. It re-
turns 1 if success and 0 if failure.

For instance, in the case of a CFD dataset, the module writer might want to la-
bel components of the field as temperature, density, mach number, etc. In
turn, these labels would appear on the dials so that the user would have a bet-
ter understanding of which component each dial is attached to.

Example: labels = "temp;density;mach number"
 delimiter = ";"

Input:

structure
structure to find information

labels
string with labels included

delimiter
delimiter between each label

Node Manipulation Routines

UNSTRUCTURED CELL DATA LIBRARY E-47

UCDstructure_set_node_minmax

C:

int UCDstructure_set_node_minmax (structure, min, max)
UCD_structure *structure;
float *min;
float *max;

FORTRAN:

INTEGER UCDstruct_set_node_minmax (structure, min, max)
INTEGER structure
REAL min
REAL max

This routine allows the module writer to set the range of the structure node
data. It should be noted that min and max are arrays of dimension structure-
>node_veclen. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to set min/max in

min
value of minimum data point

max
value of maximum data point

UCDstructure_set_node_positions

C:

#include <ucd_defs.h>
int UCDstructure_set_node_positions (structure, x, y, z)
UCD_structure *structure;
float *x, *y, *z;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_node_positions (structure, x, y, z)
INTEGER structure
REAL x, y, z

Node Manipulation Routines

E-48 UNSTRUCTURED CELL DATA LIBRARY

This function copies the x, y and z coordinate arrays from the arrays pointed
to by "x", "y" and "z" into the structure’s node position arrays. There should be
nnodes coordinates in each array. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

"x, y, z"
pointer to the x,y,z arrays

UCDstructure_set_node_units

C:

#include <ucd_defs.h>
int UCDstructure_set_node_units (structure, labels, delimiter)
UCD_structure *structure;
char *labels;
char *delimiter;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_set_node_units (structure, labels, delimiter)
INTEGER structure
CHARACTER*(*) labels
CHARACTER*(*) delimiter

This routine allows the module writer to set the unit labels for each compo-
nent in the structure. These labels are for cases when there is node based data.
It returns 1 if success and 0 if failure.

For instance, in the case of a CFD dataset, the module writer might want to la-
bel components of the field as degrees, meters, etc.

Example: labels = "degrees;meters"
 delimiter = ";"

Following is a description of the arguments:

Input:

structure
structure to find information

labels
string with labels included

Node Query Routines

UNSTRUCTURED CELL DATA LIBRARY E-49

delimiter
delimiter between each label

Node Query Routines

UCDnode_get_information

C:

#include <ucd_defs.h>
int UCDnode_get_information (structure, node, name, ncells, cell_list)
UCD_structure *structure;
int node;
int *name;
int *ncells;
int **cell_list;

FORTRAN:

#include <avs.inc>
INTEGER UCDnode_get_information (structure, node, name, ncells, cell_list)
INTEGER structure
INTEGER node
INTEGER name
INTEGER ncells
INTEGER cell_list

This function finds out all the information about a particular node and re-
turns those values. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

node
node to find information

Output:

name
node name

ncells
number of cells in cell_list

Node Query Routines

E-50 UNSTRUCTURED CELL DATA LIBRARY

cell_list
array of cell numbers

UCDstructure_get_node_active

C:

#include <ucd_defs.h>
int UCDstructure_get_node_active (structure, active)
UCD_structure *structure;
int **active;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_node_active (structure, active)
INTEGER structure
INTEGER active

This function returns a pointer to the array containing the node active compo-
nent list. For instance, if there are four different components in the node data
vector and the module is using the second component, the list would be: (0 1
0 0) It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

Output:

active
pointer to the node active component list

UCDstructure_get_node_components

C:

#include <ucd_defs.h>
int UCDstructure_get_node_components (structure, components)
UCD_structure *structure;
int **components;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_node_components (structure, components)

Node Query Routines

UNSTRUCTURED CELL DATA LIBRARY E-51

INTEGER structure
INTEGER components

This function returns pointers to the array containing the node component
list. For instance, if there are four different components in the node data vec-
tor (e.g. scalar, 3-vector, 2-vector, scalar), the component list would be: (1 3 2
1) It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

Output:

components
pointer to the node component list

UCDstructure_get_node_data

C:

#include <ucd_defs.h>
int UCDstructure_get_node_data (structure, data)
UCD_structure *structure;
float **data;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_node_data (structure, data)
INTEGER structure
REAL data

This function returns pointers to the array containing the data vectors for the
nodes. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

Output:

data
pointer to the node data vectors

Node Query Routines

E-52 UNSTRUCTURED CELL DATA LIBRARY

UCDstructure_get_node_label

C:

#include <ucd_defs.h>
int UCDstructure_get_node_label (structure, number, label)
UCD_structure *structure;
int number;
char *label;

FORTRAN:

#include <ucd_defs.h>
INTEGER UCDstruct_get_node_label (structure, number, label)
INTEGER structure
INTEGER number
CHARACTER*(*) label

This routine allows the module writer to query the label for an individual
component in the structure. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to get labels in

number
individual component number

Output:

labels
string with labels included

UCDstructure_get_node_labels

C:

#include <ucd_defs.h>
int UCDstructure_get_node_labels (structure, labels, delimiter)
UCD_structure *structure;
char *labels;
char *delimiter;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_node_labels (structure, labels, delimiter)
INTEGER structure

Node Query Routines

UNSTRUCTURED CELL DATA LIBRARY E-53

CHARACTER*(*) labels
CHARACTER*(*) delimiter

This routine allows the module writer to get the labels for each component in
the structure. These labels are for cases when there is node based data. It re-
turns 1 if success and 0 if failure.

For instance, in the case of a CFD dataset, the module writer might want to la-
bel components of the field as temperature, density, mach number, etc. In
turn, these labels would appear on the dials so that the user would have a bet-
ter understanding of which component each dial is attached to.

Example: labels = "temp;density;mach number"
 delimiter = ";"

Following is a description of the arguments:

Input:

structure
structure to find information

Output:

labels
string with labels included

delimiter
delimiter between each label

UCDstructure_get_node_minmax

C:

#include <ucd_defs.h>
int UCDstructure_get_node_minmax (structure, min, max)
UCD_structure *structure;
float *min;
float *max;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_node_minmax (structure, min, max)
INTEGER structure
REAL min
REAL max

This routine allows the module writer to obtain the range of the structure
node data. It should be noted that min and max are arrays of dimension struc-
ture->node_veclen. It returns 1 if success and 0 if failure.

Node Query Routines

E-54 UNSTRUCTURED CELL DATA LIBRARY

Following is a description of the arguments:

Input:

structure
structure to get min/max in

Output:

min
value of minimum data point

max
value of maximum data point

UCDstructure_get_node_positions

C:

#include <ucd_defs.h>
int UCDstructure_get_node_positions (structure, x, y, z)
UCD_structure *structure;
float **x, **y, **z;

FORTRAN:

#include <ucd_defs.h>
INTEGER UCDstruct_get_node_positions (structure, x, y, z)
INTEGER structure
REAL x, y, z

This function returns pointers to the arrays containing the x, y and z coordi-
nates of node positions. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to find information

Output:

x, y, z
pointer to the x,y,z arrays

UCDstructure_get_node_unit

C:

Node Query Routines

UNSTRUCTURED CELL DATA LIBRARY E-55

#include <ucd_defs.h>
int UCDstructure_get_node_unit (structure, number, label)
UCD_structure *structure;
int number;
char *label;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_node_unit (structure, number, label)
INTEGER structure
INTEGER number
CHARACTER*(*) label

This routine allows the module writer to query the label for an individual unit
in the structure. It returns 1 if success and 0 if failure.

Following is a description of the arguments:

Input:

structure
structure to get labels in

number
individual component number

Output:

labels
string with labels included

UCDstructure_get_node_units

C:

#include <ucd_defs.h>
int UCDstructure_get_node_units (structure, labels, delimiter)
UCD_structure *structure;
char *labels;
char *delimiter;

FORTRAN:

#include <avs.inc>
INTEGER UCDstruct_get_node_units (structure, labels, delimiter)
INTEGER structure
CHARACTER*(*) labels
CHARACTER*(*) delimiter

Examples

E-56 UNSTRUCTURED CELL DATA LIBRARY

This routine allows the module writer to get the unit labels for each compo-
nent in the structure. These labels are for cases when there is node based data.
It returns 1 if success and 0 if failure.

For instance, in the case of a CFD dataset, the module writer might want to la-
bel components of the field as degrees, meters, etc.

Example: labels = "degrees;meters"
 delimiter = ";"

Following is a description of the arguments:

Input:

structure
structure to find information

Output:

labels
string with labels included

delimiter
delimiter between each label

Examples

This section presents a step-by-step example of how to go about building a
UCD structure using the supplied UCD routines. Both FORTRAN and C ex-
amples are given. Although this example is not a complete rundown of all the
UCD routines, it does give a general overview.

For other examples of UCD routines, the /usr/avs/examples directory contains
several source files: ucd_extract.c, ucd_thresh.c, and gen_ucd.f.

Allocating a New Structure

The first thing that you will want to do is allocate the UCD structure. The sub-
routine UCDstructure_alloc does this allocation and builds the initial struc-
ture. Also, the extent of the structure will be set. The extent is the minimum/
maximum value for the structure in coordinate space.

C Code:

/* C */

#include <ucd_defs.h>

 UCD_structure ucd_struct;

Examples

UNSTRUCTURED CELL DATA LIBRARY E-57

 int data_veclen, name_flag, util_flag;
 int ncells, cell_tsize, cell_veclen;
 int nnodes, node_csize, node_veclen;

 /* there will be no model or cell data */
 data_veclen = 0;
 cell_veclen = 0;

 /* no optional components will be allocated in the structure */
 name_flag = 0;

 /* this structure has 1000 cells and 1000 nodes */
 ncells = 1000;
 nnodes = 1000;

 /* in order to allocate the connectivity list, the expected */
 /* size of the cell connectivity list and node connectivity */
 /* list must be set. */
 cell_tsize = 500;
 node_csize = 600;

 /* for each node, there will be 5 data values */
 node_veclen = 5;

 /* use the default utility flag */
 util_flag = 0;

 /* Everything is setup, so allocate the structure */
 ucd_struct = UCDstructure_alloc (’ucd name’, data_veclen, name_flag,
 ncells, cell_tsize, cell_veclen,
 nnodes, node_csize, node_veclen,
 util_flag)

 /* check to make sure that the structure was properly allocated */
 if (ucd_struct == 0) {
 printf ("ERROR: the structure was not properly allocated\en");
 return;
 } /* end if */

 /* store the structure’s extent: (Note: in this example, it is assumed */
 /* that the floating point values xmin_dim, ymin_dim, etc. have already */
 /* been set to be the minimum and maximum ranges of the data in coord- */
 /* inate space. */
 min_extent[0] = xmin_dim; max_extent[0] = xmax_dim;
 min_extent[1] = ymin_dim; max_extent[1] = ymax_dim;
 min_extent[2] = zmin_dim; max_extent[2] = zmax_dim;
 error_flag = UCDstructure_set_extent (ucd_struct, min_extent, max_extent);
 if (error_flag == 0) {
 printf ("ERROR: can’t set structure extent\en");
 return;
 } /* end if */

Examples

E-58 UNSTRUCTURED CELL DATA LIBRARY

FORTRAN code:

C FORTRAN

#include <avs.inc>

 integer ucd_struct
 1 data_veclen, name_flag, util_flag
 2 ncells, cell_tsize, cell_veclen
 3 nnodes, node_csize, node_veclen

C there will be no model or cell data
 data_veclen = 0
 cell_veclen = 0

C do not allocate space for the optional structure components
 name_flag = 0

C this structure has 1000 cells and 1000 nodes
 ncells = 1000
 nnodes = 1000

C in order to allocate the connectivity list, the expected
C size of the cell connectivity list and node connectivity
C list must be set.
 cell_tsize = 500
 node_csize = 500

C for each node, there will be 5 data values
 node_veclen = 5

C use the default utility flag
 util_flag = 0

C Everything is setup, so allocate the structure
 ucd_struct = UCDstruct_alloc (’ucd name’, data_veclen, name_flag,
 1 ncells, cell_tsize, cell_veclen,
 2 nnodes, node_csize, node_veclen,
 3 util_flag)

C check to make sure that the structure was properly allocated
 if (ucd_struct .eq. 0) then
 write (0, *) ’ERROR: the structure was not properly allocated’
 error_flag = 0
 return
 end if

C store the structure’s extent: (Note: in this example, it is assumed
C that the floating point values xmin_dim, ymin_dim, etc. have already
C been set to be the minimum and maximum ranges of the data in coord-
C inate space.
 min_extent(1) = xmin_dim
 max_extent(1) = xmax_dim
 min_extent(2) = ymin_dim
 max_extent(2) = ymax_dim
 min_extent(3) = zmin_dim

Examples

UNSTRUCTURED CELL DATA LIBRARY E-59

 max_extent(3) = zmax_dim
 error_flag = UCDstruct_set_extent (ucd_struct, min_extent,
 1 max_extent)
 if (ucd_struct .eq. 0) then
 write (0, *) ’ERROR: can’’t set structure extent’
 error_flag = 0
 return
 end if

Storing Information About the Nodes

After the structure has been allocated, you can start storing information about
the structure. Start by storing information for the nodes.

C Code:

/* C */

 /* store the node information: (Note: in this example, the creation */
 /* of each node’s connectivity list is not correct. it is assumed */
 /* that the you will know what your connectivity list looks like. */
 /* this example assumes that each node is connected to 2 cells.) */
 for (i = 0; i < nnodes; i++) {
 count = 2;
 conn_list[0] = i; conn_list[1] = i+1;
 error_flag = UCDnode_set_information (ucd_struct, i, i, count,
conn_list);
 if (error_flag == 0) {
 printf ("ERROR: can’t set node information\en");
 return;
 } /* end if */
 } /* end for */

 /* store the node coordinates: (Note: in this example, it is assumed */
 /* that the float arrays xc, yc and zc have already been created. */
 /* these arrays contain the X coordinate, Y coordinate and Z coord- */
 /* inate location for each node in the structure.) */
 error_flag = UCDstructure_set_node_positions (ucd_struct, xc, yc, zc);
 if (error_flag == 0) {
 printf ("ERROR: can’t set node positions\en");
 return;
 } /* end if */

 /* store the component list which specifies the length of each */
 /* data component. in this example, the vector length for each node */
 /* node is 5. the first component in the vector is temperature, */
 /* which is a scalar. the second component in the vector is velocity */
 /* which is a 3-vector. the third component in the vector is density */
 /* which is a scalar. so the component list is (1 3 1). */
 num_components = 3;
 comp_list[0] = 1; comp_list[1] = 3; comp_list[2] = 1;
 error_flag = UCDstructure_set_node_components (ucd_struct, comp_list,

Examples

E-60 UNSTRUCTURED CELL DATA LIBRARY

 num_components);
 if (error_flag == 0) {
 printf ("ERROR: can’t set node components\en");
 return;
 } /* end if */

 /* in this example, we want the density component (the third component) */
 /* to be the active component. */
 active_list[0] = 0; active_list[1] = 0; active_list[2] = 1;
 error_flag = UCDstructure_set_node_active (ucd_struct, active_list);
 if (error_flag == 0) {
 printf ("ERROR: can’t set node active list\en");
 return;
 } /* end if */

 /* as described above, each node’s vector is composed of three */
 /* components: (temperature, velocity, density). below, the labels */
 /* for these components are set. */
 sprintf (data_labels, "temperature.velocity.density");
 error_flag = UCDstructure_set_node_labels (ucd_struct, data_labels, ’.’);
 if (error_flag == 0) {
 printf ("ERROR: can’t set node labels\en");
 return;
 } /* end if */

 /* store the node data: (Note: in this example, it is assumed */
 /* that the float array node_data has already been created. */
 error_flag = UCDstructure_set_node_data (ucd_struct, node_data);
 if (error_flag == 0) {
 printf ("ERROR: can’t set node data\en");
 return;
 } /* end if */

 /* store the minimum and maximum node data values for each component. */
 /* (Note: in this example, it is assumed that the float arrays */
 /* mn_node_data and mx_node_data have already been created. */
 error_flag = UCDstructure_set_node_minmax (ucd_struct, mn_node_data,
 mx_node_data)
 if (error_flag == 0) {
 printf ("ERROR: can’t set node minimum and maximum data values\en");
 return;
 } /* end if */

FORTRAN Code:

C FORTRAN

C store the node information: (Note: in this example, the creation
C of each node’s connectivity list is not correct. it is assumed
C that the you will know what your connectivity list looks like.
C this example assumes that each node is connected to 2 cells.)
 do i = 1, nnodes

Examples

UNSTRUCTURED CELL DATA LIBRARY E-61

 count = 2
 conn_list(1) = i
 conn_list(2) = i+1
 error_flag = UCDnode_set_information (ucd_struct, i, i,
 1 count, conn_list);
 if (error_flag .eq. 0) then
 write (0, *) ’ERROR: can’’t set node information’
 return
 end if
 end do

C store the node coordinates: (Note: in this example, it is assumed
C that the real arrays xc, yc and zc have already been created.
C these arrays contain the X coordinate, Y coordinate and Z coord-
C inate location for each node in the structure.)
 error_flag = UCDstruct_set_node_positions (ucd_struct, xc, yc, zc)
 if (error_flag .eq. 0) then
 write (0, *) ’ERROR: can’’t set node positions’
 return
 end if

C store the component list which specifies the length of each
C data component. in this example, the vector length for each node
C node is 5. the first component in the vector is temperature,
C which is a scalar. the second component in the vector is velocity
C which is a 3-vector. the third component in the vector is density
C which is a scalar. so the component list is (1 3 1).
 num_components = 3
 comp_list(1) = 1
 comp_list(2) = 3
 comp_list(3) = 1
 error_flag = UCDstruct_set_node_components (ucd_struct, comp_list,
 1 num_components)
 if (error_flag .eq. 0) then
 write (0, *) ’ERROR: can’’t set node components’
 return
 end if

C in this example, we want the density component (the third component)
C to be the active component.
 active_list(1) = 0
 active_list(2) = 0
 active_list(3) = 1
 error_flag = UCDstruct_set_node_active (ucd_struct, active_list)
 if (error_flag .eq. 0) then
 write (0, *) ’ERROR: can’’t set node active list’
 return
 end if

C as described above, each node’s vector is composed of three
C components: (temperature, velocity, density). below, the labels
C for these components are set.

Examples

E-62 UNSTRUCTURED CELL DATA LIBRARY

 data_labels = ’temperature.velocity.density’
 error_flag = UCDstruct_set_node_labels (ucd_struct, data_labels, ’.’)
 if (error_flag .eq. 0) then
 write (0, *) ’ERROR: can’’t set node labels’
 return
 end if

C store the node data: (Note: in this example, it is assumed
C that the real array node_data has already been created.
 error_flag = UCDstruct_set_node_data (ucd_struct, node_data)
 if (error_flag .eq. 0) then
 write (0, *) ’ERROR: can’’t set node data’
 return
 end if

C store the minimum and maximum node data values for each component.
C (Note: in this example, it is assumed that the real arrays
C mn_node_data and mx_node_data have already been created.
 error_flag = UCDstruct_set_node_minmax (ucd_struct, mn_node_data,
 1 mx_node_data)
 if (error_flag .eq. 0) then
 write (0, *) ’ERROR: can’’t set node min and max data’
 return
 end if

Storing Information about the Cells

Now that node information has been stored, you can start storing information
about the cells in the structure.

C Code:

/* C */

 /* create and store each cell. in this example, it is assumed that */
 /* the structure is made of hexahedrons (UCD_HEXAHEDRON) arranged in */
 /* a grid (x_dim x y_dim x z_dim). */
 n = 0;
 offset = 0;
 z_off = (x_dim + 1) * (y_dim + 1);
 ucd_cell_type = UCD_HEXAHEDRON;
 for (z = 0; z < zdim-1; z++) {
 for (y = 0; y < ydim-1; y++) {
 for (x = 0; x < xdim-1; x++) {
 node_list[4] = offset + x;
 node_list[5] = node_list[4] + 1;
 node_list[6] = node_list[5] + x_dim + 1;
 node_list[7] = node_list[4] + x_dim + 1;

 node_list[0] = node_list[4] + z_off;
 node_list[1] = node_list[5] + z_off;
 node_list[2] = node_list[6] + z_off;

Examples

UNSTRUCTURED CELL DATA LIBRARY E-63

 node_list[3] = node_list[7] + z_off;

 error_flag = UCDcell_set_information (ucd_struct, n, n, ’brick’,
 1, ucd_cell_type, 0,
 node_list);
 if (error_flag == 0) {
 printf ("ERROR: can’t set cell information\en");
 return;
 } /* end if */
 n++;
 } /* end for x */
 offset = offset + x_dim + 1;
 } /* end for y */
 offset = z_off * (z + 1);
 } /* end for z */

FORTRAN Code:

C FORTRAN

C create and store each cell. in this example, it is assumed that
C the structure is made of hexahedrons (UCD_HEXAHEDRON) arranged in
C a grid (x_dim x y_dim x z_dim).
 n = 0
 offset = 0
 z_off = (x_dim + 1) * (y_dim + 1)
 ucd_cell_type = 7

 do z = 0, z_dim - 1
 do y = 0, y_dim - 1
 do x = 0, x_dim - 1
 node_list(5) = offset + x
 node_list(6) = node_list(5) + 1
 node_list(7) = node_list(6) + x_dim + 1
 node_list(8) = node_list(5) + x_dim + 1

 node_list(1) = node_list(5) + z_off
 node_list(2) = node_list(6) + z_off
 node_list(3) = node_list(7) + z_off
 node_list(4) = node_list(8) + z_off

 error_flag = UCDcell_set_information(ucd_struct, n, n, ’brick’,
 1 1, ucd_cell_type, 0,
 2 node_list)

 if (error_flag .eq. 0) then
 write (0, *) ’ERROR: can’’t set cell information’
 return
 end if
 n = n + 1
 end do
 offset = offset + x_dim + 1
 end do
 offset = z_off * (z + 1)
 end do

Examples

E-64 UNSTRUCTURED CELL DATA LIBRARY

FIELD ARGUMENTS IN FORTRAN F-1

APPENDIX F FIELD
ARGUMENTS IN
FORTRAN

Introduction

For compatibility with an older method of accessing fields from FORTRAN,
it is possible to pass a field to a FORTRAN computation subroutine as mul-
tiple arguments. This appendix supplies the details needed to read and un-
derstand older code.

Note that you should use the techniques described in this section for back-
ward compatibility with FORTRAN code written for AVS2. When develop-
ing new FORTRAN modules, refer to the "Manipulating Fields from
FORTRAN" section of Chapter 2.

This section also discusses support for allocating memory blocks in FOR-
TRAN using some portable AVS functions that were provided in the
AVS2.0P release. These functions may still be of some use but memory allo-
cation should now be handled automatically as part of the new approach at
handling fields.

The newer field elements, such as labels, units, and extents, are not passed
in as arguments to avoid breaking any existing FORTRAN code. If these el-
ements are required in modules using this approach, the programmer
should use the new function, AVSport_field() to obtain the field pointer
and then pass this value to the new field accessor functions to obtain the el-
ements of interest.

Note that you should not use the techniques described in this appendix for
new module development. Refer to Chapter 3 for information on develop-
ing modules in FORTRAN and to Chapter 2 for information on the field
data type.

Field passing using multiple arguments

In passing fields as arguments to FORTRAN subroutines, AVS generates
several arguments for each input port, output port, or parameter declared
to be a field, unless the declaration routine calls the function AVSset_mod-
ule_flags. For example, a computation routine that takes as its first input
port a "field 3D 3-vector real rectilinear" would be defined as follows (if the

Field passing using multiple arguments

F-2 FIELD ARGUMENTS IN FORTRAN

AVS flow executive has not been instructed to pass a single argument via
AVSset_module_flags):

 FUNCTION COMPUTE(DATA, NX, NY, NZ, COORDS, ...)
 DIMENSION DATA(3, NX, NY, NZ)
 DIMENSION COORDS(NX + NY + NZ)
 ...

In this example the single input port has generated five function arguments.
The argument DATA represents the data of the field, the arguments NX, NY,
and NZ represent the three dimensions of the field in computational space,
and COORDS provides the rectilinear mapping from computational space to
coordinate space. The coordinates for the data element DATA(N,\ I,\ J,\ K)
are as follows:

 X = COORDS(I)
 Y = COORDS(NX + J)
 Z = COORDS(NX + NY + K)

To see how the subroutine arguments change based on how the input is de-
fined, assume that the function above takes two-dimensional data instead of
three dimensional data; it is declared as a "field 2D 3-vector real rectilinear".
Then the computation function is defined as follows:

 FUNCTION COMPUTE(DATA, NX, NY, COORDS, ...)
 DIMENSION DATA(3, NX, NY)
 DIMENSION COORDS(NX + NY)
 ...

Finally, assume that the field is irregular, with a two-dimensional coordinate
space. The field is declared as a "field 2D 3-vector real 2-coordinate irregular".
Then the computation function is defined as follows:

 FUNCTION COMPUTE(DATA, NX, NY, NCOORD,
 + COORDS, ...)
 DIMENSION DATA(3, NX, NY)
 DIMENSION COORDS(NX, NY, NCOORD)
 ...

The following table defines the arguments to a FORTRAN computation func-
tion for the complete combination of possible field declaration strings:

Table F-1 Field Arguments for FORTRAN Routines

Field
Component

Port
Specification

Input or Parameter
Argument(s)

Output Arguments

Data Vector Length not 0 Array: DATA(*) Pointer to DATA(*)
Vector Length=0 [No Argument] [No Argument]

Number of
Dimensions

Not Specified NDIM NDIM

Specified [No Argument] [No Argument]
Dimensions NDIM Not Specified Array: IDIMS(NDIM) Pointer to IDIMS(NDIM)

NDIM Specified IDIM1, IDIM2, IDIM3, ... IDIM1, IDIM2, IDIM3, ...

Field passing using multiple arguments

FIELD ARGUMENTS IN FORTRAN F-3

In this table, you can determine the order of the arguments by reading down
the left-hand column. Thus, for a field, if the vector length is declared to be
other than 0, the data array is always the first argument. If the number of di-
mensions is not specified in the declaration string, the number of dimensions
is always the next argument. If there is a [No\ Argument] in the column spec-
ifying the condition that matches the declaration string you’re using, there is
no argument at all corresponding to that field component.

In the following example, a computation routine has a field input argument
and a field output argument. Both the input port and the output port are spec-
ified as "field 3D scalar real uniform".

 FUNCTION COMPUTE(F, NX, NY, NZ, GP, MX, MY, MZ)
 DIMENSION F(NX, NY, NZ), G(NX, NY, NZ)
 INTEGER GP
 POINTER (GP, G)
 ...
 MX = NX
 MY = NY
 MZ = NZ
 GP = MALLOC(NX*NY*NZ*4)
 ...

In this example, the computation routine maps one 3D field onto another. The
actual computation has been omitted; instead we focus on the setup and allo-
cation. The first four arguments to the subroutine represent the input port and
the second four arguments represent the output port. Note that the input ar-
ray is presented directly while the output array is presented via a pointer so
that we can allocate the space for it. We do this by setting MX, MY, and MZ
and then using the MALLOC(3C) routine to allocate the array. (In the call to
MALLOC, 4 is the number of bytes in a REAL data value.)

Vector Length Not Specified IVLEN IVLEN
Specified [No Argument] [No Argument]

Data Type Not Specified ITYPE ITYPE
Specified [No Argument] [No Argument]

Mapping Type Not Specified IFLAG, NCOORD,
COORDS(*)

IFLAG, NCOORD,
Pointer to COORDS(*)

COORDS Rectilinear COORDS(*) Pointer to COORDS(*)
Irregular NCOORD, COORDS(*) NCOORD, Pointer to

 COORDS(*)
Uniform [No Argument] [No Argument]

Table F-1 Field Arguments for FORTRAN Routines

Field
Component

Port
Specification

Input or Parameter
Argument(s)

Output Arguments

Array Allocation

F-4 FIELD ARGUMENTS IN FORTRAN

Array Allocation

As part of handling fields as individual arguments on the compute function
calling stack, the module writer needed to handle allocating blocks of memo-
ry for the field data and points arrays and also needed to "decode" references
to memory blocks that had been allocated in C for input field data. In AVS2.0,
some use of POINTER variables was used for this purpose as noted in the ex-
amples above. However, the POINTER feature is not a standard FORTRAN
feature and cannot be used across a number of platforms so its use is discour-
aged in favor of treating memory block addresses as simple integers and us-
ing several AVS functions to perform memory allocation and referencing
operations. These functions are generally not necessary if the new FORTRAN
field passing conventions are used since the new accessor functions handle
memory allocation and referencing in their own way.

Memory Allocation and Application Portability

The MALLOC(3f) dynamic memory allocation function is not a standard
FORTRAN 77 function. It varies from implementation to implementation. For
example, on one system:

(C language function)

 unsigned int size;
 char *malloc (size)

(FORTRAN language subroutine)

 EXTERNAL MALLOC
 INTEGER SIZE, ADDR
 CALL MALLOC (SIZE, ADDR)

In the example FORTRAN environment, the memory pointer is passed as an
argument to the MALLOC function, and is modified to contain the location of
the newly allocated space. In the example C environment, the function fol-
lows the C language convention of returning the pointer to the newly allocat-
ed space as a function value.

Since dynamic memory allocation is not a standard FORTRAN concept, rely-
ing on nonstandard extensions such as pointers makes modules less portable.
Two AVS interface functions (AVSptr_alloc and AVSptr_offset) allow blocks
of data passed into the compute routines to be referenced in a completely por-
table way. In particular, these functions avoid use of pointer variables and the
POINTER statement.

These two new routines accept an integer argument passed into the compute
function (a data block memory pointer) and a local array of the appropriate
type (a reference location). They return an offset index (N) into the local array,
such that a reference to the N+1th element of the local array accesses the first
element of the data block.

Array Allocation

FIELD ARGUMENTS IN FORTRAN F-5

See Appendix A for descriptions of the AVSptr_alloc and AVSptr_offset rou-
tines.

Array Allocation

F-6 FIELD ARGUMENTS IN FORTRAN

GEOMETRY LIBRARY G-1

APPENDIX G GEOMETRY
LIBRARY

Introduction

This appendix contains the documentation for the Geometry Library. The
Geometry (geom) Library is a command driven interface to most of the
functionality found in AVS’s Geometry Viewer. The Geometry Library pro-
vides support for geometry processing in AVS.

There are two ways you can use this library to create geometric objects and
have AVS display these objects. One way is to create a program that writes
geometric data to a geometry file which the AVS geometry viewer can read.
Another way is to create an AVS module that outputs a geometry data type
containing geometric and attribute information. You can feed the output of
this module to a module that accepts the geom data type (usually the geom-
etry viewer module) and use the Geometry Viewer to produce an interac-
tive display of the geometric data.

For both a geometry file and a geometry producing AVS module, you must
create one or more "geom" objects. A geom object contains a set of graphics
primitives. A geom object has no attributes associated with it and has a sin-
gle object type. The types of objects currently supported by this library are
the following:

• Meshes
• Polyhedron
• Polytriangles
• Spheres
• Labels

These object types are the building blocks through which you can create
geometric scenes in AVS. The following sections describe these types in
more detail.

With the Geometry Library you can read and write files of 3D geometric
data and manipulate geometry and the associated attributes. The library
also optimizes geometry rendering for the particular machine architecture
on which it is used. You can use this library to define new filters to convert
data into other format and you can create AVS modules that output a geom-
etry data type.

Synopsis

G-2 GEOMETRY LIBRARY

The remainder of this chapter is organized as follows:

SYNOPSIS section:

• Compiling and linking information
• Summary list of geom routines, showing their parameters

OVERVIEW section:

• An overview of the basic geometry objects

DESCRIPTION section:

• An overview of how geom routines should be used

ROUTINES section:
Descriptions of geom routines, grouped under the appropriate topics:

• Object Creation Routines
• Object Utility Routines
• Object Property Routines
• Object Texture-Mapping Routines
• Object File Utilities
• AVS Module Interface Routines

FORTRAN BINDING section:

• A discussion of the FORTRAN calling sequences for geom routines

Synopsis

Compiling and Linking

A C language application that uses geom routines must use the following
header file:

/usr/avs/include/geom.h

A FORTRAN application that uses geom routines must use the following
header file:

/usr/avs/include/geom.inc

To link programs or modules containing geom routines, you should use the
example Makefile in /usr/avs/examples. Each of the template compile/link
commands contains a series of macro symbols that expand out to include the
correct compiler options and libraries (in the correct order) for your platform.
In the C case, the symbol FLOWLIBS expands out to a symbol BASELIBS,
which includes the base AVS libraries necessary for a compile; plus a symbol
LASTLIBS. LASTLIBS contains platform-specific libraries to link with.
LASTLIBS itself is defined explicitly in the file /usr/avs/include/Makeinclude,

Routine Listing

GEOMETRY LIBRARY G-3

which /usr/avs/examples/Makefile includes as its first step. The compiler flags
are defined by the macro symbol CFLAGS, which expands to ACFLAGS and
AVS_INC. ACFLAGS is defined in /usr/avs/include/Makeinclude; AVS_INC is
defined within the Makefile.

Using the example Makefile ensures that your modules will compile and link
correctly on your platform. Pick a template compile/link command that cor-
responds to your module’s type (subroutine or coroutine) and source lan-
guage (C or FORTRAN). If you need to modify or supplement the compiler
options or libraries, be sure to study the expansion of the macros and insert
your modifications in the correct place without leaving any of the necessary
base or platform-specific options or librairies out.

Routine Listing

The following list of GEOM routines is organized by functional category.
Complete routine descriptions follow in the remainder of this appendix.

Object Creation Routines

GEOMadd_disjoint_line(obj, verts, colors, n, alloc)
GEOMadd_disjoint_polygon(obj, verts, normals, colors, nverts, flag, alloc)
GEOMadd_disjoint_prim_data(obj, pdata, n, alloc)
GEOMadd_disjoint_vertex_data(obj, vdata, n, alloc)
GEOMadd_float_colors(obj, colors, n, alloc)
GEOMadd_int_colors(obj, colors, n, alloc)
GEOMadd_label(obj, text, ref_point, offset, height, color, label_flags)
GEOMadd_normals(obj, normals, n, alloc)
GEOMadd_polygon(obj, nverts, indices, flags, alloc)
GEOMadd_polygons(obj, plist, flags, alloc)
GEOMadd_polyline(obj, verts, colors, n, alloc)
GEOMadd_polyline_prim_data(obj, pdata, i, n, alloc)
GEOMadd_polyline_vertex_data(obj, vdata, i, n, alloc)
GEOMadd_polytriangle(obj, verts, normals, colors, n, alloc)
GEOMadd_polytriangle_prim_data(obj, pdata, i, n, alloc)
GEOMadd_polytriangle_vertex_data(obj, vdata, i, n, alloc)
GEOMadd_prim_data(obj, pdata, n, alloc)
GEOMadd_radii(obj, radii, n, alloc)
GEOMadd_vertex_data(obj, pdata, n, alloc)
GEOMadd_vertices(obj, verts, n, alloc)
GEOMadd_vertices_with_data(obj, verts, normals, colors, n, alloc)
GEOMcreate_label(extent, label_flags)
GEOMcreate_label_flags(font_number, title, background, drop, align, stroke)
GEOMcreate_mesh(extent, verts, m, n, alloc)
GEOMcreate_mesh_with_data(extent, verts, normals, colors, m, n, alloc)
GEOMcreate_obj(type, extent)
GEOMcreate_polyh(extent, verts, n, plist, flags, alloc)
GEOMcreate_polyh_with_data(extent, verts, normals, colors, n,

Routine Listing

G-4 GEOMETRY LIBRARY

 plist, flags, alloc)
GEOMcreate_scalar_mesh(xmin, xmax, ymin, ymax, mesh, colors,
 n, m, alloc)
GEOMcreate_sphere(extent, verts, radii, normals, colors, n, alloc)
GEOMdestroy_obj(obj)
GEOMget_font_number(name, bold, italic)

Object Utility Routines

GEOMauto_transform(obj)
GEOMauto_transform_non_uniform(obj)
GEOMauto_transform_list(objs, n)
GEOMauto_transform_non_uniform_list(objs, n)
GEOMcreate_normal_object(obj,scale)
GEOMctv_mesh_to_polytri(tobj, flags)
GEOMcvt_polyh_to_polytri(tobj, flags)
GEOMflip_normals(obj)
GEOMgen_normals(obj, flags)
GEOMnormalize_normals(obj)
GEOMset_computed_extent(obj, extent)
GEOMset_extent(obj)
GEOMset_object_group(obj, name)
GEOMset_pickable(obj, pickable)
GEOMunion_extents(obj1, obj2)

Object Property Routines

GEOMadd_int_value(obj, type, value)
GEOMquery_int_value(obj, type, value)
GEOMset_color(obj, color)

Object Texture-Mapping Routines

GEOMadd_polytriangle_uvs(obj, uvs, i, n, alloc)
GEOMadd_uvs(obj, uvs, n, alloc)
GEOMcreate_mesh_uvs(obj, umin, vmin, umax, vmax)
GEOMdestroy_uvs(obj)

Object Vertex Transparency Routines

GEOMadd_vertex_trans(obj, vtrans, n, alloc)
GEOMadd_polytriangle_vertex_trans(obj, vtrans, i, n, alloc)

Routine Listing

GEOMETRY LIBRARY G-5

Object File Utilities

GEOMread_obj(fd, flags)
GEOMread_text(fp, flags)
GEOMwrite_obj(obj, fd, flags)
GEOMwrite_text(obj, fp, flags)

Object Debugging Routines

GEOMcheck_obj(name, flags, func)

AVS Module Interface Routines

GEOMdestroy_edit_list(list)
GEOMedit_backface(list, name, mode)
GEOMedit_camera_orient(list, name, flags, scale, at, up, from)
GEOMedit_camera_params(list, name, options, val)
GEOMedit_camera_project(list, name, flags, front, back, fov, wsize)
GEOMedit_center(list, name, center)
GEOMedit_clip_plane(edit_list, obj, clip, state)
GEOMedit_color(list, name, color)
GEOMedit_concat_matrix(list, name, matrix)
GEOMedit_depth_cue_params(list, name, flags, depth_front,
 depth_back, depth_scale)
GEOMedit_geometry(list, name, obj)
GEOMedit_parent(list, name, parent)
GEOMedit_light(list, name, type, status)
GEOMedit_position(list, name, position)
GEOMedit_properties(list, name, ambient, diffuse, specular, pec_exp,
 transparency, spec_col)
GEOMedit_projection(list, name, parent)
GEOMedit_render_mode(list, name, mode)
GEOMedit_selection_mode(list, name, mode, flags)
GEOMedit_set_matrix(list, name, matrix)
GEOMedit_subdivision(list, name, subdiv)
GEOMedit_transform_mode(list, name, redirect, flags)
GEOMedit_texture(list, name, texture)
GEOMedit_texture_options(list, name, options, val)
GEOMedit_visibility(list, name, visibility)
GEOMedit_window(list, name, window)
GEOMinit_edit_list(list)

Overview: AVS Geometry Object Data Structure

G-6 GEOMETRY LIBRARY

Overview: AVS Geometry Object Data Structure

Unlike traditional graphics programming interfaces, AVS has a very rigid ob-
ject data base structure. This allows users to access the data base at a very
high level. Instead of adding and deleting "structure elements" as you might
in PHIGS, for example, AVS allows users to create and manipulate AVS ob-
jects. An AVS object has a list of geometry, a list of child AVS objects, and a set
of attributes which can either be defined for this object, or inherited from the
object’s parent. An AVS object also has a single parent object that defines
where it fits into the object hierarchy.

When a new geometry viewer scene is created, there is a single AVS object
called "top". By default, this object has no geometry and no child objects.
When you read the example geometry file, teapot.geom, into the geometry
viewer using the Read Object button, AVS creates a single AVS object called
"teapot.1". This object is initially made a child of the object "top" and inherits
all of its attributes from the object "top".

Note that AVS objects are distinct from geom objects. More than one geom ob-
ject can be associated with a single AVS object. For example, the teapot.geom
geometry file contains a separate mesh geom object for each major piece of
the teapot, as well as one for the handle and one for the lid. etc. In fact, there
are 32 geom objects for that single AVS object. It is useful to think of geom ob-
jects as primitives.

Geometry Object Types (Geometry Primitives)

This section describes each individual geom type.

Mesh Objects

The mesh object type contains a 2D array of vertices ordered such that adja-
cent vertices in the array are connected. If the dimensions of the 2D vertex ar-
ray are MxN, a mesh object forms (M-1)*(N-1) quadrilaterals. A single
quadrilateral is a simple mesh object with M=N=2.

Polyhedrom Objects

A polyhedron object contains a 2D (number of vertices x 3) array specifying
the X, Y, and Z coordinates of each vertex and a separate list of connectivity
information. The connectivity list is a 1D array of integers. The first integer in
the list (call it n) contains the number of vertices in the first polygon of the
polyhedron. Following this integer are n consecutive integers (beginning with
1) representing the element in the vertex array that corresponds to the respec-
tive vertex data. The last index of the first polygon is followed by an integer
representing the number of vertices in the second polygon. This pattern con-
tinues until the value of n is zero, which terminates the list. The following ex-
ample shows the contents of the connectivity list used to describe a

Overview: AVS Geometry Object Data Structure

GEOMETRY LIBRARY G-7

polyhedron containing two polygons, one with four vertices and the second
with five vertices.

Connectivity list: {4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 0}

The index values in the connectivity list are "1 based". This makes no differ-
ence to the C programmer because AVS interprets the index "1" to indicate the
first vertex in the vertex array.

The object types mesh and polyhedron contain an implied surface and wire-
frame description of the geometry that they represent. For the mesh object,
the wireframe description is a 2D array of lines across the rows and columns
of the mesh. For the polyhedron object, the wireframe description of the ob-
ject is formed by the edges of each polygon in the object.

In AVS, the primary object types used to create surface descriptions of geo-
metric objects are the mesh and polyhedron object types. You can easily create
a third common description of polygonal data, disjoint polygons, using the
"polyhedron" object type. This library provides routines to make this conver-
sion easy.

Polytriangle Objects

Certain rendering platforms can make use of the shared vertices in adjacent
polygons to improve the efficiency of rendering. For this reason, we have
added a third primitive that represents surface information, the polytriangle
strip. In a polytriangle strip, each vertex makes a triangle with the previous
two vertices. For a list of N vertices, there are N-2 triangles. If your object is
such that each vertex is shared by a number of different triangles and your
hardware is most efficient at rendering this type of primitive, the polytriangle
strip can be the most efficient description in which to represent your object.
The geom library provides routines to convert objects from the mesh and
polyhedron primitive types into the polytriangle primitive.

Note that since the polytriangle primitive can only represent triangles, it does
not normally contain information necessary for providing an appropriate
wireframe description of an object. If we have an object made up entirely of
quadrilaterals and used the polytriangle representation as our wireframe de-
scription of the object, AVS would naturally draw edges in our object that
should not be drawn. For this reason, the polytriangle object type contains
both a wireframe and a surface description of the object. If the rendering
mode is "lines" the geometry viewer uses the wireframe description, if it is
"surface", it uses the surface description.

The surface description is an array of polytriangle strips (where each strip is a
single array of connected triangles). The wireframe description contains an
array of connected lines and an array of disjoint lines. Each connected line is a
single array of vertices such that each vertex draws a line to the previous ver-
tex. If a connected line has N vertices, it contains N-1 lines. The array of dis-
joint lines contains an even number of vertices such that each successive pair
of vertices forms a line. If there are N vertices in a disjoint line, there are N/2
lines.

Overview: AVS Geometry Object Data Structure

G-8 GEOMETRY LIBRARY

Usually, the polytriangle strip is not the best choice for representing surface
data. It can be efficient for representing objects that have only wireframe in-
formation, however. If an object has only wireframe information AVS draws
these lines even if the rendering mode is set to surface.

Sphere Objects

The sphere object is used to represent objects that contain a list of spheres or
dots. Spheres have a radius as well as a location. Dots are represented as
spheres without any radius information.

Label Objects

Label objects are used to represent text that generally annotates or titles other
geometric data. There are three classes of labels: annotation labels, titles, and
"stroke" labels. Titles have a location in screen coordinates and are not trans-
formed by either the camera or the object’s transformation. Annotation labels
are transformed with geometry but are always parallel to the screen plane.
Stroke text is transformed like geometry, however, it is not supported on all
platforms.

Geometry File Filters

Writing a geometry program that outputs data to a file is most suitable for
batch programs and one-time conversions of geometric data. AVS provides
examples of these types of filters that convert standard geometry file formats,
such as Wavefront and movie BYU, into the AVS geometry file format. (See /
usr/avs/filters/wfront_geom.c and /usr/avs/filters/byu.c for these examples.)

In general, each geom files contains the geometry for a single AVS object.
However, the geom file contains virtually no support for setting object at-
tributes or hierarchy. Once the data is in a geom file, you can specify geometry
viewer attributes using a separate object (OBJ) script file that associates one or
more geom files with hierarchy and attribute information. You can also use
OBJ script files to create flipbook animations of geometric objects. See the "Ge-
ometry Viewer Script Language" appendix in the AVS User’s Guide for more
information.

By default, a single AVS object is kept in a single geom file. You can override
this to allow multiple AVS objects to be generated from multiple geom objects
in a single geom file (see the geomset_object_group routine and the "Geome-
try Viewer Script Language " appendix of the AVS User’s Guide for more infor-
mation).

Overview: AVS Geometry Object Data Structure

GEOMETRY LIBRARY G-9

Geometry Producing Modules

An AVS module can dynamically modify the geometry and attributes of AVS
objects in the Geometry Viewer in a general programmatic way. AVS provides
many geometry producing modules. The isosurface module produces a dif-
ferent geometric object for each new threshold parameter sent to the module.
With an AVS module, you can control much more than just the geometry of
an object. The module can change the object hierarchy, change object at-
tributes, orientations, etc. With upstream data, the module can receive pick-
ing information from the user and can obtain information about how an
object is being transformed.

Each geometry viewer module produces a single geometry scene. When a ge-
ometry producing module executes, it causes the geometry viewer module to
make changes to the scenes defined by all of the downstream geometry view-
er modules (usually there is just one downstream geometry viewer module
and just one scene). For example, a module may specify a change in the color
of the object named "top", or rotate the object named "slice" by 90 degrees.

When using the Geometry Viewer, the user and the module operate on the
same database and can affect the object in much the same way. The Geometry
Viewer allows you to rotate objects, change attributes, add new objects, etc.
Modules can use the geom library described in this appendix to perform the
same actions.

Typically, the modules provide only a subset of the information required to
view the data, allowing you to make the rest of the controls with the Geome-
try Viewer. The module may, for example, provide geometry for an object, but
not specify the orientation matrix or other attributes. You can then make these
settings using the Geometry Viewer.

The Edit List

During each execution of a module, the module provides a list of changes that
it wants made to the scene for that execution. When a geometry viewer mod-
ule receives this list of changes, it goes through the list in order, applying the
changes that it receives and redrawing the scene, if necessary.

The data type for communicating geometry from the geometry producing
module to the geometry viewer module, therefore, is a list of changes that are
to be made to the scene for that execution. We call this data type an "edit list"
since it is a list of "edits" to be made to the scene. See the beginning the "AVS
Module Interface Routines" section of this appendix for more information
about edit lists and the routines use to modify them.

The remainder of this appendix is devoted to describing the Geometry Li-
brary routines that you can use (along with other AVS supplied routines) to
implement geometry producing modules. Also, see Chapter 3 for more infor-
mation on modules.

Description

G-10 GEOMETRY LIBRARY

Description

The geom library provides functions for reading and writing objects, creating
objects from a variety of different data formats, processing objects (such as
generating normals), and "compiling" databases into a format that is most ef-
ficient for the hardware to render.

The geom library contains both a C and a FORTRAN version of each routine.
The main routine descriptions in this manual page discuss the C versions. For
a discussion of the FORTRAN calling sequences, see the "Fortran Binding"
section near the end of this chapter.

Many routines allow a NULL value for some arguments. In all such cases, the
constant GEOM_NULL should be used to represent a NULL value.

The basic entity in the geom package is the geom object. Several types of ob-
jects are supported:

GEOM_LABEL
GEOM_MESH
GEOM_POLYHEDRON
GEOM_POLYTRI
GEOM_SPHERE

Each object can have colors or normals associated with each vertex in the ob-
ject, but it need not have either.

Label
A label contains one or more text strings normally used to label an AVS
object or view. The label is presented as annotation text: its position can
be transformed, but the text always appears upright in a plane parallel to
the display surface.

Mesh
A mesh object contains one two-dimensional array of vertices.

Polyhedron
A polyhedron contains a list of vertices and a list of polygons, which are
defined by indirectly referencing the vertices that the polygon contains.

Polytriangle
A polytriangle object contains a list of polytriangle strips, a list of
polylines, or a list of disjoint lines. When a single object has both line and
surface data, the line data is assumed to be an alternate wireframe de-
scription for the same geometry (only one should be displayed at a given
time).

Sphere
A sphere object contains a list of points and a corresponding list of radii.

Object Creation Routines

GEOMETRY LIBRARY G-11

Object Creation Routines

Many routines can be used to create an object. The goal is to provide entry
points that allow many different data formats to be simply converted to the
internal data base format. Different routines are used by different filters.

The creation routines for the geom library define some simple data formats:

• A list of vertices is a 2D array of floats of X, Y, and Z.
• A list of normals is a 2D array of floats of NX, NY, and NZ.
• A list of float colors is a 2D array of floats of R, G, B (in the range of 0.0 to

1.0).
• A list of integer colors is also defined where R, G, and B are bytes packed

into an integer using the shifts AVS_RED_SHIFT, AVS_GREEN_SHIFT,
and AVS_BLUE_SHIFT, defined in /usr/avs/include/port.h. All colors are
stored internally as arrays of floats with values between 0 and 1.

• A list of floating point transparency values that are associated with each
vertex. The values should be in the range of 0.0-1.0 with 0.0 being opaque
and 1.0 being transparent. The transparency value is meant to be interpo-
lated across the surface and then used as the transparency attribute for
each individual rendered point. Many renderers ignore this type of data.

• A list of extents is a 1D array of 6 floats in the order: MIN X, MAX X, MIN
Y, MAX Y, MIN Z, MAX Z.

• User-supplied primitive data. The user may associate a single integer
with each primitive where a primitive is defined as a line or polygon.

• User-supplied vertex data. This is similar to user-supplied primitive data
but is associated with a vertex instead of a primitive.

Creating an Object

A geom object is initially created without any data at all. Data is then added
to the object incrementally. A typical sequence would be to create an object of
type polyhedron, add a polygon list, add vertices, then add normals. Notice
that an object can be in an intermediate state where it doesn’t make sense — it
can have a polygon list without vertices, for example.

To reduce the number of procedure calls required to create an object, the
geom library also provides macro functions that create and add various piec-
es of data. When one of these calls has a parameter for an optional piece of
data (normals and colors, for example), GEOM_NULL can be used to indicate
that this object does not have this type of data.

Extents

Each object can have extent information associated with it. The extent of an
object is determined by the minimum and maximum values of the coordi-

Object Creation Routines

G-12 GEOMETRY LIBRARY

nates of the object’s vertices. Routines that create objects take optional extent
information. Passing GEOM_NULL for this parameter indicates no extent is
being specified. This is usually the best way to specify the extents unless you
have explicit knowledge of what the extents should be for the object.

If you do not supply extent information during the creation of your object, it
is generated for you when and if it is needed by some other part of the sys-
tem. It is generated by finding the minimum and maximum values of X, Y,
and Z in your vertex list. For spheres, the radii is used to determine the ex-
tents.

In some situations, you might want to provide extent information that is not
the same as the object’s actual extents. For example, if you have a time series
of data where the object’s extents are expanding (an explosion, for example)
you may want to set the extent for the whole series to be large enough to
avoid clipping the scene as the extents required increase in dimension. This
way you can normalize the object (center it in the view) and not loose por-
tions of it as the time series progresses

You should not set the extent so that it is smaller than the geometry of your
object, as the system relies on the extent to display all of the geometry.

Flags

Many routines have an alloc flag as a parameter. If this flag is set to GEOM_-
COPY_DATA, the geom routine allocates its own space and copies the data of
the object. If this flag is set to GEOM_DONT_COPY_DATA, the geom rou-
tine does not copy the data. In this case, you must allocate space for the data
using the C entry library routine malloc(3C). It is usually easier to allow the
routine to allocate the required space.

User Supplied Primitive Data

You may associate a single integer with each line or polygon primitive within
an object. This integer should contain no more than 4 bytes of significant in-
formation. Unlike other data values that are associated with the object, this
data is not interpreted by the geometry viewer. It is returned to the user for
pick correlation purposes using upstream data. See the section on upstream
data in Chapter 4 for more information on how to use this within a module.

For polyhedrons, there can be a single value for each polygon in the object.
For meshes, there can be "m-1" * "n-1" values (this is the number of quadrilat-
erals in the mesh). For triangle strips, there can be "n-2" values. For disjoint
lines, there can be "n/2" and for polylines there can be "n-1".

Object Creation Routines

GEOMETRY LIBRARY G-13

User Supplied Vertex Data

This is similar to user-supplied primitive data but is associated with a vertex
instead of a primitive. During any particular pick, the user picks a primitive,
but AVS returns the information corresponding to the closest selected vertex
as well. For a particular object, there can be a single piece of user-supplied
data for each vertex in the object.

Vertex and primitive data are not applicable to all object types. The following
chart shows what object types can use each type of data:

GEOMadd_disjoint_line

GEOMadd_disjoint_line(obj, verts, colors, n, alloc)
GEOMobj *obj;
float *verts;
float *colors;
int n;
int alloc;

Adds an array of lines to an object of type GEOM_POLYTRI. It adds the ver-
tices of this disjoint line to any existing disjoint lines in the object.

GEOMadd_disjoint_polygon

GEOMadd_disjoint_polygon(obj, verts, normals, colors, nverts, flag, alloc)
GEOMobj *obj;
float *verts, *normals, *colors;
int nverts;
int alloc;
int flag;

Adds a disjoint polygon to a polyhedron object. The polygon has nverts verti-
ces which are specified in the array verts. The normals and colors arguments
can contain the normals and colors for the object, or they can be GEOM_-
NULL. The flag argument contains two pieces of information: the nature of
the polygon (whether it is convex, concave, or complex), and whether the ver-
tices of the polygon should be shared with the other vertices in the object.
Shared vertices create an object whose vertices approximate a smooth object

Table G-1 Object Vertex and Primitive Data Applicability

Type Primitive Vertex

GEOM_POLYHEDRON yes yes
GEOM_POLYTRI yes yes
GEOM_SPHERE no yes
GEOM_LABEL no no
GEOM_MESH yes yes

Object Creation Routines

G-14 GEOMETRY LIBRARY

(such as a sphere); unshared vertices create an object that is faceted. The flags
GEOM_SHARED and GEOM_NOT_SHARED are used to determine
whether the vertices are shared or not. The values GEOM_CONCAVE,
GEOM_CONVEX, and GEOM_COMPLEX can be OR’d with the other value
to produce the flag argument.

Specifying shared vertices causes this routine to try to determine whether any
vertices in the object are already represented. Instead of adding a new vertex
when an old identical vertex is found, it uses a reference to this vertex. This
process can take considerable time when the number of vertices in the object
is large, but it produces an object that is significantly more efficient to render,
because the resulting object contains fewer vertices to transform, light, and
shade.

GEOMadd_disjoint_prim_data

GEOMadd_disjoint_prim_data(obj, pdata, n, alloc)
GEOMobj *obj;
float *pdata;
int n;
int alloc;

This routine should only be used for objects of type GEOM_POLYTRI that
have disjoint line primitives in them. It allows the user to associate primitive
data with the disjoint lines in a polytriangle type object. The number "n"
should be the number of disjoint lines in the object— note that this is one-half
the number of vertices that the object contains.

GEOMadd_disjoint_vertex_data

GEOMadd_disjoint_vertex_data(obj, vdata, n, alloc)
GEOMobj *obj;
int *vdata;
int n;
int alloc;

This routine should only be used for objects of type GEOM_POLYTRI that
have disjoint line primitives in them. It allows the user to associate vertex
data with the disjoint lines in a polytriangle type object. The number "n"
should be the number of vertices in the disjoint line object. Note that this is
twice the number of disjoint lines.

GEOMadd_float_colors

GEOMadd_float_colors(obj, colors, n, alloc)
GEOMobj *obj;
float *colors;

Object Creation Routines

GEOMETRY LIBRARY G-15

int n;
int alloc;

Adds a list of float colors to an object. The Red, Green, and Blue values are
stored separately (i.e., it takes three floats to specify an RGB), and should
range between 0 and 1. This routine cannot be used with objects of type
GEOM_POLYTRI.

GEOMadd_int_colors

GEOMadd_int_colors(obj, colors, n, alloc)
GEOMobj *obj;
unsigned long *colors;
int n;
int alloc;

Adds a list of integer colors to an object. The RGB values are packed into a
single integer using the shifts AVS_RED_SHIFT, AVS_GREEN_SHIFT, and
AVS_BLUE_SHIFT, defined in /usr/avs/include/port.hi. This routine cannot be
used with an object of type GEOM_POLYTRI.

GEOMadd_label

GEOMadd_label(obj, text, ref_point, offset, height, color, label_flags)
GEOMobj *obj;
char *text;
float ref_point[3];
float offset[3];
float height;
float color[3];
int label_flags;

This routine adds a text string and related characteristics to an existing label
object. Each label object can have more than one text string, along with related
characteristics for each string. Each such string is added by a separate call to
GEOMadd_label for the same label object. All data is copied (GEOM_-
COPY_DATA is assumed). The arguments are as follows:

text
The text string for the label.

ref_point
offset

These arguments determine the positioning of the label. The reference
point is an array of X, Y, and Z coordinates. For a label used as a window
title, these are in screen space, with (-1, -1, -1) at the lower left rear corner
and (1, 1, 1) at the upper right front corner, and are not transformed. For
other labels the coordinates of the reference point are transformed. The

Object Creation Routines

G-16 GEOMETRY LIBRARY

offset is an array of X, Y, and Z values in screen space. After the reference
point is transformed (if necessary), the offset is applied to determine the
final position of the reference point in screen space. The label always ap-
pears upright and in a plane parallel to the display surface.

height
The height of the label in screen space.

color
An RGB triple specifying the text color, or GEOM_NULL to indicate that
the foreground color (usually white) should be used. (When the text back-
ground rectangle is drawn, the window background color is used for the
rectangle.)

label_flags
An integer returned by a call to GEOMcreate_label_flags, or a value of -1
to indicate that the default label flags in the label object, added by the call
to GEOMcreate_label, should be used. For a given label object, either all
text strings must use the default label flags, or no text strings can use the
default label flags. That is, either all calls to GEOMadd_label must pass -
1 for the label_flags argument, or no calls to GEOMadd_label can pass -1
for the label_flags argument.

GEOMadd_normals

GEOMadd_normals(obj, normals, n, alloc)
GEOMobj *obj;
float *normals;
int n;
int alloc;

Adds a list of normals to an object. This routine cannot be used with objects of
type GEOM_POLYTRI or GEOM_SPHERE.

GEOMadd_polygon

GEOMadd_polygon(obj, nverts, indices, flags, alloc)
GEOMobj *obj;
int nverts;
int *indices;
int flags;
int alloc;

Adds a polygon to a polyhedron object. The indices argument specifies an ar-
ray of nverts integers, where each integer is an index into a vertex array that is
added with the GEOMadd_vertices call either before or after this call is
made. If multiple calls to GEOMadd_vertices are made, the first vertex add-
ed always remains the first vertex in the list. The indices in this array are "1

Object Creation Routines

GEOMETRY LIBRARY G-17

based". The first vertex in the list is 1, not 0. The flags argument can be either
GEOM_CONCAVE or GEOM_CONVEX.

GEOMadd_polygons

GEOMadd_polygons(obj, plist, flags, alloc)
register GEOMobj *obj;
register int *plist;
int flags;
int alloc;

Adds a polygon list to a polyhedron object. The polygon list is an array of ints
where the first int (plist[0]) indicates the number of vertices in the first poly-
gon. The number of vertices (plist[0]) is followed by that number of indices
into the vertex list. The second polygon’s vertex list immediately follows the
first. The list is terminated with a 0 number of vertices after the last polygon’s
vertex list. As with the GEOMadd_polygon routine, the vertex indices are "1
based". The first vertex in the list is 1, not 0. The flags argument can be either
GEOM_CONCAVE or GEOM_CONVEX.

GEOMadd_polyline

GEOMadd_polyline(obj, verts, colors, n, alloc)
GEOMobj *obj;
float *verts;
float *colors;
int n;
int alloc;

Adds a polyline to an object of type GEOM_POLYTRI. The colors argument
can be GEOM_NULL.

GEOMadd_polyline_prim_data

GEOMadd_polyline_prim_data(obj, pdata, i, n, alloc)
GEOMobj *obj;
int *pdata;
int i;
int n;
int alloc;

This routine should be used only for objects of type GEOM_POLYTRI that
contain polyline primitives. It allows the user to associate vertex data with the
polylines in a polytriangle type object. The number n is the number of vertices
in the polyline object. Note that this is the number of disjoint lines - 1. The val-
ue of i specifies the particular primitive within the object, with which you
want to associate the data. The first primitive is 0, the second is 1, etc.

Object Creation Routines

G-18 GEOMETRY LIBRARY

GEOMadd_polyline_vertex_data

GEOMadd_polyline_vertex_data(obj, vdata, i, n, alloc)
GEOMobj *obj;
int *vdata;
int i;
int n;
int alloc;

This routine should be used only for objects of type GEOM_POLYTRI that
contain polyline primitives. It allows the user to associate vertex data with the
polylines in a polytriangle type object. The number n is the number of vertices
in the polyline object. Note that there are n vertices, but the number of lines is
n-1. The value of i specifies the particular primitive within the object, with
which you want to associate the data. The first primitive is 0, the second is 1,
etc.

GEOMadd_polytriangle

GEOMadd_polytriangle(obj, verts, normals, colors, n, alloc)
GEOMobj *obj;
float *verts;
float *normals;
float *colors;
int n;
int alloc;

Adds a polytriangle to the object. Note that colors is an array of float colors, not
int colors. An object can contain more than one polytriangle strip.

GEOMadd_polytriangle_prim_data

GEOMadd_polytriangle_prim_data(obj, pdata, i, n, alloc)
GEOMobj *obj;
int *pdata;
int i;
int n;
int alloc;

This routine should be used only for objects of type GEOM_POLYTRI that
contain polytriangle strip primitives. It allows the user to associate vertex
data with the polytriangle strips in a polytriangle type object. The number n is
the number of triangles in the polytriangle object. Note that this is the number
of vertices - 2. The value of i specifies the particular primitive within the ob-
ject, with which you want to associate the data. The first primitive is 0, the
second is 1, etc.

Object Creation Routines

GEOMETRY LIBRARY G-19

GEOMadd_polytriangle_vertex_data

GEOMadd_polytriangle_vertex_data(obj, vdata, i, n, alloc)
GEOMobj *obj;
int *vdata;
int i;
int n;
int alloc;

This routine should be used only for objects of type GEOM_POLYTRI that
contain polytriangle strip primitives. It allows the user to associate vertex
data with the polytriangle strips in a polytriangle type object. The number n is
the number of triangles in the polytriangle object. Note that this is the number
of vertices - 2. The value of i specifies the particular primitive within the ob-
ject, with which you want to associate the data. The first primitive is 0, the
second is 1, etc.

GEOMadd_prim_data

GEOMadd_prim_data(obj, pdata, n, alloc)
GEOMobj *obj;
int *pdata;
int n;
int alloc;

Associate the array of primitive data with the object specified. This routine
can be used only for objects of type GEOM_POLYHEDRON and GEOM_-
MESH. For objects of type GEOM_MESH, there value n should be equal to:
(m-1) * (n-1). Where "m" and "n" are the dimensions of the mesh.

GEOMadd_radii

GEOMadd_radii(obj, radii, n, alloc)
GEOMobj *obj;
float *radii;
int n;
int alloc;

This routine adds the radii supplied to an object of type GEOM_SPHERE.
The number n contains the number of spheres in the object. The alloc parame-
ter is GEOM_DONT_COPY_DATA if the data has been allocated using the
malloc(3C) routine, and has not been freed by the application. It should be
GEOM_COPY_DATA otherwise.

Object Creation Routines

G-20 GEOMETRY LIBRARY

GEOMadd_vertex_data

GEOMadd_vertex_data(obj, vdata, n, alloc)
GEOMobj *obj;
int *vdata;
int n;
int alloc;

Associates the array of vertex data with the object specified. This routine can
be used only with objects of type: GEOM_MESH, GEOM_POLYHEDRON,
and GEOM_SPHERE. The number of data elements n, should be equal to the
number of vertices in the object.

GEOMadd_vertices

GEOMadd_vertices(obj, verts, n, alloc)
GEOMobj *obj;
float *verts;
int n;
int alloc;

Adds a list of vertices to an object. This routine should not be used for objects
of type polytriangle (use GEOMadd_polytriangle instead).

GEOMadd_vertices_with_data

GEOMadd_vertices_with_data(obj, verts, normals, colors, n, alloc)
GEOMobj *obj;
float *verts;
float *normals;
unsigned int colors;
int n;
int alloc;

Adds vertices, colors, and normals to the object. It assumes integer colors. Both
the normals and colors parameters can be GEOM_NULL. This is a macro func-
tion combining the GEOMadd_vertices, GEOMadd_normals, and GEO-
Madd_int_colors routines.

GEOMcreate_label

GEOMobj *
GEOMcreate_label(extent, label_flags)
float *extent;
int label_flags;

Object Creation Routines

GEOMETRY LIBRARY G-21

This routine creates a label object. Each label object can have more than one
text string, along with related characteristics for each string. Each such string
is added by a separate call to GEOMadd_label for the same label object. The
label_flags argument to GEOMcreate_label is normally an integer returned by
a call to GEOMcreate_label_flags. It specifies default characteristics for all
text strings in the label object. Either all text strings must use the default label
flags, or no text strings can use them; see GEOMadd_label for more informa-
tion. The extent argument can be GEOM_NULL if no extent is known.

GEOMcreate_label_flags

int
GEOMcreate_label_flags(font_number, title, background, drop, align, stroke)
int font_number, title, background, drop, align, stroke;

This routine creates and returns a bit mask that is used to represent some
characteristics of a label. The label flags are added by a call to GEOMcreate_-
label or to GEOMadd_label. To add a text string and related characteristics
to the label, use the GEOMadd_label routine. The arguments are as follows:

font_number
An integer from 0 through 21 that specifies the font for the label’s text
string. The GEOMget_font_number call will generate a number to use
here (which may differ from platform to platform) based upon a text
string font name such as "Helvetica" or "Times", together with two bool-
eans that flag bold or italic.

title
A value of 1 means that the label is to be used as a title for the window.
The label is drawn in an absolute position with respect to screen space,
which is defined so that (-1, -1, -1) is the lower left rear corner and (1, 1, 1)
is the upper right front corner. A value of 0 means that the reference point
of the label is transformed before the label is drawn. See the documenta-
tion for the GEOMadd_label routine for more information.

background
A value of 1 means that both the foreground text and the background
rectangle that encloses the text are drawn. A value of 0 means that only
the foreground text is drawn.

drop
A value of 1 means that a one-pixel drop-shadow highlight is added to
the text. This makes the text stand out against a background of similar
color. A value of 0 means that no highlight is added.

align
Specifies the position of the reference point within the label and therefore
the alignment of the label. A value of GEOM_LABEL_LEFT places the
reference point at the lower left corner of the label. A value of GEOM_-
LABEL_CENTER places the reference point at the bottom center of the la-

Object Creation Routines

G-22 GEOMETRY LIBRARY

bel. A value of GEOM_LABEL_RIGHT places the reference point at the
lower right corner of the label.

stroke
Not implemented; the value should be 0.

GEOMcreate_mesh

GEOMobj *
GEOMcreate_mesh(extent, verts, m, n, alloc)
float *extent;
float *verts;
int m, n;
int alloc;

Creates a mesh from a 2D array of vertices. The dimensions of the array are
specified by the m and n parameters. The first n vertices constitute the first
row of the mesh. There are m rows of vertices. The extent parameter can be
GEOM_NULL if no extent is known.

GEOMcreate_mesh_with_data

GEOMobj *
GEOMcreate_mesh_with_data(extent, verts, normals, colors, m, n, alloc)
float *extent;
float *verts;
float *normals;
unsigned long *colors;
int m, n;
int alloc;

This routine is a macro function combining the GEOMcreate_mesh, GEO-
Madd_int_colors, and GEOMadd_normals routines.

GEOMcreate_obj

GEOMobj *
GEOMcreate_obj(type, extent)
int type;
float *extent;

Type should be one of GEOM_LABEL, GEOM_MESH, GEOM_POLYHE-
DRON, GEOM_POLYTRI or GEOM_SPHERE. Extent can be either the ex-
tent of the object or GEOM_NULL if no extent is known. This routine creates
an object of the specified type. Initially the object has no data.

Object Creation Routines

GEOMETRY LIBRARY G-23

GEOMcreate_polyh

GEOMobj *
GEOMcreate_polyh(extent, verts, n, plist, flags, alloc)
float *extent;
float *verts;
int n;
int *plist;
int flags;
int alloc;

This routine is a macro function combining the GEOMcreate_obj, GEOMad-
d_vertices, and GEOMadd_polygons routines. The flags argument can be ei-
ther GEOM_CONCAVE or GEOM_CONVEX.

GEOMcreate_polyh_with_data

GEOMobj *
GEOMcreate_polyh_with_data(extent, verts, normals, colors, n, plist, flags, al-
loc)
float *extent;
float *verts;
float *normals;
unsigned long *colors;
int n;
int *plist;
int flags;
int alloc;

This routine is a macro function combining the GEOMcreate_polyh, GEO-
Madd_int_colors, and GEOMadd_normals routines. The flags argument can
be either GEOM_CONCAVE or GEOM_CONVEX

GEOMcreate_scalar_mesh

GEOMobj *
GEOMcreate_scalar_mesh(xmin, xmax, ymin, ymax, mesh, colors, n, m, alloc)
float xmin, xmax, ymin, ymax
float *mesh, *colors; /* Colors is R,G,B */
int n, m;

Creates a mesh from a single array of scalar values (a height field). The scalars
are taken to be the Z component of the object. X will be evenly spaced be-
tween xmin and xmax, and Y will be evenly spaced between ymin and ymax.
The colors parameter can be GEOM_NULL.

Object Creation Routines

G-24 GEOMETRY LIBRARY

GEOMcreate_sphere

GEOMobj *
GEOMcreate_sphere(extent, verts, radii, normals, colors, n, alloc)
float *extent;
float *verts;
float *radii;
float *normals;
unsigned long *colors;
int n, alloc;

Creates a sphere object. The vertices (vert) argument specifies the sphere cen-
ters. The normals and colors arguments can be GEOM_NULL. When the value
of radii is GEOM_NULL, the spheres will be rendered as dots. The normals
are generally not used. To create a sphere with float colors, use the GEOMad-
d_float_colors routine after the sphere is created.

GEOMdestroy_obj

GEOMdestroy_obj(obj)
GEOMobj *obj;

Frees all memory associated with the object, including memory given to a
"create" call with the flag GEOM_DONT_COPY_DATA.

GEOMget_font_number

int
GEOMget_font_number(name, bold, italic)
char *name;
int bold, italic;

This routine is used to convert a font name, bold and italic values, and pro-
duce a font number that is used as the first argument to the routine GEOM-
create_label_flags. The label flags are then used to define the font,
alignment, and other drawing attributes for the label primitive.

This routine is given a font name which can be one of: "Courier", "Helvetica",
"New Century", "Times", "Charter", "Symbol", "Roman", "Script", or "Mathe-
matics". It also takes two boolean values to indicate whether the font should
be drawn with bold or italic style. The return of this routine is the font num-
ber to use in the routine GEOMcreate_label_flags.

Not all fonts and styles are implemented on all renderers. If a font is not im-
plemented by a particular renderer, it will be simulated with the closest ap-
proximating font that is available.

Object Utility Routines

GEOMETRY LIBRARY G-25

Object Utility Routines

Once a geom object has been created, the utility routines can be used. These
routines control: object normals (the generation of proper normals is critical
to an accurate and illustrative description of geometry); object autotransfor-
mations (the transformation of individual objects and groups of objects to fit
within a unit cube (-1 to 1 in X, Y, and Z)—this is distinct from the general
transfomation of objects within world space using edit list calls; and object
format conversions).

This last is necessary because on some architectures, the most efficient object
format is the polytriangle for nonsphere surface descriptions and the polyline
for wireframe descriptions. Two utility routines convert data to the proper
type. The conversion routines convert to either polytriangles, polylines, or
both, depending on the setting of the flags. Sphere primitives should not be
converted. This conversion should be performed after normals have been
generated for the object (if normals are desired) as the conversion results in a
loss of vertex coherence information.

GEOMauto_transform

GEOMauto_transform(obj)
register GEOMobj *obj;

GEOMauto_transform_non_uniform

GEOMauto_transform_non_uniform(obj)
register GEOMobj *obj;

Transforms the object specified to lie within the cube from -1 to 1 in X, Y, and
Z. The scaling and translation factors are uniform for GEOMauto_transform
and nonuniform for GEOMauto_transform_non_uniform.

GEOMauto_transform_list

GEOMauto_transform_list(objs, n)
register GEOMobj **objs;
register int n;

GEOMauto_transform_non_uniform_list

GEOMauto_transform_non_uniform_list(objs, n)
register GEOMobj **objs;
register int n;

Object Utility Routines

G-26 GEOMETRY LIBRARY

Transforms the list of objects specified to lie within the cube from -1 to 1 in X,
Y, and Z. First the bounding box of all objects in the list is generated, then
scaling and translation factors are computed to transform this box to lie inside
the cube from -1 to 1 in X, Y, and Z. The scaling and translation factors are uni-
form for GEOMauto_transform_list and nonuniform for GEOMauto_trans-
form_non_uniform_list. The relative sizes of objects in the list are not
affected.

GEOMcreate_normal_object

GEOMobj *
GEOMcreate_normal_object(obj,scale)
GEOMobj *obj;
float scale;

This routine takes an object that has normal data and returns an object that
consists of disjoint lines that represent the normals of that object. The normals
will be of length scale times their current length.

GEOMcvt_mesh_to_polytri

GEOMcvt_mesh_to_polytri(tobj, flags)
GEOMobj *tobj;
int flags;

Creates a polytriangle or polyline description of the mesh object given. The
resulting object contains one large polytriangle strip (if the flags argument is
GEOM_SURFACE) and n * m polylines (if the flags argument is GEOM_-
WIREFRAME).

GEOMcvt_polyh_to_polytri

GEOMcvt_polyh_to_polytri(tobj, flags)
GEOMobj *tobj;
int flags;

Uses a graph traversing algorithm to generate either a surface or a wireframe
description of a polyhedron object, depending on the flags argument. It at-
tempts to share as many vertices as possible. The surface algorithm can take a
reasonably long time to complete for very large objects. The wireframe algo-
rithm creates polylines for large connected strips and disjoint lines for smaller
ones. The flags argument can be GEOM_SURFACE, GEOM_WIREFRAME,
or GEOM_EXHAUSTIVE. The GEOM_EXHAUSTIVE flag should be used
only in dire circumstances.

Object Utility Routines

GEOMETRY LIBRARY G-27

GEOMflip_normals

GEOMflip_normals(obj)
GEOMobj *obj;

This routine inverts the direction of the normals in the object given.

GEOMgen_normals

GEOMgen_normals(obj, flags)
GEOMobj *obj;
int flags; /* 0 or GEOM_FACET_NORMALS */

Generates surface normals for GEOM_MESH or GEOM_POLYHEDRON
objects. By default, it assumes that the object is an approximation of a smooth
surface. If the flags field is GEOM_FACET_NORMALS and the object is a
polyhedron, a separate normal is generated for each facet (polygon). A copy
of the facet normal is associated with each of the facet verticies. A vertex that
is shared by multiple facets is replicated for each facet. This replication de-
creases the rendering performance of the object. Normals generated by this
routine are guaranteed to be of unit length.

GEOMnormalize_normals

GEOMnormalize_normals(obj)
GEOMobj *obj;

Normalizes (converts to unit length) the normals of the object specified. Nor-
mals are normalized automatically by the GEOMgen_normals routine.

GEOMset_computed_extent

GEOMset_computed_extent(obj, extent)
GEOMobj *obj;
float extent[6];

Sets the extent of the object to the extent passed in. The extent passed in should
contain in order: xmin, xmax, ymin, ymax, zmin, zmax. This can be used in con-
junction with either auto_transform routine to perform arbitrary scaling and
translation of objects.

GEOMset_extent

GEOMset_extent(obj)
GEOMobj *obj;

Object Property Routines

G-28 GEOMETRY LIBRARY

Sets the extent of the object given. Currently, it is not implemented properly
for objects of type GEOM_SPHERE.

GEOMset_object_group

GEOMset_object_group(obj, name)
GEOMobj *obj;
char *name;

This routine is used when storing multiple AVS objects (groups of geom ob-
jects) in a single geom file. By default, when AVS reads a geom file it places all
geom objects in that file into a single AVS object. The read_subset script lan-
guage command can read a subset of the geom objects in a geom file and place
only those geom objects into an AVS object. Each geom object to be placed
into the same AVS object must have the same group name, which is added by
the GEOMset_object_group routine. The read_subset command takes a
group name as an argument and places all geom objects in the geom file that
have that group name into a single AVS object. The read_subset command ig-
nores all geom objects in the geom file that do not have that group name.

GEOMset_pickable

GEOMset_pickable(obj, pickable)
GEOMobj *obj;
unsigned long pickable;

This routine sets the pickable state of an object. If multiple objects are placed
in a geom file, by default they are not pickable individually. If this attribute is
set to "1", they can be picked individually when running the AVS viewing ap-
plication.

GEOMunion_extents

GEOMunion_extents(obj1, obj2)
GEOMobj *obj1, *obj2;

Sets the extent of obj1 to include the extent of obj2. It generates the extents of
both objects if they aren’t set already.

Object Property Routines

A feature of the geom library allows arbitrary value lists to be associated with
each object. These value lists can then be interpreted by packages reading in
the objects. The object format supports values that are arbitrarily long. Cur-
rently only integer values are supported by the subroutine interface.

Object Texture Mapping Routines

GEOMETRY LIBRARY G-29

GEOMadd_int_value

GEOMadd_int_value(obj, type, value)
GEOMobj *obj;
int type;
int value;

Adds an integer property to an object. Currently the only fully supported
property of an object is the color (type GEOM_COLOR).

GEOMquery_int_value

int
GEOMquery_int_value(obj, type, value)
GEOMobj *obj;
int type;
int *value;

An integer value can be queried with this routine. The type is an integer val-
ue. The only fully supported property type is GEOM_COLOR. Its value can
be queried with:

GEOMquery_int_value(obj, GEOM_COLOR, &color);

This routine returns 0 if no color was associated with the object.

GEOMset_color

GEOMset_color(obj, color)
GEOMobj *obj;
unsigned long color;

Sets the color property of an object (by calling the GEOMadd_int_value rou-
tine).

Object Texture Mapping Routines

Each surface object can have uv data associated with each vertex. The uv data
consists of two floating point values per vertex, which specify a mapping into
a texture map. The value of u=0, v=0 is the index into the upper left hand cor-
ner of the texture map; u=1, v=1 is the lower right hand corner. These values
are stored in memory as an array of floating point values.

Object Texture Mapping Routines

G-30 GEOMETRY LIBRARY

GEOMadd_polytriangle_uvs

GEOMadd_polytriangle_uvs(obj, uvs, i, n, alloc)
GEOMobj *obj;
float *uvs;
int i;
int n;
int alloc;

Each polytriangle object has an array of polytriangle strips. This routine is
used to add uv data to a polytriangle object. These polytriangle strips are kept
in an array in the order in which they were added: the first polytriangle is in-
dex 0, the second is index 1, etc. This routine adds uv data for a single polytri-
angle strip. The index of the polytriangle strip is the variable i. This
polytriangle strip should have n vertices. The alloc parameter is GEOM_-
DONT_COPY_DATA if the data has been allocated using the malloc(3C)
routine, and has not been freed by the application. It should be GEOM_-
COPY_DATA otherwise.

GEOMadd_uvs

GEOMadd_uvs(obj, uvs, n, alloc)
GEOMobj *obj;
float *uvs;
int n;
int alloc;

This routine adds the uv data to an object of type GEOM_POLYHEDRON, or
GEOM_MESH. n should specify the number of vertices in the object. The al-
loc parameter is GEOM_DONT_COPY_DATA if the data has been allocated
using the malloc(3C) routine, and has not been freed by the application. It
should be GEOM_COPY_DATA otherwise.

GEOMcreate_mesh_uvs

GEOMcreate_mesh_uvs(obj, umin, vmin, umax, vmax)
GEOMobj *obj;
double umin, vmin, umax, vmax;

This routine creates uv data for a mesh object such that the 0,0 vertex in the
mesh will have u=0, v=0, and the n,m vertex in the mesh will have u=1, v=1. It
is an error to use this routine with an object that is not of type GEOM_MESH.

Object Vertex Transparency Routines

GEOMETRY LIBRARY G-31

GEOMdestroy_uvs

GEOMdestroy_uvs(obj)
GEOMobj *obj;

This routine takes an object that has uv data for each vertex and turns it into
an object that doesn’t have uv data for each vertex.

Object Vertex Transparency Routines

GEOMadd_vertex_trans

GEOMadd_vertex_trans(name, vtrans, n, alloc)
GEOMobj *name;
float *vtrans;
int n, alloc;

This routine adds vertex transparency values to a geometry object of type
GEOM_MESH and GEOM_POLYHEDRON. This routine should not be
used with objects of type: GEOM_SPHERE, GEOM_LABEL and GEOM_-
POLYTRI. Vertex transparency values, specified by the argument vtrans
should be floating point values in the range 0.0-1.0. The value 0.0 will produce
a completely opaque surface and the value 1.0 will produce an transparent
object. The parameter n corresponds to the number of floating point values
supplied with this call. This number should correspond to the number of ver-
tices in the object. The alloc flag can be either the value GEOM_COPY_DATA,
or the value GEOM_DONT_COPY_DATA. The flag GEOM_DONT_-
COPY_DATA should only be used by C applications that have allocated the
data using the malloc utility. If GEOM_DONT_COPY_DATA is used, the user
should not free the data This will be taken care of by GEOM when the object
itself is destroyed. If this is not the case, the user should use the flag GEOM_-
COPY_DATA and is then responsible for the maintenance of this storage.

GEOMadd_polytriangle_vertex_trans

GEOMadd_polytriangle_vertex_trans(name, vtrans, i, n, alloc)
GEOMobj *name;
float *vtrans;
int i, n, alloc;

This routine adds vertex transparency values to a geometry object of type
GEOM_POLYTRI. This routine should not be used with objects of type:
GEOM_MESH, GEOM_POLYHEDRON, GEOM_SPHERE, and GEOM_-
LABEL.

Object File Utilities

G-32 GEOMETRY LIBRARY

Vertex transparency values, specified by the argument vtrans should be float-
ing point values in the range 0.0-1.0. The value 0.0 will produce a completely
opaque surface and the range 1.0 will produce an transparent object. The pa-
rameter n corresponds to the number of floating point values supplied with
this call which should equal the number of vertices contained in the individu-
al polytriangle strip.

The parameter i specifies which polytriangle these vertex colors should be as-
sociated with. Polytriangles are numbered in the order in which they are add-
ed to the polytriangle object with 0 being the first triangle strip. The alloc flag
can be either the value GEOM_COPY_DATA, or the value GEOM_DONT_-
COPY_DATA. The flag GEOM_DONT_COPY_DATA should only be used
by C applications that have allocated the data using the malloc utility. If
GEOM_DONT_COPY_DATA is used, the user should not free the data. This
will be taken care of by GEOM when the object itself is destroyed. If this is not
the case, the user should use the flag GEOM_COPY_DATA and is then re-
sponsible for the maintenance of this storage.

Object File Utilities

Prior to writing data to files in most implementations, each platform deter-
mines which format (e.g., GEOM_POLYTRI or GEOM_POLYHEDRON) is
most efficient for that platform and automatically converts the data to this
format.

GEOMread_obj

GEOMobj *
GEOMread_obj(fd, flags)
int fd;
int flags;

Performs a read operation on the file descriptor given and interprets the data
it finds as a geom object. Data can be stripped off by specifying the GEOM_-
NORMALS flag (to strip off the normals), the GEOM_VCOLORS flag (to
strip of the colors), or the OR of these values (to strip off normals and colors).
A flags value of 0 means leave the data intact.

GEOMread_text

GEOMobj *
GEOMread_text(fp, flags)
FILE *fp;
int flags;

This routine reads the text GEOM file from the file pointer fp. Normally this
routine is used on a file that was previously output from the routine GEOM-

Object Debugging Facilities

GEOMETRY LIBRARY G-33

write_text. The flags argument can be used to strip off the normals or colors in
the object by supplying the GEOM_NORMALS or GEOM_VCOLORS argu-
ments. Normally this parameter is 0.

GEOMwrite_obj

GEOMwrite_obj(obj, fd, flags)
GEOMobj *obj;
int fd;
int flags;

Writes a geom object to a file. The fd parameter is a file descriptor representing
the file or device to write to. Data can be stripped off by specifying the
GEOM_NORMALS flag (to strip off the normals), the GEOM_VCOLORS
flag (to strip of the colors), or the OR of these values (to strip off normals and
colors). A flags value of 0 means leave the data intact.

GEOMwrite_text

GEOMwrite_text(obj, fp, flags)
GEOMobj *obj;
FILE *fp;
int flags;

This routine writes an ASCII version of the geom object specified to the
stream fp. This routine is implemented for all geom object types and is useful
for debugging or transporting geom data to different architectures.

Object Debugging Facilities

GEOMcheck_obj

GEOMcheck_obj(name, flags, func)
GEOMobj *name;
int flags;
int (*func)();

This routine verifies that the geom object that you supply is a valid geometry
object. It ensures that your object contains:

• zero or a positive number of vertices.
• the same number of vertices, normals, colors etc.
• no "not-a-number" floating point values as produced in some undefined

floating point operations.
• color values that are within the 0.0-1.0 range.

AVS Module Interface Routines

G-34 GEOMETRY LIBRARY

• extent minimum is less than extent maximum.
• polyhedron objects have no indices that are out of range of the number of

vertices.

When this routine encounters an error, it will supply a reasonably detailed
message indicating the nature of the error. If the func argument is passed in
with a NULL value, this message will be sent to "standard error" of the calling
process. Otherwise, the function pointer func will be called with a NULL ter-
minated error message as the first argument:

(*func)(error_message)
char *error_message;

The flags argument is currently not used and should be set to 0.

This routine will be called automatically every time that each geometry object
is either read from or written to a file, or passed as an input or output from a
module when the environment variable AVS_GEOM_VERIFY is set in the
shell before either AVS or the geometry filter is executed. You can do this as
follows in the C-shell:

 setenv AVS_GEOM_VERIFY
 ./avs

Or in the Bourne shell:

AVS_GEOM_VERIFY=1
export AVS_GEOM_VERIFY

AVS Module Interface Routines

Module interface routines allow you to create, modify, and destroy edit lists.

Edit Lists

The data type used by AVS modules that handle geometries is an edit list. The
AVS data type for an edit list is GEOMedit_list. An edit list is an arbitrarily
long list of changes to be applied to a scene. Each change pertains to a partic-
ular object of type GEOMobj or to a light source. Changes are made in the or-
der specified in the edit list.

AVS allows a user module to create edit lists as outputs; AVS does not support
using them as inputs. A C language module computation routine declares an
argument representing an input port or parameter as GEOMedit_list and an
argument representing an output port as GEOMedit_list * (note the single as-
terisk).

Geometry output is typically used as input to a geometry renderer module
such as the Geometry Viewer.

AVS Module Interface Routines

GEOMETRY LIBRARY G-35

Each object or light is referred to by a name which is an ASCII string. Any ob-
ject that doesn’t already exist is created the first time an attempt to change
that particular object is made. By default, an object name is modified by the
port through which it is communicated. This prevents two different modules
from modifying each other’s objects. For example, two "plate" modules
would each try to modify the data for the object named "plate". Since the
name is modified by the port, the first plate module modifies plate.0, and the
second modifies plate.1. When it is desirable for a module to use the absolute
name of an object, it can precede the object name by a % character (e.g.,
"%plate").

AVS has routines that allow a module to change several properties of an ob-
ject in an edit list:

• The geometric data defining the object
• Surface or line color
• Render mode (Gouraud, Phong, wireframe, etc.)
• Parent (the name of the parent object)
• Texture mapping
• Material properties
• Transformation

The name of each light source in an edit list is a string of the form "lightn",
where n is an integer from 1 through 16.

Certain edit list commands take the name of an object or camera/view as an
argument. This camera name can be one of two forms either: "cameran" where
n is an integer ranging between 1 and the number of cameras defined for the
current scene, or the camera name can refer to the title of the particular cam-
era.

The value n in the "cameran" scheme is defined by the order in which the
cameras are created. Using n = 1 refers to first camera created for the scene.
Note how this way of naming cameras changes when a camera is deleted
from the scene.

The camera title refers to a particular camera. The name of a particular camera
will not change when another camera is deleted. The title of a camera can be
specified using the Geometry Viewer CLI when the camera is created. Other-
wise, the camera name follows the scheme: "Camera m" where m is an integer,
starting at 0, that increases each time that a new camera is created. The title in-
dex m is different from the previous naming index n only when a camera is
deleted.

Each time a module is invoked, it should start with an empty edit list. It plac-
es into the edit list changes that it wants to be made for this invocation. In cre-
ating and using edit lists, geometry objects, and light sources, a module uses
routines in the geom library. A module typically uses the following steps in
preparing an edit list for output:

AVS Module Interface Routines

G-36 GEOMETRY LIBRARY

• Initialize the edit list, using GEOMinit_edit_list. This creates a new list
or empties an existing list.

• Create and modify geometry objects or lights sources, using routines in
the geom library.

• Modify the edit list, using routines whose names begin with GEOMedit
in C (such as GEOMedit_geometry).

Coroutine module should use AVScorout_output to output the list.

A module must deallocate an existing edit list before reusing the list. For a
subroutine module, the edit list passed to the module as an output argument
is the edit list the module created on its last execution. The module must deal-
locate this list at the start of each invocation of the module, normally by call-
ing the GEOMinit_edit_list routine before modifying the list. Coroutine
modules can use GEOMinit_edit_list to deallocate/initialize a list after call-
ing AVScorout_output.

There is also a GEOMdestroy_edit_list call. GEOMdestroy_edit_list de-
stroys the edit list but does not create a new one. Once called, there is no long-
er a valid edit list to use the various GEOMedit... calls with. Hence, you can
not call both GEOMdestroy_edit_list and GEOMinit_edit_list with the same
pointer. You should only use GEOMdestroy_edit_list from within a corou-
tine if you know that you will not be doing any more geometry outputs.

Object Transformations

Some modules writers require detailed knowledge of how the transformation
matrices of objects is maintained. This section describes this in detail and as-
sumes significant knowledge of how computer graphics transformations are
traditionally done.

Each object as a 4x4 homogenous transformation matrix and a 3x1 position
vector that describes the current position and orientation of the object. The
4x4 matrix is treated in C as a 4x4 array of floats: e.g. float matrix[4][4]; and in
FORTRAN as: REAL*4 matrix(4,4). In C, the translation component of this
matrix is: X = matrix[3][0], Y = matrix[3][1], Z = matrix[3][2] and in FOR-
TRAN it is: X = matrix(1,4), Y = matrix(2,4), Z = matrix(3,4).

At the point at which the matrix is applied to the object, the 3x1 position vec-
tor is added onto the matrix. It is kept separate so that we can define a fixed
object center. The first transformation that we apply to the 4x4 matrix is a
translate of the center of the object to the origin. After all of the rotations and
scales we then apply a translation from the object center back to the origin.
Then we tack on to the end the translation to the position of the object.

The vertex transformation can be depicted as follows:

Verts * [Trans(-center)] * [Rotates + Scales] * [Trans(center)] + Position

AVS Module Interface Routines

GEOMETRY LIBRARY G-37

In general, the module writer does not have to be aware of this level detail.
Note that if you use the routine GEOMedit_set_matrix for an object, though,
that you are replacing the transformations that define the object center and
therefore negate any center that you might have set.

Each child object is transformed by the complete matrix of its parent object.
This occurs for each object all the way up to the top-level object. After its
transformation has been applied, we are now in the "world coordinate" sys-
tem. The world coordinate system is where light sources are defined.

Light Transformations

Light sources have a simpler transformation scheme than objects. They cur-
rently do not have a center of rotation, just a 4x4 transformation matrix and a
position. The resulting position of light sources is determined by applying the
resulting complete transformation of the light by the default location of the
light source.

This is handled slightly differently for each different type of light source:

• ambient lights are not transformed at all
• directional lights are transformed as a direction vector with a homoge-

nous coordinate of zero. Effectively this means that translations are ig-
nored. The default direction vector is pointing into the scene: (0, 0, -1)

• point light sources are by default placed at: (0, 0, 1). This point is trans-
formed regularly by the transformation matrix of the light.

• spot light sources are by default such that the position of the light source
is at (0, 0, 0). This position is transformed regularly by the transformation
matrix. The spot light also has a direction vector which has a default of (0,
0, -1) and this is transformed as directional light sources are.

Camera Transformations

The camera position is defined by a single 4x4 matrix and a 3x1 position vec-
tor that defines the cameras orientation and position and a separate 4x4 ma-
trix that defines the projection for the camera matrix.

The resulting viewing pipeline is depicted as follows:

(Verts * [Obj Matrices] * [View Orientation] + Position) * [Projection]

The main utility for keeping the projection in a separate matrix is because it
prevents us from applying any transformations after the perspective transfor-
mation.

In the Geometry Viewer, when you turn on and off the Perspective and Front/
Back Clipping buttons, you are modifying the default projection matrix.
When you scale or rotate the camera, you are post-concatenating onto the

AVS Module Interface Routines

G-38 GEOMETRY LIBRARY

"View Orientation" matrix. Using the GEOM routine GEOMedit_set_matrix
with a camera sets the "View Orientation" matrix. Using the GEOM routine
edit list Routines

GEOMdestroy_edit_list

GEOMdestroy_edit_list(list)
GEOMedit_list list;

Destroys an existing edit list.

GEOMedit_backface

GEOMedit_backface(list, name, mode)
GEOMedit_list list;
char *name;
int mode;

This routine can be used to change the named object’s backface properties.
Backface properties determine how polygons that are facing away from the
viewer are drawn. Vertices that are oriented in a clockwise fashion are back-
facing. This is equivalent to the "right-hand" rule of orienting polygons.

Possible values for the mode argument are: GEOM_BACKFACE_NORMAL,
GEOM_BACKFACE_CULL_BACK, GEOM_BACKFACE_CULL_FRONT,
GEOM_BACKFACE_FLIP, GEOM_BACKFACE_INHERIT.

GEOM_BACKFACE_NORMAL
This mode causes the object’s backfaces to be drawn in the normal back-
face mode for the specific renderer. Some renderers "flip the normals"
when a polygon is backfacing so that the backside of the polygon is lit in
the same way as the front face. Other renderers light the backface of the
polygon with the ambient intensity as the normal rendering mode.

GEOM_BACKFACE_FLIP
Some renderers support both the mode where backfaces are lit and the
mode where backfaces are colored with only the ambient intensity. If this
is the case, the normal mode will be where backfaces are lit with ambient
intensity. In this case, the GEOM_BACKFACE_FLIP mode can be used to
cause the normals to be flipped and the backfaces to lit like front faces.
Using bi-directional light sources is a partial work around for systems
that do not support the GEOM_BACKFACE_FLIP rendering attribute.

GEOM_BACKFACE_CULL_BACK
This backface mode causes the renderer to not draw polygons that are
backfacing.

AVS Module Interface Routines

GEOMETRY LIBRARY G-39

GEOM_BACKFACE_CULL_FRONT
Some renderers support this rendering mode in which front faces are not
drawn. This mode is of limited utility and is only useful when the render-
er does not accurately determine front versus backfaces.

GEOM_BACKFACE_INHERIT
This mode causes the specified object to inherit the backface property of
its parent object. This is the default backface property for a newly created
object.

GEOMedit_camera_orient

GEOMedit_camera_orient(list, name, flags, scale, at, up, from)
GEOMedit_list list;
char *name;
int flags;
float scale, at[3], up[3], from[3];

This routine sets the camera orientation of the camera specified by name. See
the section "Edit Lists" for information on how to specify camera names. The
flags argument contains the or’d combination of the values: GEOM_CAMER-
A_SCALE, GEOM_CAMERA_AT, GEOM_CAMERA_UP, GEOM_CAM-
ERA_FROM. If you use one of the above flags, the corresponding argument
will be used to set the camera orientation. If a flag is not specified, then the
corresponding argument you supply will be ignored by the routine. You
must, however, supply a valid floating point number or array of floating
point numbers in its place. Normally, you can use the value GEOM_CAMER-
A_ALL to indicate that all of the values should be applied to the camera.

See the section in the "Geometry Viewer Subsystem" chapter of the User’s
Guide on "Camera Options" to determine the precise interpretation of the
values: scale, at, up, and from.

GEOMedit_camera_orient modifies the same transformation as the rou-
tine GEOMedit_set_matrix when GEOMedit_set_matrix is used with a
camera name argument.

GEOMedit_camera_params

GEOMedit_camera_params(list, name, options, val)
GEOMedit_list list;
char *name;
int options, val;

This routine modifies camera parameters for the camera specified by the name
parameter. (See the section on "Edit Lists" for more indicates which parame-
ters values are to be modified. The val parameter indicates whether to turn the
parameters on or off. Possible values for the options parameter are:

AVS Module Interface Routines

G-40 GEOMETRY LIBRARY

GEOM_CAMERA_DEPTH_CUE
GEOM_CAMERA_ZBUFFER
GEOM_CAMERA_SORT_TRANSPARENCY
GEOM_CAMERA_GLOBAL_ANTIALIAS
GEOM_CAMERA_PERSPECTIVE
GEOM_CAMERA_AXES
GEOM_CAMERA_FREEZE
GEOM_CAMERA_SHOW
GEOM_CAMERA_DOUBLE_BUFFER
GEOM_CAMERA_SHADOWS

The val parameter is a 1 to turn the specified parameters on, and a 0 to turn
the specified parameters off.

GEOMedit_camera_project

GEOMedit_camera_project(list, name, flags, front, back, fov, wsize)
GEOMedit_list list;
char *name;
int flags;
float front, back, fov, wsize;

This routine sets the camera projection matrix of the camera specified by
name. See the section "Edit Lists" for information on how to specify camera
names. The flags argument can contain the or’d combination of the values:
GEOM_CAMERA_FRONT, GEOM_CAMERA_BACK, GEOM_CAMER-
A_WSIZE, GEOM_CAMERA_FOV. If you use one of the above flags, the
corresponding argument will be used to set the camera orientations. If a flag
is not specified, then the corresponding argument you supply will be ignored.
You must, however, pass a valid floating point number in its place. Normally
you can use the value: GEOM_CAMERA_ALL to indicate that all of the val-
ues should be applied to the camera.

See the "Camera Options" section in the "Geometry Viewer Subsystem" chap-
ter of the User’s Guide for an explanation of the precise interpretation of the
values: front, back, fov, and wsize.

This routine modifies the same transformation as the routine: GEOMedit_-
projection.

GEOMedit_center

GEOMedit_center(list, name, center)
GEOMedit_list list;
char *name;
float center[3];

AVS Module Interface Routines

GEOMETRY LIBRARY G-41

Sets the center of rotation of the object specified. This does not currently work
for lights. The center of rotation is defined before the object’s transformation
matrix is applied. It should, therefore, be defined in the same coordinate sys-
tem as the vertices of the object.

GEOMedit_clip_plane

GEOMedit_clip_plane(edit_list, name, clip, state)
GEOMedit_list list;
char *name;
char *clip;
int state;

This routine can be used to specify arbitrary clip planes from a module. Arbi-
trary clip planes cause geometric objects to be clipped by a plane that has an
arbitrary position and orientation. This is implemented using a geometric ob-
ject to represent the clip plane. We call this the "clip object." The clip object’s
transformation is then used to specify the position and orientation of the clip
plane. The default position of the clip plane is (0,0,0) and the initial normal to
the clip plane is the Y axis. Objects are "inside" the clip plane if they are in the
positive direction of the Y axis. The position and orientation are transformed
by the clip object’s current transformation matrix.

An object can be clipped either to the "inside" or "outside" of the clip object. If
an object is clipped to the "inside" and the clip object has an identity transfor-
mation, only the geometry that has a positive Y component will be drawn. If
an object is clipped to the "outside", only geometry with a negative Y compo-
nent will be drawn.

The GEOMedit_clip_plane defines the object with name clip to be a clip ob-
ject for the object named name. If the object named clip does not exist, a new
object is created as an immediate child of the top object. clip can be any exist-
ing object. All that is used from the clip object is its transformation matrix to
define a clip plane that will clip name.

The clip state of an object, defined by the state parameter, can be set to one of
the following values:

GEOM_CLIP_INSIDE
GEOM_CLIP_OUTSIDE
GEOM_CLIP_IGNORE
GEOM_CLIP_INHERIT

The default clip state for a given clip plane object and object to be clipped is
GEOM_CLIP_INHERIT. Here the clip state is inherited by all descendants of
name that do not specify a different state for the same clip object. For example,
if you specify that the object "bar" should clip the "top" object to the inside
(with state GEOM_CLIP_INSIDE), all descendants of "top" (including "bar"
itself) will be clipped by the clip plane defined by the current transformation
of "bar". If you then specify that "bar" should not be clipped by "bar" (with

AVS Module Interface Routines

G-42 GEOMETRY LIBRARY

state GEOM_CLIP_IGNORE), all descendants of "top" except for "bar" and
its descendants will be clipped.

An arbitrary number of clip planes may be defined, but different rendering
implementations may provide a different number of actual clip planes.

This feature is only supported on some renderers. It can always be accessed
through the software renderer if your particular hardware renderer does not
support it.

GEOMedit_color

GEOMedit_color(list, name, color)
GEOMedit_list list;
char *name;
float color[3];

Sets the color of the object named name. The color argument is an RGB triple,
each float in the range 0.0 to 1.0. If the name argument is "cameran", where n is
an integer ranging from 1 to the number of views, this routine sets the back-
ground color for the view specified by the index n. If the name argument is
"lightn", where n is an integer ranging from 1 to the number of light sources,
this routine sets the light source color for the light source specified by the in-
dex n.

GEOMedit_concat_matrix

GEOMedit_concat_matrix(list, name, matrix)
GEOMedit_list list;
char *name;
float matrix[4][4];

Post-concatenates matrix to the matrix of the object named name. If the name
argument is "cameran", where n is an integer ranging from 1 to the number of
views, this routine post-concatenates matrix to the camera matrix for the view
specified by the index n. If the name argument is "lightn", where n is an integer
ranging from 1 to the number of light sources, this routine post-concatenates
matrix to the light matrix for the light source specified by the index n.

GEOMedit_depth_cue_params

GEOMedit_depth_cue_params(list, name, flags, depth_front, depth_back,
depth_scale)
GEOMedit_list list;
char *name;
int flags;
float depth_front, depth_back, depth_scale;

AVS Module Interface Routines

GEOMETRY LIBRARY G-43

This routine modifies the depth cueing attributes for the camera defined by
name. See the "Edit Lists" section for more information on how to specfiy cam-
era names. The flags argument is an or’d combination of the following con-
stants: GEOM_DEPTH_CUE_FRONT, GEOM_DEPTH_CUE_BACK, and
GEOM_DEPTH_CUE_SCALE. If you use one of the above constants, the cor-
responding attribute will be modified. Alternatively, you can specify the con-
stant GEOM_DEPTH_CUE_ALL to modify depth_front, depth_back, and
depth_scale parameters.

See the "Camera Options" section of the "Geometry Viewer Subsystem" chap-
ter in the User’s Guide for the precise interpretation of the depth cue parame-
ters: depth_front, depth_back, and depth_scale,

GEOMedit_geometry

GEOMedit_geometry(list, name, obj)
GEOMedit_list list;
char *name;
GEOMobj *obj;

Specifies a change in the geometry for an object named name in the edit list
list. The first edit geometry entry in an edit list for a specific object replaces all
existing geometry for this object with the geometry specified by obj. All other
edit geometry entries for the object named name simply add additional geom-
etry to that object.

Entering geometry into an edit list does not copy the geometric description of
the object. Instead, it creates a reference to the GEOMobj specified in the call
to GEOMedit_geometry. This means that a module must take care not to
modify the GEOMobj until the edit list has been destroyed. The module must
also destroy its own reference to the GEOMobj, using GEOMdestroy_obj,
when it is finished with the geometry. For most purposes, a call to GEOMde-
stroy_obj should be made after every call to GEOMedit_geometry.

GEOMedit_parent

GEOMedit_parent(list, name, parent)
GEOMedit_list list;
char *name;
char *parent;

Sets the parent of the object named name to be the object named parent. The
top level object is referred to by a "NULL" name entry.

AVS Module Interface Routines

G-44 GEOMETRY LIBRARY

GEOMedit_light

GEOMedit_light(list, name, type, status)
GEOMedit_list list;
char *name, *type;
int status;

Changes the light source representation for a light source. The light source
name is "lightn", where n is an integer from 1 through 16. The type argument is
one of "spot", "directional", "point", or "bi-directional". If the status argument
is 1, the light source is on; if the status argument is 0, the light source is off.

GEOMedit_position

GEOMedit_position(list, name, position)
GEOMedit_list list;
char *name;
float position[3];

Sets the position vector for the object specified. Positions are always applied
after the matrix that you can set with GEOMedit_set_matrix. See the section
on Geometry Viewer transformations for more information on the position.

GEOMedit_properties

GEOMedit_properties(list, name, ambient, diffuse, specular, spec_exp,
transparency, spec_col)

GEOMedit_list list;
char *name;
float ambient, diffuse, specular, spec_exp;
float transparency, spec_col[3];

Changes the material properties of the object named name. The properties are
ambient, diffuse, and specular reflection coefficients; specular exponent;
transparency; and specular color (as an RGB triple). Values to be changed are
in the range 0.0 to 1.0 except for the specular exponent, which is greater than
or equal to 1.0. If any value is -1.0, that property is not changed.

GEOMedit_projection

GEOMedit_projection(list, name, projection)
GEOMedit_list list;
char *name;
float projection[4][4];

AVS Module Interface Routines

GEOMETRY LIBRARY G-45

Sets the projection matrix for a particular camera. The argument "name" is as
described above under "Edit Lists". See the section on Geometry Viewer trans-
formations in this chapter for more information on how the projection is ap-
plied.

GEOMedit_render_mode

GEOMedit_render_mode(list, name, mode)
GEOMedit_list list;
char *name;
char *mode;

Sets the render mode of the object named name to one of "gouraud", "phong",
"lines", "smooth_lines", "no_light", "inherit", or "flat".

GEOMedit_selection_mode

GEOMedit_selection_mode(list,name,mode,flags)
GEOMedit_list list;
char *name;
char *mode;
int flags;

This routine sets the selection mode of the object given. It can be used for two
major purposes: 1) to make an object "unpickable" by the user, 2) to allow an
upstream module to receive pick information when this object is selected.

Values for the "mode" argument are:

notify
Notify the calling module when the object "name" is selected by the user.
If the object is subsequently selected, and the module has an input port
connected to the render geometry output port named: "Geom Info", the
module will be executed with some information pertaining to the specif-
ics of the selection.

normal
Restore the selection mode of the object to normal. No module will re-
ceive selection information from the object.

ignore
Do not allow the user to pick the object specified. Any attempt to pick the
object will result in a pick of the parent object instead.

The flags argument is only relevant when the notify mode is set. It should
contain one or more of the following flags: BUTTON_DOWN, BUTTON_UP,
BUTTON_MOVING. The definition for these flags is contained in the in-
clude file <avs/udata.h>.

AVS Module Interface Routines

G-46 GEOMETRY LIBRARY

The flags field indicates for what button states information should be redirect-
ed to the module.

GEOMedit_set_matrix

GEOMedit_set_matrix(list, name, matrix)
GEOMedit_list list;
char *name;
float matrix[4][4];

Sets the transformation matrix for the object named name to the matrix matrix.
If the name argument is "cameran", where n is an integer ranging from 1 to the
number of views, this routine sets the camera matrix for the view specified by
the index n. If the name argument is "lightn", where n is an integer ranging
from 1 to the number of light sources, this routine sets the light matrix for the
light source specified by the index n.

GEOMedit_subdivision

GEOMedit_subdivision(list, name, subdiv)
GEOMedit_list list;
char *name;
int subdiv;

This routine sets the sphere subdivision object attribute of the object specified
by name to the value subdiv. The subdiv parameter determines the number of
polygons used to tesselate a sphere on systems that cannot render spheres di-
rectly. A subdivision parameter of 1 draws spheres as tetrahedra. A parameter
of 2 subdivides each triangle in the tetrahedra into three triangles. This pro-
cess occurs so that with each increment in the subdivision parameter, each tri-
angle in the previous subdivision level is subdivided into three new triangles.

GEOMedit_texture

GEOMedit_texture(list, name, texture)
GEOMedit_list list;
char *name;
char *texture;

This routine sets the texture of a particular object. The texture argument can
be the keyword "dynamic" or a filename containing the path name of a texture
file. The keyword "dynamic" tells the module to set the texture that is present
on the "Texture Input" port of the geometry viewer module. If there is cur-
rently no data present on that port, setting the texture to "dynamic" will be ig-
nored.

AVS Module Interface Routines

GEOMETRY LIBRARY G-47

If a filename is specified, the Geometry Viewer will read in this file and apply
the texture contained in this file to the object specified. The filename must be
accessible from the host that the geometry viewer module is running on. The
format of the file is the same as the file format for reading in textures from the
Geometry Viewer. See the User’s Guide documentation on texture mapping in
the "Geometry Viewer Subsystem" chapter for more details.

On systems that do not supported texture mapping, this attribute will be ig-
nored.

GEOMedit_texture_options

GEOMedit_texture_options(list, name, options, val)
GEOMedit_list list;
char *name;
int options, val;

This routine is used to change the method by which a particular named object
is texture mapped by turning on and off particular texture mapping options.
The object whose texture options are to be modified is referred to by the name
argument. The options argument specifies which options are to be changed.
Possible values are: GEOM_TEXTURE_FILTER, GEOM_TEXTURE_AL-
PHA, and GEOM_TEXTURE_VOLUME. The val argument specifies wheth-
er or not the particular flag is to be turned on or off. A value of 1 specifies that
the flag is to be turned on, a 0 specifies that the value is to be turned off. The
GEOM_TEXTURE_FILTER argument, when turned on, indicates that the ob-
ject, when texture mapped, should be rendered with filtered (i.e., antialiased)
textures. The GEOM_TEXTURE_ALPHA argument when enabled specifies
that the alpha channel of the texture map should be used for opacity values
when rendering the texture mapped object. An opacity of 0 means that the ob-
ject is totally transparent, an opacity of 255 means that pixel is totally opaque.
The GEOM_TEXTURE_VOLUME specifies that a 3D texture should be treat-
ed as a volume primitive for the object. In the case of volume rendering, the
extents of the object to be volume renderered are defined by the "window" of
the object as defined by the GEOMedit_window routine.

GEOMedit_transform_mode

GEOMedit_transform_mode(list,name,mode,flags)
GEOMedit_list list;
char *name;
char *mode;
int flags;

This routine sets the transformation mode of the object with the given name.
It can be used for two purposes: 1) to prevent the user from accidentally trans-
forming an object which should always be defined in the coordinate system of

AVS Module Interface Routines

G-48 GEOMETRY LIBRARY

its parent and 2) to allow an upstream module to receive notification when
the object is transformed by the user.

Values for the "mode" argument are:

normal
Restore the transform mode to the default or normal mode. In this case,
the "flags" argument is ignored.

parent
Any transformations that are applied to this object are redirected to the
parent object. This mode can be used to prevent the user from transform-
ing this object relative to its parent object. In this case, the "flags" argu-
ment is ignored.

notify
Notify the calling module when the object "name" is transformed by the
user. If the object is subsequently transformed, and the module has an in-
put port connected to the render geometry output port named: "Trans-
form Info", the module will be executed with a variety of information
including the transformation matrix of the object.

redirect
This mode is similar to the "notify" mode above. There are only two dif-
ferences: 1) the transformation matrix that is accumulated for the object
and passed to the module is not used in transforming the geometry of the
object, 2) since the Geometry Viewer is not going to directly transform the
object when the transformation matrix changes, it does not refresh the
display. This mode is useful when the module is always going to regener-
ate the geometry of the object each time that the transformation matrix
changes. Note that since the identity matrix will be used when rendering
the object always, that the module will have to transform any vertices
generated itself.

The flags argument is only relevant when the "notify" or "redirect" transform
mode is set. It should contain one or more of the following flags: BUTTON_-
DOWN, BUTTON_UP, BUTTON_MOVING. The definition for these flags
is contained in the include file <avs/udata.h>.

The flags field indicates for what button states information should be redirect-
ed to the module. Transformations that are not caused by mouse movement
use the state BUTTON_UP.

See the "Upstream Data" section of the "Advanced Topics" chapter for more
information on using the transform mode from a module.

GEOMedit_visibility

GEOMedit_visibility(list, name, visibility)
GEOMedit_list list;

AVS Module Interface Routines

GEOMETRY LIBRARY G-49

char *name;
int visibility;

Sets the visibility of the object named name. If the visibility argument is 1, the
visibility is set to on; if the visibility argument is 0, the visibility is set to off; if
the visibility argument is -1, the object is deleted.

GEOMedit_window

GEOMedit_window(list,name,window)
GEOMedit_list list;
char *name;
float window[6];

This routine allows the user to specify the "window" of interested for an ob-
ject. It allows a module to cause the Geometry Viewer to "auto-normalize"
and "auto-center" the top level object when the window changes. By default,
the Geometry Viewer will only display geometry that is in the range -5 to 5 in
X and Y. Either you must scale and translate your data to lie in this range or
you must change the transformation matrix of either the object, a parent of the
object or the camera so that your geometry will become viewable.

The GEOMedit_window routine implements a mechanism whereby the ge-
ometry viewer will handle this scale and translate automatically. It does so in
a way that allows multiple geometry producing modules to cooperatively de-
cide on a global scale/translate that displays all geometries that are produced.
It also keeps that data in the natural coordinate system in which the data is
defined. This allows the Geometry Viewer to display data sets that are de-
fined in the same physical coordinate system simultaneously without distort-
ing their interrelationships.

The window that is specified by the module contains an array of 6 floating
point numbers in the order: minimum X, maximum X, minimum Y, maxi-
mum Y, minimum Z, maximum Z. These values define a bounding box rela-
tive to the top level object (i.e. not transformed by the object’s own
transformation). This box should contain the range of the coordinate system
of interest. For example, if your vertices lie within 0-100 in X, Y and Z, your
window should be: 0, 100, 0, 100, 0, 100. The window should include any
transformations that are going to be applied to the object (not including the
top level object). For example, if your vertices are defined as above, but you
are going to scale your object down by a factor of 2, the window should be set
to : 0, 50, 0, 50, 0, 50.

The window is associated with a particular object. While that object still exists
in the scene and it still has a window defined for it, it will continue to be used
to determine the scale and position of the top level object.

The Geometry Viewer maintains a global "window" that includes the extent of
all windows currently defined in the scene. Whenever an "edit window" re-
quest is received, the Geometry Viewer recomputes the new window by com-

FORTRAN Binding

G-50 GEOMETRY LIBRARY

puting a box that surrounds all of the windows currently defined. If the new
global window is different from the old global window, the scene is scaled
and translated so that the new global window will lie inside of the viewable
region of the screen. The rotation/scale center of the top level object is also set
to be the center point of the global window.

If the window does not change between subsequent "edit window" requests,
the top level object’s transformation is left unchanged.

GEOMinit_edit_list

GEOMedit_list
GEOMinit_edit_list(list)
GEOMedit_list list;

Initializes an existing edit list (removes all existing entries). If list is GEOM_-
NULL, it returns a new empty edit list.

FORTRAN Binding

All of the geom routines also have a FORTRAN calling sequence. To call a
routine from a FORTRAN program, you must use a slightly different routine
name and different data declarations:

Routine Name:
Replace the GEOM prefix with geom_ (note the underscore).

Data Declarations:
The following table shows how to convert C-language data declarations
into FORTRAN declarations:

Table G-2 Converting C Language Data Declarations to FORTRAN

C Declaration FORTRAN
Declaration

int var INTEGER
float *var REAL
unsigned int var
unsigned int *var

float var REAL
float *var REAL

double var REAL
double *var REAL

GEOMobj *var INTEGER
GEOMobj **var INTEGER

GEOMedit_list var INTEGER
GEOMedit_list *var INTEGER

Files

GEOMETRY LIBRARY G-51

Many routines allow a NULL value for some arguments. In all such cases, the
constant GEOM_NULL must be used to represent a NULL value.

Files

/usr/avs/include/geom.h C language header file
/usr/avs/include/geom.inc FORTRAN header file
/usr/avs/lib/libgeom.a geom library

Files

G-52 GEOMETRY LIBRARY

THE F77_BINDING UTILITY PROGRAM H-1

APPENDIX H THE F77_BINDING
UTILITY
PROGRAM

Introduction

AVS includes a utility program, f77_binding, that generates inter-language
interface functions. Such functions allow code written in C to call subpro-
grams written in Fortran, and vice-versa. Using f77_binding makes it easier
to create code that will port easily to different platforms.

f77_binding can also be used to generate Fortran include files that provide
constant and function declarations.

Inter-Language Calling Conventions

There is no standard inter-language protocol for C and Fortran-77, but there
are some commonly used conventions. The fundamental conventions to be
established are:

• Function naming rules and length restrictions.
• Matching the C pass-by-value convention to the Fortran pass-by-refer-

ence convention.
• Handling of string arguments.
• Handling of function return values.

You specify the particular conventions to be applied as command-line op-
tions to the f77_binding command, as described in the sections that follow.

Function Naming Rules

In order to reference functions across the C-Fortran language barrier, many
compilers use special naming conventions. These conventions include capi-
talization of the function name and the addition of special suffixes. For ex-
ample:

• On HP, Sun, IBM, Silicon Graphics and DEC systems, a Fortran pro-
gram that calls a C function named hello works only if there is a C func-
tion named hello_. That is, the interface function name is all lowercase
and has an underscore suffix.

Inter-Language Calling Conventions

H-2 THE F77_BINDING UTILITY PROGRAM

• On ST1500/ST3000 systems, the corresponding interface function is HEL-
LO. That is, the name is all uppercase and has no suffix.

The -case and -suffix options to f77_binding allow you to specify these (and
other) naming conventions. You can generate interface functions that allow
Fortran functions to call C functions (-result f77_to_c), and vice-versa (-result
c_to_f77). The file /usr/avs/include/Makeinclude uses the macro F77_BIND_-
FLAGS to specify the appropriate conventions for each AVS implementation.
This file should be included in your makefile.

The Fortran-77 standard does not permit names of Fortran functions to ex-
ceed 6 characters in length (although many Fortran implementations are
much more generous). f77_binding can generate a short form of a long func-
tion name (-name option), for use with strict implementations.

Matching C and Fortran Calling Conventions

C functions expect to receive an argument value; if the function needs to mod-
ify the argument, the address of the value must be passed. A Fortran subpro-
gram always expects that the address of its argument is being passed to it.
Thus, when a C function is called from a Fortran routine, it must dereference
the pointers it is being given to get their values. Similarly, a Fortran subpro-
gram called from a C function should be passed the addresses of the C argu-
ments when necessary. f77_binding handles this pointer conversion
automatically, using the argument declarations.

Handling String Arguments

A string consists of two pieces of information: a character array and a length.
Different Fortran compilers implement string passing differently. Some pass
strings as two arguments, a character array and an extra length argument
tacked onto the end of the argument list. Others pass a two word structure
that contains both a pointer to the character array and the length together in
one argument. f77_binding relies on a series of macros defined in /usr/avs/in-
clude/port.h to handle both these cases.

Handling Function Return Values

f77_binding generally handles simple scalar return values: float and int. Oth-
er return values (e.g. strings) are much less portable. In some cases, returned
string values can be handled, but this will not work across all systems and is
discouraged. See "Argument Declarations" below for more details.

Inter-Language Calling Conventions

THE F77_BINDING UTILITY PROGRAM H-3

f77_binding Function Declarations

Interface functions are produced by f77_binding based on function declara-
tions. A function declaration suitable for use as input to f77_binding is simi-
lar to an ordinary C function declaration, except that it describes the
argument types as well. It consists of a return type, a function name, and a list
of argument types. For example:

int AVSautofree_output(int);

This function declaration describes a function AVSautofree_output that re-
turns an integer and takes one integer argument. f77_binding can produce
the following interface function for use by a Fortran routine calling a C func-
tion:

int avsautofree_output_(arg0)
int *arg0;
{
 return(AVSautofree_output(*arg0));
}

Return Types

f77_binding recognizes the following return types, which use C type names:

int
INTEGER*4: Use this for returning pointer values to Fortran

c_int
Fortran subroutine call to a C function that would ordinarily return an in-
teger

float
REAL*4

double
REAL*8

void
Fortran subroutine

Function Names

A function name part of a function declaration has the following three-part
format:

optional-shortname fullname optional-suffix

Inter-Language Calling Conventions

H-4 THE F77_BINDING UTILITY PROGRAM

Note that no SPACE characters may occur within the function name — if you
use more than one part, they must be concatenated to form a single "word".

The fullname is the name of the function to be called by the interface function,
with arguments that are properly packaged.

The optional shortname is a shorter function name (six characters or fewer), for
use on systems that do not tolerate longer function names. If you include this
alternative, you must separate it from the fullname with an up-arrow (^)
character. For example:

dblchk^double_check

The optional-suffix may be either of the following:

@raw
In some cases, the standard argument packaging is inadequate and you
must write a custom interface function. The suffix @raw causes the inter-
face function to call a function named fullname_raw that expects its argu-
ments to be unmodified (not packaged). The fullname_raw function can
"manually" package or unpackage the arguments, using the string-han-
dling macros as necessary. You may want to use f77_binding without the
@raw suffix to generate a template for this function.

@f
This suffix is similar to @raw, except that the function fullname_f expects
its arguments to have already been packaged. Use this suffix when you
don’t want to call the target function directly, but want to add some inter-
mediate processing of arguments, such as adjusting argument values be-
tween languages or post-processing the return value from the target
function.

Argument Declarations

The argument declarations establish the C type of the argument and are used
to determine both the number of arguments and how they are to be handled.
Recognized types include the following:

Table H-1 Recognized C and FORTRAN Types

C type FORTRAN type Description

float REAL*4 Scalar float
float * REAL*4 array Array of floats
double REAL*8 Scalar double
int INTEGER*4 Scalar integer
int * INTEGER array Array of integers
int(*)() Integer function pointer
any* INTEGER*4 Pointer to any local data type

structure

Fortran Include Files

THE F77_BINDING UTILITY PROGRAM H-5

Other Lines

An input file to f77_binding can contain other lines besides function declara-
tions. Lines that start with "#include" are passed along directly to the output.
Comments surrounded by "/* */" are conditionally passed through to the
output, depending on the -comments option. When the output is a Fortran in-
clude file, they are automatically preceded by a comment header, "C ".

Fortran Include Files

f77_binding can generate Fortran include files from either conventional C
header files or function declaration files.

Use the -result f77_parm option to process a conventional C header file. With
this option, f77_binding converts "#define" statements into the equivalent
Fortran PARAMETER statements where possible, and also converts values as
necessary. By default, f77_binding examines all lines. To skip over a block of
lines, surround them with "#ifndef F77" ... "#endif F77". Lines to be examined
only by f77_binding can be highlighted using "#ifdef F77" ... "#endif F77".

A "#define" line in the C header file can include a special comment that speci-
fies a short name (<= 6 characters).

#define GEOM_MESH 1 /*_F77_s: GPMESH */

The comment must start with the string "_F77_s".

Use the -result f77_func option to process a function declaration file. This op-
tions allows the same input to generate both the interface functions and the
corresponding Fortran function declarations for use in an include file.

char * character*(*) Used for character string
arguments

char [] character *(*) Special case for short strings.
It allocates a static char array
in the interface function,
rather than allocating and
freeing storage with each call.
Maximum length is declared
in <avs/port.h>.

answer char * Function result is copied into
the argument

return char * Function returns a char*
(must be first argument)

Table H-1 Recognized C and FORTRAN Types

C type FORTRAN type Description

f77_binding Command-Line Syntax

H-6 THE F77_BINDING UTILITY PROGRAM

f77_binding Command-Line Syntax

The format of the f77_binding command is:

f77_binding [options] [input-file] [-o output-file]

If no input file is specified on the f77_binding command line, input is read
from standard input. If no output file is specified with the -o option, program
output is sent to standard output.

Options

The f77_binding program accepts the following command-line options.

-name short
Create interface functions with short (6-character) names.

-name long
Create interface functions with long names.

-name both
(Default) Create both long-name and short-name interface functions.

-case lower
(Default) Interface function names should be all lowercase.

-case upper
Interface function names should be all uppercase.

-comments
Include comments in the output.

+comments
(Default) Exclude comments from the output.

-external
(Default) When creating a Fortran include file, add EXTERN declarations
for all function declarations.

+external
Omit EXTERN declarations for Fortran functions when creating an in-
clude file.

-result f77_to_c
(Default) Create interface functions for use by Fortran routines calling C
functions.

Examples

THE F77_BINDING UTILITY PROGRAM H-7

-result c_to_f77
Create interface functions for use by C functions calling Fortran subpro-
grams.

-result f77_func
Produce Fortran include file function declarations.

-result f77_parm
Produce Fortran include file from C header file.

-suffix AAA
Add suffix AAA to the end of the name of each interface function.

-subst AAA BBB
Change occurrences of string AAA in the input function declarations to
string BBB in the names of the interface functions generated. You can also
use this option when generating the Fortran include file declarations ("-
result f77_func").

-o file
Write output to the specified file. File output will have an additional com-
ment added noting the original source file (unless standard input was
used).

-usage
Display usage message.

Examples

In the /usr/avs/examples directory, the qix_f module calls the C function
drand48 by declaring it in the qix_rand.h header file as:

double drand48();

and then adding the following to the Makefile:

include $(ROOT)/usr/avs/include/Makeinclude
F77_BIND = $(ROOT)/usr/avs/bin/f77_binding
qix_rand.c: qix_rand.h
 $(F77_BIND) qix_rand.h $(F77_BIND_FLAGS) -o qix_rand.c

Examples

H-8 THE F77_BINDING UTILITY PROGRAM

	Table of Contents
	Table of Tables
	Table of Figures
	Chapter 1 (AVS Overview)
	Introduction
	AVS Overview
	Modules
	Data Types
	AVS Flow Networks
	Data Flow
	Module Life Cycle
	Use of Shared Memory
	Heterogeneous Network Support
	Data Flow Diagram
	Release Compatibility
	Portability Issues
	Program Examples Online

	Chapter 2 (AVS Data Types)
	Introduction
	Bytes
	Integers
	Floating Point Numbers
	Text Strings
	Fields
	Colormaps
	Geometries
	Pixel Maps
	Unstructured Cell Data
	Molecular Data Type
	User-Defined Data Types

	Chapter 3 (AVS Modules)
	Modules
	Module Components
	Subroutines and Coroutines
	Handling Errors in Modules
	Selective Computation
	Building and Linking Modules
	Converting an Existing Application to a Module
	Debugging Modules
	Module Examples

	Chapter 4 (Advanced Topics)
	Introduction
	Memory Allocation Debugging
	Coroutine Synchronization
	Upstream Data
	Automatic Connection of Ports
	User-Defined Data
	Image Picking Data Type
	Multiple Modules in a Single Process
	Module Groups

	Chapter 5 (Command Language Interpreter)
	Introduction
	Writing CLI Scripts
	Commands
	Command Usage Notation
	Basic CLI Commands
	Network Editor Commands
	Geometry Viewer Commands
	Image Viewer Commands
	Graph Viewer Commands
	User Interface Layout Commands
	Application Commands

	Appendix A (AVS Library Routines)
	Introduction
	Routine Summary
	Routines for Module Initialization
	Routines for Module Description Functions
	Routines for Modifying and Interpreting Parameters
	Routines for Coroutine Modules
	Status Monitoring Routine
	AVS Command Language Interpreter Routine
	Routines for Selective Computation
	Routines for Creating Fields
	Field Accessor Routines
	Colormap Accessor Routines
	User Data Accessor Routines
	FORTRAN Array Accessor Routines
	FORTRAN Single Byte Accessor Routines
	Routines for Handling Errors

	Appendix B (AVS C Language Field Macros)
	Macros for Obtaining the Dimensions of a Field
	Macros for Obtaining Elements of a Scalar Data Array
	Macros for Obtaining Elements of a Vector Data Array
	Macros for Obtaining Rectilinear Coordinate Arrays
	Macros for Obtaining Coordinates for 3D Data Elements

	Appendix C (Examples of AVS Modules)
	Introduction
	A C Language Subroutine Module
	A FORTRAN Subroutine Module
	A C Language Coroutine Module

	Appendix D (On-Line Help Facility)
	Introduction
	Help Files - Format and Naming Conventions
	Integrating Your Help Files into the Help System

	Appendix E (Unstructured Cell Data Library)
	Overview
	Synopsis
	ucd Routine Summary
	Description
	Structure Manipulation Routines
	Structure Query Routines
	Cell Manipulation Routines
	Cell Query Routines
	Node Manipulation Routines
	Node Query Routines
	Examples
	Allocating a New Structure
	Storing Information About the Nodes
	Storing Information About the Cells

	Appendix F (Field Arguments in FORTRAN)
	Introduction
	Field Passing Using Multiple Arguments
	Array Allocation

	Appendix G (Geometry Library)
	Introduction
	Synopsis
	Routine Listing
	Overview: AVS Geometry Object Data Structure
	Description
	Object Creation Routines
	Object Utility Routines
	Object Property Routines
	Object Texture Mapping Routines
	Object Vertex Transparency Routines
	Object File Utilities
	Object Debugging Facilities
	AVS Module Interface Routines
	FORTRAN Binding
	Files

	Appendix H (The F77_Binding Utility Program)
	Introduction
	Inter-Language Calling Conventions
	Fortran Include Files
	f77_binding Command-Line Syntax
	Examples

