
333333333 3333

AVS
APPLICATIONS

GUIDE333333333333
Release 4
May, 1992

Advanced Visual Systems Inc.33333333
Part Number: 320-0015-02, Rev B

NOTICE

This document, and the software and other products described or referenced in it, are confidential and proprietary
products of Advanced Visual Systems Inc. (AVS Inc.) or its licensors. They are provided under, and are subject
to, the terms and conditions of a written license agreement between AVS Inc. and its customer, and may not be
transferred, disclosed or otherwise provided to third parties, unless otherwise permitted by that agreement.

NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT,
INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR
SUITABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A
WARRANTY BY AVS INC. FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF AVS INC.
WHATSOEVER. AVS INC. MAKES NO WARRANTY OF ANY KIND IN OR WITH REGARD TO THIS
DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

AVS INC. SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS
DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED
TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF AVS INC. HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The specifications and other information contained in this document for some purposes may not be complete,
current or correct, and are subject to change without notice. The reader should consult AVS Inc. for more
detailed and current information.

Copyright  1989, 1990, 1991, 1992
Advanced Visual Systems Inc.

All Rights Reserved

AVS is a trademark of Advanced Visual Systems Inc.

STARDENT is a registered trademark of Stardent Computer Inc.
IBM is a registered trademark of International Business Machines Corporation.

AIX, AIXwindows, and RISC System/6000 are trademarks of International
Business Machines Corporation.

DEC and VAX are registered trademarks of Digital Equipment Corporation.
NFS was created and developed by, and is a trademark of Sun Microsystems, Inc.

HP is a trademark of Hewlett-Packard.
CRAY is a registered trademark of Cray Research, Inc.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.
SPARC is a registered trademark of SPARC International.

SPARCstation is a registered trademark of SPARC International,
licensed exclusively to Sun Microsystems, Inc.

OpenWindows, SunOS, XDR, and XGL are trademarks of Sun Microsystems, Inc.
UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.

Motif is a trademark of the Open Software Foundation.
IRIS and Silicon Graphics are registered trademarks of Silicon Graphics, Inc.

IRIX, IRIS Indigo, IRIS GL, Elan Graphics, and Personal IRIS are trademarks of Silicon Graphics, Inc.
Mathematica is a trademark of Wolfram Research, Inc.

X WINDOW SYSTEM is a trademark of MIT.
PostScript is a registered trademark of Adobe Systems, Inc.

FLEXlm is a trademark of Highland Software, Inc.

RESTRICTED RIGHTS LEGEND (U.S. Department of Defense Users)

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
the Rights In Technical Data and Computer Software clause at DFARS 252.227–7013.

RESTRICTED RIGHTS NOTICE (U.S. Government Users excluding DoD)

Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in
the Commercial Computer Software — Restricted Rights clause at FAR 52.227–19(c)(2).

Advanced Visual Systems Inc.
300 Fifth Ave.

Waltham, MA 02154

AVS APPLICATIONS GUIDE CONTENTS-1

TABLE
OF
CONTENTS

1 AVS Data Interchange Application: ADIA

Overview 1-1
AVS Data Interchange Application: ADIA 1-1
System Components 1-2

file descriptor Module 1-2
Specifying Data 1-2
Assisting Users with File Based Specification 1-3
Byte Offsets, Strides, and Other Means of Locating Data 1-3
Variables and Equations 1-4

User Defined Variables 1-5
The Data Form 1-6

data dictionary Module 1-6
Tutorial: Reading in the AVS .x Image Format 1-6
Tutorial: Reading in a PLOT3D Data File 1-11
AVS Control Panel Widgets 1-16

Select Data File Browser 1-16
Read and Write Form Buttons 1-16
Send Data 1-16
Header Information 1-16
Variable List 1-16
Data File Widgets 1-17

AVS Field Description Form Widgets 1-17
Field Component Radio Buttons 1-17
Value Selection Browser 1-17
User Input and File Based Specification Radio Buttons 1-17
Enter Value Typein 1-18
Datafile Format Radio Buttons 1-18

Binary and XDR 1-18
ASCII 1-18

Data Type Radio Buttons 1-20
Logical File Radio Buttons 1-21

data dictionary Module 1-21
Select Data File Browser 1-22
Read Form Button 1-22
Send Data 1-22

TABLE OF CONTENTS

CONTENTS-2 AVS APPLICATIONS GUIDE

Header Information 1-22
General Order of Operation 1-22

2 The AVS Module Generator

Overview 2-1
General Module Structure 2-1

Subroutine Modules 2-2
Coroutine Modules 2-5

Example Session 2-6
Initiating the Module Generator 2-6
Specifying the Module’s Structure 2-8
Creating an Executable Module 2-11

Adding Code to the USER-SPECIFIED CODE SECTIONS 2-12
Hints 2-13
Detailed Description of Controls 2-14

Top-Level Controls 2-14
Module Description 2-14

Module Name 2-15
Module Type 2-15
 C vs. FORTRAN 2-15
Subroutines vs. Coroutines 2-15
 Editing Ports and Parameters 2-16

Unix Specification Tools 2-16
Source File Name 2-17
Include Hints 2-17
Writing Module Source Files 2-17
Reading Module Source Files 2-17
Writing Makefiles 2-18
Writing Manual Pages 2-19
Compiling Modules 2-19
Editing a Module’s Source Code 2-20
Loading a Compiled Module into AVS 2-21
Debugging a Module 2-21

Port Editing 2-21
Field Editor 2-22
Geometry Editor 2-23

Parameter Editing 2-24

 TABLE OF CONTENTS

AVS APPLICATIONS GUIDE CONTENTS-3

3 The Data Viewer

Why a Data Viewer? 3-1
Starting the Data Viewer 3-3
Leaving the Data Viewer 3-4

4 The Data Viewer Interface

Introduction 4-1
The Menu Bar 4-1
The Control List 4-5
The Control Panel 4-8

Field Legend 4-10
Control Widgets 4-11

The Output Window 4-12
Geometry Output Windows 4-12

Mechanics 4-12
Mouse Buttons 4-13
Geometry Output Window Buttons 4-14
Geometry Menu 4-15

Graph Output Windows 4-16
Image Output Windows 4-16

The Techniques 4-18

TABLE OF CONTENTS

CONTENTS-4 AVS APPLICATIONS GUIDE

AVS DATA INTERCHANGE APPLICATION: ADIA 1-1

CHAPTER 1 AVS DATA
INTERCHANGE
APPLICATION:
ADIA

Overview

AVS includes a facility to import external datasets into AVS fields—the AVS
Data Interchange Application (ADIA). ADIA improves upon the facility
provided in the read field module in these ways:

• It can read 16-bit "halfword" data. Many medical imaging applications
produce 12-bit data in two 8-byte halfwords. (The data will be repre-
sented in the AVS field as 32-bit integers.)

• It supports variables and expressions, making it possible to define skips
and spaces necessary to read the input data as a function, rather than as
an absolute number.

• It is an interactive facility contained within AVS—one no longer needs
to use a text editor to externally edit an ASCII header.

• It can read data format information, such as the dimensions of a
dataset, from the input dataset and use these values as part of its vari-
ables and expressions.

• It creates ASCII data forms that define how to read a particular input
dataset format. These data forms can be reused and exchanged.

AVS Data Interchange Application: ADIA

The problem of importing data from one format into an application that un-
derstands a completely different format can be complex. Within AVS, there
are three techniques that you can apply to solving this problem. They in-
clude:

• writing a UNIX shell level filter program that converts an external data
file into an AVS field file.

• writing a module that will read an external data format and convert it
into an AVS field.

• using the read field module’s data parsing mode read capabilities

System Components

1-2 AVS DATA INTERCHANGE APPLICATION: ADIA

The first two techniques require that you be able to write a program in either
C or FORTRAN. The third technique doesn’t require any programming, but it
does require that you create a unique field file for each data file being read.

The AVS Data Interchange Application (ADIA) was developed in order to
overcome some of the limitations of these techniques. ADIA allows you to de-
scribe an external file format and correlate it to an AVS field. In turn, data
from a foreign format can be read from an external file into AVS and convert-
ed into an AVS field.

System Components

Integrated within AVS, ADIA is composed of two modules. The first module,
called file descriptor, allows you to specify the external data file format by
filling in a form. Once an external file format has been described, the data
form can be saved for later use. The second module, called data dictionary,
will allow you to import files using existing data forms that were created with
the file descriptor module.

file descriptor Module

At the heart of ADIA is the file descriptor module. This module presents you
with a series of forms. These forms allow you to describe where in the exter-
nal data file the requisite information is located in order to convert an external
file format into an AVS field.

Specifying Data

When specifying the components of a field, you can choose one of two meth-
ods for entering a value. In the first case, User Input Specification, you will
be presented with one or more typeins where values can be typed directly. As
an example, if an image is being read in and you are specifying the Dimen-
sions of Computational Space, you would type 2 into the value typein.
Sometimes a simple number is not enough to specify a value. In this case,
variables and equations can be used in the typein. The use of variables and
equations is described in the Variables and Equations section below.

The second method for entering values is File Based Specification. This
method is used when an input element can be found in a disk file. For exam-
ple, suppose the image file contains the dimensions of the image as the first
two elements of the image file, and the dimensions are represented as 32 bit
integers. When specifying where in the datafile to find the dimensions of the
dataset, you would give a byte offset of zero for the first dimension and a byte
offset of four for the second dimension.

System Components

AVS DATA INTERCHANGE APPLICATION: ADIA 1-3

Assisting Users with File Based Specification

There are several problems with file based specification. The first problem is
that you may not know exactly where in the file a particular data value is lo-
cated. A second problem is that you don’t know what type the data is (i.e., is
it a float or an integer?). Binary data files can be particularly difficult to deal
with in these cases.

In order to help you with these problems, ADIA provides you with two
mechanisms which can help you. The first mechanism is a range restriction
facility. This allows you to pre-specify a reasonable range for a particular data
element. For instance, when reading in the vector length of a data file, 15
might be the expected maximum. If during the file read process, 1024 is read
in, an error message will appear and the process of reading the file will halt.
This error checking will help prohibit outrageous data values being sent
through an AVS network.

The second mechanism is a preview capability within the file descriptor mod-
ule. At any time, you are able to request a look at the header information in a
file. In the case of a field, this means that you can look at what the dimensions,
vector length, etc., are for a particular file. Although this capability is dupli-
cated by the print field module, sometimes a data type will be specified so
improperly that it won’t even be created. In order to preview a data file’s
header, select the header information button from the file descriptor control
panel.

Byte Offsets, Strides, and Other Means of Locating Data

ADIA works on files where data can be found in regularly predictable places.
Typically, an individual data element in a file is referred to by its location (in
bytes) from the beginning of the file. This is refered to as the Byte Offset. Af-
ter the first data element has been located, subsequent data element locations,
are expressed as being at regular distances from each other. This is referred to
as the Stride. Stride assumes that you are “standing on” the data value just
read and specifies how many “strides” must be take to get to the next data el-
ement. In a file where the data is stored contiguously, the Stride is 1. In an
AVS image file, the pixels are stored: alpha, red, green, blue. In this case the
Stride for reading any one of these data elements would be 4. This is because,
after having read the first alpha value, you have to “stride” 4 bytes to get to
the next one.

For ASCII files, ADIA provides additional tools for specifying where data
lives in the file. Besides offering Byte Offset and Stride (in bytes), ADIA of-
fers the ability to express the initial data location in line and word numbers or

System Components

1-4 AVS DATA INTERCHANGE APPLICATION: ADIA

through doing token searches. Let’s look at an example. Suppose the data file
looks like this:

The data set A starts on line 2 at word number 4. The data for B starts at line 2
on word number 5. Both A and B have a Stride of 5 since if you have read
item A1, you need to “stride” 5 items to get to A2.

Searching for the starting point of a data element by using tokens may be
more useful for a file which has names defining the data elements. This is sim-
ilar to the AVS field file header:

AVS field file
this is a header file for a field to be
used in conjunction with the build a field module of AVS
#
ndim = 3
dim1 = 64
dim2 = 64
dim3 = 64
nspace = 3
veclen = 1
data = byte
field = uniform

In order to read the number of dimensions (ndim), you want to look for the
associated word ndim. After you have found the correct word, then the ASCII
string which contains that number is the third number on the line (3 in this ex-
ample). ADIA provides tools for specifying offset lines and words as well as
for searching by token names. See the Section labelled “AVS Control Panel
Widgets” at the end of this document for a detailed look at how this is done.

Variables and Equations

In many cases the size or location of a particular element is related to another
value. For instance, data elements may be located within a file at offsets that
are dictated by the data set’s dimensions. In cases such as these, it is very use-
ful to be able to specify an element using variables (e.g. dim1 * dim2). There
are a number of predefined variables that can be used in the data forms. The
list of variables includes:

• variable (user definable description)
• ndim (compute space)

Table 1-1. Sample ASCII File

X Y Z A B

1 1 1 A1 B1

2 2 2 A2 B2

3 3 3 A3 B3

4 4 4 A4 B4

5 5 5 A5 B5

System Components

AVS DATA INTERCHANGE APPLICATION: ADIA 1-5

• nspace (physical space)
• veclen (vector length)
• dim1 (first dimension)
• dim2 (second dimension)
• dimN (Nth dimension)
• byte (sizeof byte - typically 1)
• int (sizeof int - typically 4)
• float (sizeof float - typically 4)
• double (sizeof double - typically 8)

There are also valid math symbols. They include the symbols:

• + (Addition)
• - (Subtraction)
• / (Division)
• * (Multiplication)
• ‘(‘and ‘)’ (Open and Close Parentheses)

As with elements such as vector length, variables can be specified by User In-
put Specification or File Based Specification methods. Also, you are allowed
the flexibility of creating your own variables beyond the list of presupplied
variables. A list of all variables can be shown by selecting the variable list
button from the file descriptor control panel. Also, the variable list and their
current values can be displayed by selecting the header information button.

User Defined Variables

Located on the AVS Field Description form are a set of radio buttons called
the Field Component radio buttons. The last button is labeled Variables. By
selecting the Variables radio button, you can create your own user defined
variables. Up to 25 user defined variables can be created.

For example, if you want to create a variable that equals the product of the
field’s dimensions, you would do the following.

1. Select Variables from the Field Component radio buttons
2. Give a name to the variable, such as dimsize, by typing dimsize into

the Variable Name typein widget.
3. Let’s assume that the field we are reading in is 3D. Since dimsize is

the product of the field’s dimensions, dimsize is equal to dim1 * dim2
* dim3. So by typing the expression dim1 * dim2 * dim3 into the Enter
Value typein, we have set the variable dimsize equal to the product
of the field’s dimensions.

4. When the field is read from disk, dimsize will be automatically com-
puted from the field’s dimensions.

User defined variables can also be assigned their values by directly reading
the value from the input file. This can be accomplished using File Based Spec-

Tutorial: Reading in the AVS .x Image Format

1-6 AVS DATA INTERCHANGE APPLICATION: ADIA

ification. See the section above, “Assisting Users with File Based Specifica-
tion.”

One note of caution: be careful not to create circularly defined variables. For
example, if you create the following two variables, the file descriptor module
will not be able to resolve them.

user_1 = dim1 * user_2
user_2 = dim2 * user_1

The Data Form

Once you have completed the description of the external data file, a data form
can be created. A data form is an ASCII file that contains the information de-
scribing how to convert an external file format into an AVS field.

Since ADIA’s data forms are ASCII files, they can be transported from one
workstation type to another. Users are encouraged to submit these forms to
the AVS International Center. It is much easier to support and maintain a col-
lection of forms than a collection of modules. In addition, you are able to use
the form from one file format to help in the specification of a form for a simi-
lar but different file format.

data dictionary Module

Once a data form has been specified in the file descriptor module, it can be
used by the data dictionary module. In order to read an external data file, you
specify a data form to use from a file browser. Next, specify the data file from
a file browser. At this point, the file can be read in and converted to a particu-
lar AVS data type and then fed into an AVS network.

There are sample data forms for reading AVS image and volume format data
in the /usr/avs/data/adia directory.

Tutorial: Reading in the AVS .x Image Format

This tutorial goes through the steps of creating a form for a two dimensional
AVS .x image dataset. It is assumed that there is no form available that is sim-
ilar to the .x file format, so the tutorial will start from the beginning.

The .x file format is quite simple (Figure 1-1.). First of all, the file is a binary
file. At the beginning of the file are two integers. The first integer is the width
of the image and the second integer is the height of the image. The image data

Tutorial: Reading in the AVS .x Image Format

AVS DATA INTERCHANGE APPLICATION: ADIA 1-7

follows these two integers. This data is stored as a stream of bytes where the
bytes are in the following order: alpha, red, green, and blue.

The output target is an AVS field with the form 2D 4-vector byte uniform.

5. After starting up the Network Editor, drag the file descriptor mod-
ule from the Data Input module column into the Network work-
space with the left mouse button. Once the module has started up,
a set of widgets will appear in the AVS control panel (see Figure 1-
2.

6. The AVS Field Description Form will appear in the middle of the
display (see Figure 1-3). This form contains all of the items that
need to be filled in order to completely specify an external data file
to be converted into an AVS field. Once the field form has ap-
peared, the following steps should be taken.

7. Set the computational space dimensions for the field. This is equiv-
alent to ndim for a field. Select the Dimensions of Compute Space
radio button. Type the value 2 into the Enter Value widget. (See
Figure 1-3).

8. Set the physical space dimensions for the field. This is equivalent to
nspace for a field. Select the Dimensions of Physical Space radio
button. Type the value 2 into the Enter Value widget

9. Set the vector length for the field. This is equivalent to veclen for a
field. Select the Vector Length radio button. Type the value 4 into
the Enter Value widget.

10. Set the labels for the field. (This is optional.) Select the Labels radio
button. The Value Selection browser will appear with five names
in it (label 1 through label 4 and all labels). The four bytes of an AVS
image are referred to as “alpha,” “red,” “green,” and “blue.” Select
label 1 from the list and then type the value alpha into the Enter
Value widget. Select label 2 from the list and then type the value
red into the Enter Value widget. Select label 3 from the list and

x dimension (4 bytes)

y dimension (4 bytes)

alpha red green blue

 Figure 1-1: AVS.x Image Format

nx * ny 4-byte-wide pixels

Tutorial: Reading in the AVS .x Image Format

1-8 AVS DATA INTERCHANGE APPLICATION: ADIA

then type the value green into the Enter Value widget. Select label
4 from the list and then type the value blue into the Enter Value
widget. (See Figure 1-4)

11. For this example, Units don’t have to be set. Units, like Labels, are
optional.

12. Set the dimensions for the field. This is equivalent to dim1, dim2...
dimN for a field. Since the x and y dimensions of an AVS .x image
dataset are specified within the file in the first eight bytes, the di-

 Figure 1-2: file descriptor Main Control Panel

 Figure 1-3: AVS File Description Form with Compute Space Set

Tutorial: Reading in the AVS .x Image Format

AVS DATA INTERCHANGE APPLICATION: ADIA 1-9

mensions will be read from the file itself. Select the Dimensions ra-
dio button. The Value Selection browser will appear with three
names in it (dimension 1, dimension 2 and all dimensions). Select
dimension 1 from the list. This will be the x dimension. Then, select
the File Based Specification radio button. The default values for
finding and reading dimension 1 are the correct values, so no
changes need to be made.

13. Continue setting the dimensions for the field. Select dimension 2 (
for y) from the list and then select the File Based Specification ra-
dio button. The second dimension is right after the first dimension
in the coordinate file, so enter the value 4 in the Byte Offset typein.
The value 4 is equivalent to skipping over the first 4 bytes in the
data file (4 bytes = size of an integer). (See Figure 1-5)

14. Now establish how to read the data values from the file. This is
equivalent to variable 1, variable 2 ... variable N for a field. Since
the data of an AVS .x image dataset are found in the data file, scalar
data values will be specified from information within the file. Select
the Data radio button. The Value Selection browser will appear
with five names in it (scalar_value 1 through scalar_value 4 and all
data values). The data in the image file is contiguous, so all four
scalar values can be read in at once. Select all data values from the
list and then select the File Based Specification radio button. The
scalar data in the data file is in byte format, so you must select byte
from the data type radio buttons. Since the first scalar value occurs
after the dimensions in the file, type 8 into the Byte Offset typein.

 Figure 1-4: Setting Labels

Tutorial: Reading in the AVS .x Image Format

1-10 AVS DATA INTERCHANGE APPLICATION: ADIA

You don’t have to change the Stride typein since the data is contig-
uous within the file.

15. The specification for the file is now complete. In order to read in a
sample file, you must specify which data file to read. Select the
Browser for File 1 button in the AVS control panel. Select the file /
usr/avs/data/image/mandrill.x from the Select Data File file browser.

16. Now that everything is specified, the data can be read from disk by
selecting the send data button in the AVS control panel. Once the
file has been read, a field will be output on the file descriptor mod-
ule’s output port. You can hook this port up to the display image
module to check out your results (see Figure 1-6).

 Figure 1-5: Setting the Dimensions

 Figure 1-6: Debug Network for.x Images

Tutorial: Reading in a PLOT3D Data File

AVS DATA INTERCHANGE APPLICATION: ADIA 1-11

17. You can also save the image form away for later use. Select the
write form button in the AVS control panel. Now, using the file
browser, select a filename to save the form into. Once you have cho-
sen the filename, the form file is automatically created. The form
you create should look something like:

AVS file descriptor: Version 1.0
 field {
 compute_space 2
 physical_space 2
 vector_length 4
 data_type byte
 uniform uniform
 label_1 alpha
 label_2 red
 label_3 green
 label_4 blue
 dimension_1 {
 value 0
 file_number 1
 file_format binary
 data_type integer
 max_value 1000
 }
 dimension_2 {
 value 4
 file_number 1
 file_format binary
 data_type integer
 max_value 1000
 }
 all_data {
 value 8
 file_number 1
 file_format binary
 data_type byte
 max_value ***
 stride 1
 }
 coordinate_1 0
 coordinate_2 0
 }

Tutorial: Reading in a PLOT3D Data File

This tutorial goes through the steps to create a form for a 3D/whole PLOT3D
dataset. It is assumed that there is no form available that is similar to the
PLOT3D file format, so the tutorial will start from the beginning.

PLOT3D data comes in two separate files. One data file contains the coordi-
nate information and the other data file contains the data values at each coor-
dinate. Both of these data files are binary files. In the coordinate file (Figure 1-
7), the dimensions of the dataset are stored as floating point numbers. These

Tutorial: Reading in a PLOT3D Data File

1-12 AVS DATA INTERCHANGE APPLICATION: ADIA

numbers appear at the very beginning of the file. The x dimension is the first
number, the y dimension is the second number and the z dimension is the
third number. Directly after the dimensions, coordinate information is stored.
First, all of the x coordinate values are stored. Second, all of the y coordinate
values are stored, and third, all of the z coordinate values are stored.

The data file (Figure 1-8) contains the data which is found at every node loca-

tion in the coordinate file. There are five different scalar values in the file.
They are found after a header of seven floating point numbers. Each scalar
value is stored in a contiguous block as with the coordinate values.

The output target is an AVS field with the form 3D 5-vector float irregular.

 Figure 1-7: PLOT3D Coordinate File

x dimension y dimension z dimension

nx * ny * nz X Coordinates

nx * ny * nz Y Coordinates

nx * ny * nz Z Coordinates

7 floating point numbers to be skipped over

nx * ny * nz Density Values (float)

nx * ny * nz X-Momentum Values (float)

nx * ny * nz Y-Momentum Values (float)

nx * ny * nz Z-Momentum Values (float)

nx * ny * nz Stagnation Values (float)

 Figure 1-8: PLOT3D Data File

Tutorial: Reading in a PLOT3D Data File

AVS DATA INTERCHANGE APPLICATION: ADIA 1-13

1. After starting up the Network Editor, drag the file descriptor mod-
ule from the Data Input module column into the Network work-
space with the left mouse button. Once the module has started up,
a set of widgets will appear in the AVS control panel. Also, the
AVS Field Description Form will appear in the middle of the dis-
play. This form contains all of the items that need to be filled in or-
der to completely specify an external data file so that it can be
converted into an AVS field. Once the field form has appeared, the
following steps should be taken.

2. Set the number of input data files by typing 2 in the Number of
Data Files typein in the AVS control panel.

3. Specify the logical names to be used for the data files. Set the logical
name for the coordinate file by entering coord in the Logical Name
for File 1 typein. Set the logical name for the data values file by en-
tering data in the Logical Name for File 2 typein.

4. Set the computational space dimensions for the field in the field
form description. This is equivalent to ndim for a field. Type the
value 3 into the Enter Value widget.

5. Set the physical space dimensions for the field. This is equivalent to
nspace for a field. Select the Dimensions of Physical Space radio
button. Type the value 3 into the Enter Value widget.

6. Set the vector length for the field. This is equivalent to veclen for a
field. Select the Vector Length radio button. Type the value 5 into
the Enter Value widget.

7. Set the data type for the field. This is equivalent to data for a field.
Select the Data Type radio button. Select the float radio button.

8. Set the coordinate mapping for the field. This is equivalent to irreg-
ular for a field. Select the irregular radio button.

9. Set the labels for the field. Select the Labels radio button. The Value
Selection browser will appear with six names in it (label 1 through
label 5 and all labels). Select label 1 from the list and then type the
value density into the Enter Value widget. Select label 2 from the
list and then type the value x-momentum into the Enter Value wid-
get. Select label 3 from the list and then type the value y-momen-
tum into the Enter Value widget. Select label 4 from the list and
then type the value z-momentum into the Enter Value widget. Se-
lect label 5 from the list and then type the value stagnation into the
Enter Value widget.

10. For this example, Units don’t have to be set. Both Labels and Units
are optional.

11. Set the dimensions for the field. This is equivalent to dim1, dim2...
dimN for a field. Since the dimensions of a PLOT3D dataset can be
found in the coordinate file (coord), the dimensions will be read
from information within the file. The Value Selection browser will
appear with four names in it (dimension 1 through dimension 3
and all dimensions). Select dimension 1 from the list and then se-
lect the File Based Specification radio button. The default values
for dimension 1 are the correct values, so no changes need to be
made. You may want to set a lower value for the Enter Maximum

Tutorial: Reading in a PLOT3D Data File

1-14 AVS DATA INTERCHANGE APPLICATION: ADIA

Value typein. This establishes what you think is a reasonable limit
for this dimension. If there is something wrong with the way the in-
put instructions parse the input file and a nonsense number is read
by mistake, Enter Maximum Value may discover it.

12. Continue setting the dimensions for the field. Select dimension 2
from the list and then select the File Based Specification radio but-
ton. The second dimension is right after the first dimension in the
coordinate file, so enter the value 4 in the Byte Offset typein. The
value 4 is equivalent to skipping over the first 4 bytes in the data
file (4 bytes = size of an integer). Select dimension 3 from the list
and then select the File Based Specification radio button. The third
dimension is right after the second dimension in the coordinate file,
so enter the value 8 in the Byte Offset typein.

13. Set the data values for the field. This is equivalent to variable 1,
variable 2, variable N for a field. Since the data of a PLOT3D
dataset can be found in the data file (data), scalar data values will
be specified from information within the file. The Value Selection
browser will appear with six names in it (scalar_value 1 through
scalar_value 5 and all data values). Select scalar_value 1 from the
list and then select the File Based Specification radio button. The
scalar data in the data file is in floating point format, so you must
select the float from the data type radio buttons. Select data from
the input file radio buttons. Since the first scalar value occurs after
the first 28 bytes in the file, type 28 into the Byte Offset typein. You
don’t have to change the Stride typein since the data is contiguous
within the PLOT3D data file.

14. To set the data value for scalar value 2, select scalar_value 2 from
the list and then select the File Based Specification radio button.
The scalar data in the data file is in floating point format, so you
must select the float from the data type radio buttons. Select data
from the input file radio buttons. Since the second scalar value oc-
curs after the first scalar value, you must skip over it. Type
28+(dim1*dim2*dim3*4) into the Byte Offset typein. This equation
will be evaluated as the data file is read in and the dataset’s dimen-
sions are set.

15. For scalar values 3, 4 and 5, do the same as with scalar value 2.
However, the Byte Offset should be set to:
 scalar value 3: 28+(dim1*dim2*dim3*8)
 scalar value 4: 28+(dim1*dim2*dim3*12)
 scalar value 5: 28+(dim1*dim2*dim3*16)

16. Set the coordinate values for the field. This is equivalent to coord 1,
coord 2, coord N for a field. Since the coordinates of a PLOT3D
dataset can be found in the coordinate file (coord), coordinate val-
ues will be specified from information within the file. The Value Se-
lection browser will appear with four names in it (coordinate 1
through coordinate 3 and all points). Select coordinate 1 from the
list and then select the File Based Specification radio button. The
coordinate data in the data file is in floating point format, so you
must select the float from the data type radio buttons. Since the first
scalar value occurs after the first 12 bytes in the file, type 12 into the

Tutorial: Reading in a PLOT3D Data File

AVS DATA INTERCHANGE APPLICATION: ADIA 1-15

Byte Offset typein. You don’t have to change the Stride typein
since the coordinate data is contiguous within the PLOT3D coordi-
nate file.

17. To set the coordinate value for coordinate 2, select coordinate 2
from the list and then select the File Based Specification radio but-
ton. The coordinate data in the data file is in floating point format,
so you must select the float from the data type radio buttons. Since
the second coordinate value occurs after the first coordinate value,
you must skip over it. Type 12+(dim1*dim2*dim3*4) into the Byte
Offset typein. This equation will be evaluated as the data file is
read in and the dataset’s dimensions are set.

18. For coordinate 3 do the same as with coordinate 2. (See Figure 1-9.)
However, the Byte Offset should be set to:
 coordinate 3: 12+(dim1*dim2*dim3*8)

19. The specification for a three dimension PLOT3D file is now com-
plete. In order to read in a sample file, you must specify which data
files to read. Select the Browser for File 1 button in the AVS control
panel. Select the file /usr/avs/data/plot3d/bluntfinx.bin from the Select
Data File file browser. Select the Browser for File 2 button in the
AVS control panel. Select the file /usr/avs/data/plot3d/bluntfinq.bin
from the Select Data File file browser.

20. Now that everything is specified, the data can be read from disk by
selecting the send data button in the AVS control panel. Once the

 Figure 1-9: Setting Up To Read Points

AVS Control Panel Widgets

1-16 AVS DATA INTERCHANGE APPLICATION: ADIA

file has been read, a field will be output on the file descriptor mod-
ule’s output port. You can hook this port up to the print field mod-
ule to check out your results or to a complete AVS network with
volume bounds to check the reading of the coordinate information
(the “shape” of the data volume) and other mapper modules to dis-
play the data values.

AVS Control Panel Widgets

When the file descriptor module is instantiated, two sets of widgets appear.
The first set will appear in the AVS control panel as in Figure 1-2.

Select Data File Browser

The top widget is the Select Data File browser. This browser serves multiple
roles. Depending on which file mode is active, selecting a file from this brows-
er has a different action. For instance, if read form is currently active, after
choosing a form file from the browser, the file will be read and the form’s cur-
rent parameter settings will be updated.

Read and Write Form Buttons

By selecting either the read form or write form button, you put the module
into a mode where the next file chosen in the browser will be interpreted as a
form file. In the read case, the form will be read in and the form’s parameter
settings will be updated accordingly. In the write case, the form’s current pa-
rameter settings will be written out to disk in the form file format.

Send Data

When the send data button is selected, the previously specified input file(s) is
read in based on the current form’s parameter settings. A field is created and
then output on the module’s output port.

Header Information

When the header information button is selected, the previously specified in-
put file(s) is read in based on the current form’s parameter settings. A dialog
box is then displayed with the field header settings for the current input
file(s).

Variable List

When the variable list button is selected, a list of all standard and user sup-
plied variables is displayed.

AVS Field Description Form Widgets

AVS DATA INTERCHANGE APPLICATION: ADIA 1-17

Data File Widgets

The data file widgets will vary depending on the number of input files that
are needed to describe the data. For instance, an AVS .x image takes only one
input file, whereas a PLOT3D dataset requires two separate input files, one
for coordinates and one for data. (Note: a maximum of 5 data files can be
specified.)

The Number of Data Files typein allows you to specify how many data files
are required. (I.e., 1 for the AVS .x image and 2 for PLOT3D). When more than
one input file is required, a typein and toggle button are created for each file.
The typein, Logical Name for File N is used to provide a tag name for input
files. The toggle, Browser for File N is used to set the Select Data File brows-
er so that a file selected from the browser is tied to the logical file.

AVS Field Description Form Widgets

The second set of widgets that appear after the file descriptor module is in-
stantiated are displayed in a popup panel. This panel is called the AVS Field
Description Form. Figure 1-3 shows an example of this panel.

Field Component Radio Buttons

In the upper left quadrant of the panel are the field component radio buttons.
These radio buttons contain all of the components of a field that need to be
described in order to convert data from one format into the AVS field format.

Value Selection Browser

Some of the field components contain subcomponents. For instance, labels,
units and data have a total of vector length subcomponents. Dimensions have a
total of compute space subcomponents. Points have a total of physical space sub-
components. The Value Selection browser allows you to select these subcom-
ponents. The browser appears in the lower left quadrant of the panel.

When specifying any of the subcomponents, use the browser to select the ap-
propriate subcomponent. If all subcomponents are the same, or if they are
contiguous within a file, then select the all subcomponents value at the bot-
tom of the browser’s list.

User Input and File Based Specification Radio Buttons

In the upper right corner of the panel are the User Input and File Based Spec-
ification radio buttons. When a field component is not specified by the exter-
nal data file, User Input Specification should be selected. (e.g. The AVS .x
image file does not specify its own vector length. You must enter the value 4.)

AVS Field Description Form Widgets

1-18 AVS DATA INTERCHANGE APPLICATION: ADIA

When a field component is specified by the external data file File Based Spec-
ification should be selected. (e.g. The AVS .x image file does specify its own
dimensions, so they should be read from the input file.)

Enter Value Typein

When a field component is user specified rather than read from the input file,
the Enter Value typein appears. This typein widget accepts either numbers,
variables or equations. See the description of variables and equations in the
section above.

Datafile Format Radio Buttons

When a field component is file based, the datafile format radio buttons ap-
pear. These buttons allow you to choose between binary, ASCII, or XDR for-
mat files. For instance, by selecting the binary radio button, the field
component will be read from the file in binary format and converted accord-
ingly. In the ASCII case, the field component will be read in as an ASCII string
and converted accordingly.

Binary and XDR

When binary or XDR format is chosen, two typein widgets appear. The first
typein is for Byte Offset. This typein specifies exactly how many bytes are to
be skipped in the file before the field component is located. The second typein
is for Stride. Stride is used to specify a skip factor between each subcompo-
nent. For instance, in the AVS .x image file, data is stored as alpha, red, green,
blue. In order to read in all of the alpha values, you would need to specify a
stride of 4.

ASCII

When ASCII format is chosen, a set of radio buttons and typein widgets ap-
pear. The radio buttons allow you to select how to search forward in the file to
get to the field component.

In the byte offset case, the two typeins are the same as in the binary and XDR
cases. See the description above.

In the Line # and Word # case, four typeins appear. The Line # typein is used
to specify an exact line number to go to in the file. The Word # typein is used
to specify which word in the line to go to. The Comment Character typein is
used to specify the character that begins comment lines. If the value for this
typein is not empty, then whenever comment lines appear, they will not be
counted as a line and will be skipped over. The Stride typein is used to speci-
fy a skip factor between each subcomponent. See Figure 1-10.

AVS Field Description Form Widgets

AVS DATA INTERCHANGE APPLICATION: ADIA 1-19

Let’s look at an example. Suppose the data file looks like this:

To read all the A data using the Line # and Word# mode, you would set the
Line # to be 2, the Word # to be 4, and the Stride to be 5.To read all the B data
you would set the Line # to be 2, the Word # to be 5, and the Stride to be 5.

In the Token and Word # case, three typeins appear. The Token typein is used
to specify a string to look for in the file. This string must appear at the begin-
ning of a line. The Word # typein is used to specify which word in the line to
go to. The Stride typein is used to specify a skip factor between each subcom-
ponent. See Figure 1-11.. The Token and Word# option is more useful for a file
that has names defining the data elements. This is similar to the AVS field file
header:

Table 1-2. Sample ASCII File

X Y Z A B

1 1 1 A1 B1

2 2 2 A2 B2

3 3 3 A3 B3

4 4 4 A4 B4

5 5 5 A5 B5

 Figure 1-10: Line # and Word # Control Panel

AVS Field Description Form Widgets

1-20 AVS DATA INTERCHANGE APPLICATION: ADIA

AVS field file
this is a header file for a field to be
used in conjunction with the build a field module of AVS
#
ndim = 3
im1 = 64
dim2 = 64
dim3 = 64
nspace = 3
veclen = 1
data = byte
field = uniform

In order to read the number of dimensions (ndim), you would set the Token
to be ‘ndim ’, the Word# to be 3, and the Stride is irrelevant. In this example,
you could also read the number of dimensions using the Line# and Word #
mode by setting the Comment Char to ‘#’ (this skips over the comment lines),
the Line # to 1, and the Word# to 3. Again, for reading a single element, the
Stride is not relevant.

Data Type Radio Buttons

The Data Type radio buttons specify what format the data is when read from
the input file. For instance, in PLOT3D files, all data and coordinates are writ-
ten out in floating point format.

 Figure 1-11Token and Word # Control Panel

data dictionary Module

AVS DATA INTERCHANGE APPLICATION: ADIA 1-21

Logical File Radio Buttons

Whenever a data for a particular file format comes from multiple files (e.g.,
PLOT3D), a set of radio buttons will appear with the logical names for the in-
put files as settings. When specifying a field component, one of these logical
names must be chosen.

data dictionary Module

The data dictionary module allows you to read in external data files once a
form has been created and saved by the file descriptor module. A form con-
tains all of the information necessary to convert a file on disk into an AVS
datatype.

When the data dictionary module is instantiated, one set of widgets appear.
The widgets will appear in the AVS control panel as in Figure 1-12.

 Figure 1-12: Data Dictionary Control Panel

data dictionary Module

1-22 AVS DATA INTERCHANGE APPLICATION: ADIA

Select Data File Browser

The top widget is the Select Data File browser. This browser serves multiple
roles. Depending on which file mode is active, selecting a file from this brows-
er has a different action. For instance, if read form is currently active, after
choosing a form file from the browser, the file will be read and the form’s cur-
rent parameter settings will be updated.

Read Form Button

By selecting either the read form button, you put the module into a mode
where the next file chosen in the browser will be interpreted as a form file. In
the read case, the form will be read in and the form’s parameter settings will
be updated accordingly.

Send Data

When the send data button is selected, the previously specified input file(s) is
read in based on the current form’s parameter settings. A field is created and
then output on the module’s output port.

Header Information

When the header information button is selected, the previously specified in-
put file(s) is read in based on the current form’s parameter settings. A dialog
box is then displayed with the field header settings for the current input
file(s).

General Order of Operation
To use data dictionary, proceed through the interface in this order:

1. Press the read form button. This attaches the file browser to the
read form function.

2. Use the Select Data File browser to specify a data form file. Upon
selecting or typing in a filename, the data form will be read.

3. Data forms require one or more input files. For example, there may
be one input file containing data, and another input file containing
coordinate information. The number of input files required is
shown by the number of Browser for File n buttons.
For each input file required, press Browser for File n and then use
the Select Data File browser to establish which actual file corre-
sponds to file n. Work down the list establishing these logical file to
real file correspondences. No data will be read yet.

4. If you wish, examine the contents of the data form with the header
information function. If the data form specifies that part of the in-
put parsing instructions will come from the input file itself (e.g., the
dimensions of the data), then the input files(s) will be read in at this
point according to the correspondences established in step 3.

data dictionary Module

AVS DATA INTERCHANGE APPLICATION: ADIA 1-23

5. When all logical file to real file correspondences have been defined,
press the send data button to actually read the input data file(s) and
convert it to an AVS field using the rules in the data form.

data dictionary Module

1-24 AVS DATA INTERCHANGE APPLICATION: ADIA

THE AVS MODULE GENERATOR 2-1

CHAPTER 2 THE AVS
MODULE
GENERATOR

Overview

The AVS Module Generator is an AVS module that generates skeleton
source code, Makefiles, and documentation templates of AVS modules. It is
intended to make it easier to create, test, and maintain AVS modules. The
Module Generator can generate module skeletons in C or FORTRAN for
both coroutines and subroutines. It allows you to add new input/output
ports and parameters to modules, and perform software engineering func-
tions such as compiling modules, loading them into AVS, debugging, and
modifying them. The Module Generator will produce almost all of the AVS-
specific code such as declaration of ports and parameters, module initializa-
tion functions, and so on. It also creates areas in the source code for users to
place their own routines which make the module fully functional.

Although one purpose of the Module Generator is to free users from having
to consult the documentation, in order to understand what the Module
Generator is providing you, you will probably want to familiarize yourself
with the "AVS Modules" chapter and the "AVS Routines," "Examples of AVS
Modules," "FORTRAN Fields," and "Geometry Library" appendices of the
AVS Developer’s Guide.

General Module Structure

One of the things that makes a program like the Module Generator possible
is that AVS modules generally have a fixed structure. The Module Genera-
tor takes advantage of this by creating source code with that structure.
There are two flavors of AVS modules: subroutines and coroutines (see the
"AVS Modules" chapter in the Developer’s Guide). The following sections will
describe the assumptions that have been made for each of these structures
and how the Module Generator takes advantage of these assumptions.

General Module Structure

2-2 THE AVS MODULE GENERATOR

Subroutine Modules

For our purposes, an AVS subroutine module has this structure:

In the simplest case, there are no global defines or utility routines. In this case
the Module Generator will produce all the remaining source code. Here is the
simplest AVS subroutine module, (in C), that the Module Generator gener-
ates. This example has no ports or parameters declared.

/* mod_gen Version 1 */
/* Module Name: “simple” (Input) (Subroutine) */
/* Author: Author’s Name */
/* Date Created: Sun Mar 1 11:08:37 1992 */
/* */
/* This file is automatically generated by the Module Generator (mod_gen)*/
/* Please do not modify or move the contents of this comment block as */
/* mod_gen needs it in order to read module sources back in. */
/* */
/* End of Module Description Comments */

#include <stdio.h>
#include <avs/avs.h>
#include <avs/port.h>

/* ----> START OF USER-SUPPLIED CODE SECTION #1 (INCLUDE FILES, Etc.*/
/* <---- END OF USER-SUPPLIED CODE SECTION #1 */

/* ***/
/* Module Description */
/* ***/
int simple_desc()
{

int in_port, out_port, param;
extern int simple_compute();

Global Defines

Description Routine

Compute Routine

AVSinit_modules()

Utility Routines

 Figure 2-1: Subroutine Module Structure

Can be Generated
Automatically

Requires
User Input

General Module Structure

THE AVS MODULE GENERATOR 2-3

AVSset_module_name(“simple”, MODULE_DATA);
AVSset_compute_proc(simple_compute);

/* ----> START OF USER-SUPPLIED CODE SECTION #2 (ADDITIONAL INFO)*/
/* <---- END OF USER-SUPPLIED CODE SECTION #2 */

return(1);
}

/* ***/
/* Module Compute Routine */
/* ***/
int simple_compute()
{
/* ----> START OF USER-SUPPLIED CODE SECTION #3 (COMPUTE ROUTINE BODY) */
 /* <---- END OF USER-SUPPLIED CODE SECTION #3 */

return(1);
}

/* ***/
/* Initialization for modules contained in this file. */
/* ***/
int ((*mod_list[])()) = {
 simple_desc,
};
#define NMODS (sizeof(mod_list) / sizeof(char *))

AVSinit_modules()
{

AVSinit_from_module_list(mod_list, NMODS);
}

/* ----> START OF USER-SUPPLIED CODE SECTION #4 (SUBROUTINES, UTILITIES)*/
/* <---- END OF USER-SUPPLIED CODE SECTION #4 */

Here is the same module written in FORTRAN:

C mod_gen Version 1
C Module Name: “simple” (Input) (Subroutine)
C Author: Author’s Name
C Date Created: Sun Mar 1 11:15:17 1992
C
C This file is automatically generated by the Module Generator (mod_gen)
C Please do not modify or move the contents of this comment block as
C mod_gen needs it in order to read module sources back in.
C
C End of Module Description Comments

C **
C Module Description
C **
 integer function simple_desc()
 implicit none
 include ‘avs/avs.inc’

 integer in_port, out_port, param
 external simple_compute

General Module Structure

2-4 THE AVS MODULE GENERATOR

 integer simple_compute

 call AVSset_module_name(‘simple’, ‘data’)
 call AVSset_module_flags(single_arg_data)
 call AVSset_compute_proc(simple_compute)
C ----> START OF USER-SUPPLIED CODE SECTION #2 (ADDITIONAL SPECIFICATION INFO)
C <---- END OF USER-SUPPLIED CODE SECTION #2
 simple_desc = 1
 return
 end

C **
C Module Compute Routine
C **
 integer function simple_compute()
 implicit none
 include ‘avs/avs.inc’

C ----> START OF USER-SUPPLIED CODE SECTION #3 (COMPUTE ROUTINE BODY)
C <---- END OF USER-SUPPLIED CODE SECTION #3
 simple_compute = 1
 return
 end

C **
C Initialization for modules contained in this file.
C **
 subroutine AVSinit_modules
 include ‘avs/avs.inc’

 external simple_desc
 integer simple_desc
 call AVSmodule_from_desc(simple_desc)
 end

C ----> START OF USER-SUPPLIED CODE SECTION #4 (SUBROUTINES, UTILITIES)
C <---- END OF USER-SUPPLIED CODE SECTION #4

These are fully functioning modules; you can compile, load, and run them. If
you were to do so, they would create an icon with the name "simple" in the
module palette with no input ports or output ports. You can drag it down to
the execution area and it would start running, but would have no parameter
widgets.

There are several interesting things to note about these examples.

• The Module Generator distinguishes between "USER-SUPPLIED" and
automatically synthesized regions. One necessary section of code is the
comment block at the top of the file. This contains the information about
the module which is used to produce the template code. This includes the
module name, author, and date, as well as descriptions of the module
structure. Except for the contents of the "USER-SUPPLIED" sections, this
comment block is the only thing that the Module Generator needs to cre-
ate a module source skeleton from scratch.

General Module Structure

THE AVS MODULE GENERATOR 2-5

• There are several "USER-SUPPLIED" code regions. Any code that is in-
serted in these regions is retained unchanged from one generation of the
source code to the next. There are USER-SUPPLIED sections in each of the
Global Defines (C only), module description, module compute, and utili-
ty routine areas. There is more detail on the USER-SUPPLIED code re-
gions later in this document.

• The Module Generator provides calls to AVSinit_modules() and AVS-
module_from_desc(). AVS expects to find these routines when building
modules.

Coroutine Modules

AVS coroutine modules are like subroutine modules except that they can run
asynchronously from the rest of the AVS modules in a network. For this rea-
son, they must have their own main() routines and must process port and pa-
rameter arguments in a different fashion. The overall structure of an AVS
coroutine is:

The main program loop is put into the main() routine which also calls
AVScorout_init() with the name of the Description Routine.

Here is the example (in C) from before, but expressed as a coroutine:

/* mod_gen Version 1 */
/* Module Name: “simple” (Input) (Coroutine) */
/* Author: Author’s Name */
/* Date Created: Sun Mar 1 11:15:46 1992 */
/* */
/* This file is automatically generated by the Module Generator (mod_gen)*/
/* Please do not modify or move the contents of this comment block as */
/* mod_gen needs it in order to read module sources back in. */
/* */
/* End of Module Description Comments */

#include <stdio.h>
#include <avs/avs.h>
#include <avs/port.h>

Global Defines

main ()

Description Routine

Utility Routines

 Figure 2-2: Coroutine Structure

Requires
User Input

Can Be
Generated
Automatically

Example Session

2-6 THE AVS MODULE GENERATOR

/* ----> START OF USER-SUPPLIED CODE SECTION #1 (INCLUDE FILES, Etc. */
/* <---- END OF USER-SUPPLIED CODE SECTION #1 */

/* ***/
/* Coroutine Main Routine */
/* ***/
int main(argc, argv)
int argc;
char **argv;
{
 int simple_desc();
 AVScorout_init(argc,argv,simple_desc);
}

/* ***/
/* Module Description */
/* ***/
int simple_desc()
{
 int in_port, out_port, param;
 AVSset_module_name(“simple”, MODULE_DATA);

/* ----> START OF USER-SUPPLIED CODE SECTION #2 (ADDITIONAL INFO)*/
/* <---- END OF USER-SUPPLIED CODE SECTION #2 */
 return(1);
}

/* ----> START OF USER-SUPPLIED CODE SECTION #4 (SUBROUTINES, UTILITIES)*/
/* <---- END OF USER-SUPPLIED CODE SECTION #4 */

Example Session

Before delving into the specifics of the user interface, let’s look at an example
in which we will write a version of the threshold module in C.

This module will input an integer field, then scan though the data portion of
the field looking for data elements that lie outside of a specified range. If a
data element lies outside that range, the module will set the data value to 0.
The module will output the modified field structure.

This example will have two ports: an input port which will be an integer field
and an output port which will also be an integer field. It will have two param-
eters—two integer dials used to set the range of the data. One dial specifies
the minimum value of the data and the other one specifies the maximum data
value.

Initiating the Module Generator

The Module Generator module is found in the Network Editor’s Data Output
column in the AVS Supported module library. It has no inputs and no out-
puts. It is instanced (as are all AVS modules) by selecting the module with the

Example Session

THE AVS MODULE GENERATOR 2-7

left mouse button and dragging it into the main Workspace. When it starts up
the control panel in Figure 2-3 is displayed.

 Figure 2-3: Module Generator Main Control Panel

Example Session

2-8 THE AVS MODULE GENERATOR

Specifying the Module’s Structure

The top half of this control panel controls the module’s contents, while the
bottom half directs the actions associated with the source code. We’ll work
our way down the control panel, "filling in the blanks" along the way.

The first item to fill in is the module name. Since we want to generate a
threshold module, we first type Ctrl-U in the Module Name widget (to clear
it) and then type the name threshold. Module names must start with a char-
acter but can contain blanks, digits, and underscores.

We want to make our module a Filter module because it processes a field into
a new field. In general, modules which either import or create data reside in
the Input column. Modules which input and output the same kind of data re-
side in the Filters column. Modules which process data and create geometries
from that data live in the Mappers column and modules which output data to
the screen or to disk live in the Output column.

To make our module a Filter, we select the Filter option from the following
choices: Input, Filter, Mapper, Output. The C option is the default option so
we’ll leave it alone. We want our module to be a subroutine, which is also the
default so we’ll also leave that option alone.

Now we need to describe this module’s input and output ports. For simplici-
ty’s sake, let’s assume that the threshold module will work only on integer
fields, i.e., it will accept an N-dimensional integer field, with any number of
vector elements per node, and produce a field of the same type with the val-
ues thresholded to a specific range. The module can be made more general
purpose, but this requires more processing stages in the compute routine; you
must have code which analyzes the field structure and does selective process-
ing based on the data type, vector length, etc.

 Figure 2-4: Control Panel for Threshold Module

Example Session

THE AVS MODULE GENERATOR 2-9

We will use the port editors to specify the port information. When we select
the Edit Input Port button, two new windows pop up on the screen: the In-
put Port Editor and the Field Editor. (See Figure 2-5 and Figure 2-6)

Notice that there are six available ports named "Unused 0" through "Unused
5". These ports are "turned on" by changing their names from "Unused n" to
the name of the port. For instance, we will declare port 0 to be named "input"
by typing that name in the Input Port Name window. This is set up to be both
a required port and an AVS field port as the default. To turn ports off, make
the name of that port be "Unused". We can specify that we want to limit this
port to only accept integers by selecting the integer option under the Data
Type menu in the Field Editor window.

The Module Generator Port Editors have buttons for all valid AVS port types
including: field, ucd, geom, colormap, pixmap, molecule, integer, real, string,
user defined data (user_data), and upstream geometry and transformation in-
formation. Integer, real, and string data types ca be either ports or parameters.
Parameters are generated and controlled internally by the module while ports
get their information from other modules.

The output ports for our module are specified in a similar manner: select the
Edit Output Port option on the main control panel, name the selected output
port in the Output Port Editor, and then refine the selection using the Field

 Figure 2-5: Input Port Editor

Example Session

2-10 THE AVS MODULE GENERATOR

Editor. In this case, we choose the Data Type to be of type integer. This will
produce code for an N-dimensional, integer field of unspecified vector length.

Finally, the parameters and user interface widgets controlling the parameters
are specified. This is done by selecting the Edit Parameters button found on
the main control panel. Doing this causes any other open panels to close
down and the Parameter Editor control panel to appear (Figure 2-7). The
mechanism for "turning on" specific parameters is similar to that of ports, ex-
cept the Module Generator provides up to 100 parameters and only six input
and output ports. To activate a parameter, first select the parameter in the
browser labelled "Parameter" and then give the parameter a name other than
"Unused". You can deactivate unwanted parameters by naming them "Un-
used".)

There is a two-stage process for selecting the widget type which will be creat-
ed. The first stage is to decide what type of parameter you wish to use. The
choices are: integer, real, string, string_block, choice, color_editor, and track.
Once the type of parameter is selected, choices for widgets for that parameter
type are displayed. Here is a list of the widget choices associated with each
parameter type:

• integer: idial, islider, typein_integer, toggle, tristate, oneshot
• real: dial, slider, typein_real
• string: typein, text, browser, text_browser
• string_block: text_block_browser, textblock
• choice: radio_buttons, choice_browser

 Figure 2-6: Field Editor

Example Session

THE AVS MODULE GENERATOR 2-11

• color_editor: (no choices)
• track: (no choices)

We will first choose Unused 0, name it Min Value, select integer (the default
is idial). We can now set the range and default value for the dial. The defaults
are for a dial to go from 0 to 1 with an initial value of 0. For the sake of this ex-
ample, let’s assume that the range of data will be from 0 to 100. We will set the
Integer Max for the Min Value idial to be 100.

The second parameter we want for our module is the maximum threshold.
We choose Unused 1, name it Max Value, select integer, set Integer Max to be
100, and the Integer Default to be 100.

Creating an Executable Module

Now, the module is fully specified and it is time to write the source code out
to disk. We specify that the source code will live in a file called /tmp/threshold.c
by using the file browser called Source File. Type the name /tmp/threshold.c
into the dialog box that appears when you hit the button labelled New File in
the Source File browser. Write out the source code skeleton by hitting the but-
ton labeled Write Source.

 Figure 2-7: Parameter Editor

Adding Code to the USER-SPECIFIED CODE SECTIONS

2-12 THE AVS MODULE GENERATOR

At this point, the source skeleton has been written out to disk and we can add
in the "guts" of the compute routine. We hit the Edit button which causes a
text editor to appear with the module source in it.

Now, we add in the code that does the work of the routine. We will add two
pieces of code to make this module work. The first is a piece added to the de-
scription routine which causes the output field to be automatically generated
as the same size as the input field. This line looks like

 AVSinitialize_output(in_port, out_port);

Now in the compute routine, the following code is added between the com-
ments describing the USER-SUPPLIED CODE SECTIONS:

 int i, j, k;
 for (k = 0; k < MAXZ(input); k++)

 for (j = 0; j < MAXY(input); j++)
 for (i = 0; i < MAXX(input); i++)

 if (I3D(input, i, j, k) > Max_Value) {
 I3D(*output, i, j, k) = 0;

 } else if (I3D(input, i, j, k) < Min_Value) {
 I3D(*output, i, j, k) = 0;

 } else {
 I3D(*output, i, j, k) = I3D(input, i, j, k);

 }

The module is compiled by hitting the Compile (opt) button. It is then loaded
into AVS by hitting the Load button. At this point, the module threshold ap-
pears in the Filters column of the AVS Network Editor. We can drag it down
into the workspace and test it.

To write a FORTRAN version of this module, we simply change the language
button from C to Fortran and hit the Write Source button again. The Module
Generator informs us that it is changing the file suffix to ".f" and the file /tmp/
threshold.f is written out to disk. At this point we can do what we did above:
edit the file to add the inner loop, compile, load, and test it.

Adding Code to the USER-SPECIFIED CODE SECTIONS

If the Module Generator only wrote an initial module skeleton, it would be of
limited utility. What is really needed is a tool which allows you to write a
module, read it back in, add new ports and/or parameters and write it back
out again without disrupting the work which you’ve already done to it. To ac-
complish this, we have added USER-SPECIFIED CODE SECTIONS to the
module structure. These sections are surrounded by comments which look
something like this:

/* ----> START OF USER-SUPPLIED CODE SECTION #1*/
/* <---- END OF USER-SUPPLIED CODE SECTION #1 */

In FORTRAN, these comments look like:

Hints

THE AVS MODULE GENERATOR 2-13

C ----> START OF USER-SUPPLIED CODE SECTION #1
C <---- END OF USER-SUPPLIED CODE SECTION #1

Anything you add between these comment pairs is preserved and written
back out when the source code is next written.

There are four such regions in a subroutine module and three in a coroutine
module. In a subroutine module, there are USER-SPECIFIED areas at the top
for header information, in the description routine, in the compute routine,
and at the bottom of the module for utility routines. In a coroutine module,
there are sections at the top for defines and includes, in the main routine, and
at the bottom for utility routines.

Hints

The Module Generator has a lot of knowledge built into it regarding the free-
ing and allocation of memory for fields, geoms, and ucd structures. It normal-
ly does not give you these hints, but there is a button in the main menu called
Include Hints which, when selected, causes this information to be put into
the compute routine of the module. Once you have hit the Include Hints but-
ton, the module may not be compilable and may need some tinkering with.

For field structures, the hints give you the code fragments for freeing old field
structures and allocating new ones. One of the problems associated with field
structures is that even though modules can accept any kind of input field,
they can only output one specific field at a time. Although the port may be
very general (a module can output a float field on one pass and an integer
field on the next pass), the output field for any specific output must be com-
pletely specified. This means specifying the dimensions, physical space, data
type, vector length and uniform qualities. For instance, trying to allocate a
"field integer" will fail whereas allocating a "field integer 3D 3-space uniform
1-vector" will succeed. If you completely specify the field using the Module
Generator’s Field Editor, no more work is required and the code generated by
the hints is complete. Less specified fields will cause a comment to be printed
like:

/* YOU MUST FILL IN THE FOLLOWING "field" STRING */
/* WITH A MORE SPECIFIC DESCRIPTION! */

For geom outputs, once the type of geometry is selected (from the choice of
Mesh, Polyhedron, Polytri, Spheres, and Label), all appropriate code for creat-
ing objects and edit lists, adding objects to the edit list, and destroying objects
are created. In all cases, there may be several different ways of creating an ob-
ject. All the possible choices are shown, and the inappropriate ones should be
edited out.

For ucd structures, the hint code which is generated has much to do with free-
ing the old structure, allocating the new one, and using the supplied access
routines to set up node positions, extents, labels, and so on.

Detailed Description of Controls

2-14 THE AVS MODULE GENERATOR

The hints are especially useful for coroutines. Most coroutines have the same
structure: the main program is an infinite loop which contains an
AVScorout_wait() call and then calls to AVScorout_input() and AVScorout_-
output() to process ports and parameters. Since this is not the only possible
structure for coroutines, it is only included in the code when the Include
Hints button is selected.

Detailed Description of Controls

This section goes through each panel and describes in detail each collection of
controls as they will be encountered.

Top-Level Controls

The main control panel is divided vertically into two parts. The top set of con-
trols is used to specify the contents of the module to be generated. The bottom
set of controls is used to generate the module sources and control the editing,
compiling, loading and debugging of the module.

The vertical order of the controls in the top-level menu corresponds to the
process of generating modules. The typical way to use the Module Generator
is to start at the top of the top-level menu and work down the screen complet-
ing each function on the way.

The overall process of using the Module Generator can be thought of in these
terms:

 Specify the module’s structure
 Write out the source
 Edit the module to add your own code
 Compile the module
 Load the module into AVS
 Test/Debug the module
 Document and Maintain the module

Typically the Test/Debug phase is a development cycle which looks some-
thing like: write out the source, add your own code, try compiling, fix the
compilation errors, compile again, load the executable into AVS, run the mod-
ule with the debugger, find the bugs, re-edit the source, maybe read the
source back in and add some new ports or parameters, write the source back
out, re-edit it, re-compile it, re-test it, and so on until the module is working
properly.

Module Description

These controls (Figure 2-8) are used to specify the contents of the module.
They include controls for indicating the module name, language, style, as
well as controls for editing input and output ports and specifying module pa-
rameters

Detailed Description of Controls

THE AVS MODULE GENERATOR 2-15

Module Name

The Module Name is a character typein. The default is $NULL. You must
backup over this or type Ctrl-U before inserting your own name. Names must
start with a letter, but can contain digits, spaces, or underscores (_). You must
supply a module name if you intend to write a module’s source code out. If
you are reading a module’s source code into the Module Generator, then this
field will be filled in automatically.

Module Type

The Module Type is a choice-type selector with the following choices: Input,
Filter, Mapper, Output. The default is Input. This indicates the column in the
AVS Network Editor where the module will appear when it is loaded into
AVS. Whatever is selected here does not affect the functionality of the mod-
ule.

 C vs. FORTRAN

The language controller offers a choice between C and Fortran. The default is
C. One of the interesting features of the Module Generator is that you can
read a module that is written in C and write it out in FORTRAN (provided
that they have the Module Generator header information built into them). Ev-
erything but code inserted in the "USER-SUPPLIED" areas is translated auto-
matically.

Subroutines vs. Coroutines

The Module Generator can generate skeleton source code for either AVS Sub-
routine (synchronous) or AVS Coroutine (asynchronous) modules. The de-
fault is to generate Subroutine code. One of the main differences between
these forms is that the coroutine module has a main() routine in source for the
module. Subroutine module are linked with a main() routine found in the
AVS libraries.

 Figure 2-8: Module Description Controls

Detailed Description of Controls

2-16 THE AVS MODULE GENERATOR

 Editing Ports and Parameters

The buttons labeled Edit Input Port, Edit Output Port, and Edit Parameters
are used to bring up sub-menus. These appear to the right of the control panel
on the screen. Each of these sub-menus will be discussed in detail in follow-
ing sections. Selecting any one of these options causes the others’ sub-menus
to be hidden and the relevant sub-menus for the currently selected option to
be displayed.

Unix Specification Tools

The remaining top-level controls (Figure 2-9) are used to specify a variety of
actions you can perform on the source code. These sub-menus include read-
ing and writing the source files, generating Makefiles, generating manual
pages, editing the source, compiling the module, loading it into AVS, and
bringing up a window with the debugger in it.

 Figure 2-9: UNIX Specification Tools

Detailed Description of Controls

THE AVS MODULE GENERATOR 2-17

Source File Name

A name for the module’s source code file must always be specified, regardless
of whether you are reading the module in or writing one out. A standard AVS
file browser is supplied for this purpose. Note that this one browser is shared
by both the Write Source and Read Source options. Files are not written or
read until these buttons are pressed.

Include Hints

Normally hints are not included in the source code as it is written out. To have
them be included, select the Include Hints button prior to writing out the
source code.

The Module Generator has a lot of knowledge built into it about how to allo-
cate and free fields, how to build geom edit lists, and how to create ucd struc-
tures. It only does this for fields, geoms, and ucds which are specified as
output ports. A "hints" area in the compute routine is written out which con-
tains the sample code. These lines of code make suggestions about appropri-
ate ways to free and allocate data. If you want to use these lines of code,
simply transfer them to within the "USER-SUPPLIED" code sections referred
to earlier.

Writing Module Source Files

In order to write out a module’s source code, you must specify both a module
name and a valid source file. Optionally, you can also specify various ports
and parameters you want associated with the module. If the source file speci-
fied already exists, an AVS warning window will appear asking whether or
not you want to overwrite the existing file.

Note: A special case occurs when you are modifying an existing source file.
Typically, the process is to write out a first instance of a module, edit it, read it
back in, modify the ports or parameters, and write it out again. If you forget
to read the source back in, you will overwrite the original file and lose what-
ever changes you have added to the source.

Appropriate suffixes are added when they are not already supplied. When
you are generating a C file, if you did not specify a .c suffix for the file one will
be added for you. Likewise, .f suffixes are added when not supplied for For-
tran files. If you are switching from C to Fortran, the Module Generator will
notify you that it is also changing the suffix.

Reading Module Source Files

Reading in a module’s source code only requires two things: (1) the Source
File name must be specified; and (2) the file must be a valid file previously
generated by the Module Generator. Valid files are identified by the comment
block at the top of the file. Here is a sample header block:

Detailed Description of Controls

2-18 THE AVS MODULE GENERATOR

/* mod_gen Version 1 */
/* Module Name: "read 16 bit image" (Input) (Subroutine) */
/* Author: Author’s Name */
/* Date Created: Tue Nov 19 13:12:35 1991 */
/* */
/* This file is automatically generated by the Module Generator
(mod_gen)*/
/* Please do not modify or move the contents of this comment
block as */
/* mod_gen needs it in order to read module sources back in. */
/* */
/* output 0 "output" field 2D 2-space 1-vector uniform integer*/
/* param 0 "skip bytes" typein_integer 0 0 1 */
/* param 1 "width" typein_integer 0 0 1 */
/* param 2 "height" typein_integer 0 0 1 */
/* param 3 "filename" browser */
/* End of Module Description Comments */

In this header, the first line contains the magic phrase "/* mod_gen Version"
followed by the current Module Generator version number. The next line is
scanned to pick up the module name (in quotes), its type, and its synchronici-
ty. The next seven lines must be there, but are skipped over. Then the Module
Generator proceeds to parse each line until it encounters the line containing
"/* End of Module Description Comments". Each parsed line is a description
of the ports and parameters which have been defined for this module.

After a file has been read in, it is assumed that it will be modified and written
back out. To this end, the file is kept open and when it is written back out, the
Module Generator scans the input file looking for lines containing comments
labeled something like:

/* ----> START OF USER-SUPPLIED CODE SECTION #1 */
/* <---- END OF USER-SUPPLIED CODE SECTION #1 */

Any code found between these comment pairs will be included in the output
file. This is the mechanism that allows you to add your own code into the
modules, read it back in, modify it and write it out while preserving your
modifications. There are four such "user reserved" sections in the average C
module: one for global definitions, include files, etc., one in the module de-
scription routine, one in the module compute routine, and one at the end of
the file for including utility and auxiliary routines. There are three such areas
in the average FORTRAN module (since there is no global definition area).

Writing Makefiles

UNIX Makefiles are written whenever the Write Makefile button or either of
the Compile buttons are hit. The Makefiles are written into the same directory
as the source code and are appended with the module’s executable name. For
instance, if your module name is fred and you call the source file /tmp/fred.c,
then the Module Generator will write the Makefile for fred into /tmp/Makefile.-
fred. This can then be used by typing:

make -f Makefile.fred

Detailed Description of Controls

THE AVS MODULE GENERATOR 2-19

Likewise, if your module name is "read 16 bit data" and the source file is
named /user/joe/read_16_bit_data.c, then the Makefile will be written into /user/
joe/Makefile.read_16_bit_data.

Makefiles make use of /usr/avs/include/Makeinclude file which differs from
hardware system to hardware system. This is how the Module Generator is
able to correctly compile modules on each different platform.

Writing Manual Pages

The Write Man Page button is used to generate template manual pages in the
same way that the Write Source button generates template module source
files. Like the Makefiles, the man pages are written in the same directory as
the source code, using the source code file prefix as the prefix for the man
page as well. The suffix .txt is appended to the prefix to create the man page
name. As in the above example, if the source file is /user/joe/read_16_bit_data.c,
then the man page template will be written into /user/joe/read_16_bit_data.txt.

The manual page is divided into standard AVS manual page sections: Name,
Summary, Description, Inputs, Outputs, Parameters, Example Networks, Re-
lated Modules, and See Also. The Module Generator fills in these categories
as best it knows how.

The Write Man Page feature has two options: generating pre-formatted pages
and generating nroff or troff format man pages. The default is to generate man
pages in the pre-formatted format. To turn on the troff formatted man pages,
you need to set the environment variable AVS_MG_TROFF prior to starting
up AVS. Then, when the Write Man Page option is selected, the troff format-
ted files will be generated rather than the pre-formatted files.

Compiling Modules

Compiling modules is accomplished by using either of the Compile buttons
in the UNIX Specification Tools. When you ask the Module Generator to do
this, the following actually happens:

1. Writing the Makefile for the executable in the directory in which
the source code is written.

2. Writing a script file containing a make command to /tmp/mod_gen_-
compile.

3. Creating an xterm (in the middle of your screen) which executes
that script. The temporary script file, /tmp/mod_gen_compile, is re-
moved after the compilation process is complete.

 Here is a typical /tmp/mod_gen_compile script file:

echo Compiling /tmp/fred.f...
cd /tmp/; make -f /tmp/Makefile.fred
@ i = $status
if ($i) then
echo There were compiler problems encountered! No executable was
written!

Detailed Description of Controls

2-20 THE AVS MODULE GENERATOR

else
echo No compiler problems were encountered!
endif
echo Type RETURN to exit...
set i = $<

The two options are to compile the module with the debugging flags turned
on or with the optimization levels for your particular platform turned on.
This is accomplished by writing out different Makefiles. In the debug case, the
Makefile includes the -g option which disables any optimization flags which
may have been previously specified. In the optimized case, the -g compiler
flag is omitted. NOTE: you should compile the module with the debug flags
turned on if you intend to debug the module later.

The compile options uses xterm to run the compilation in. On some platforms,
either there is no xterm program or xterm is not in the default path. To work
around this inconsistency, the Module Generator checks for the environment
variable: AVS_XTERM. If this variable is set, it uses what the variable is as-
signed to rather than xterm. For instance, on the SUN SPARC station, you will
probably want to set the AVS_XTERM variable to /usr/openwin/bin/xterm. You
must exit AVS to do this.

After the module has completed compiling, the compilation status is dis-
played in the xterm and you must hit the Return key on the keyboard to make
the xterm go away. If there were errors reported, you will probably want to
keep this window around while you re-edit the file and fix the errors. The
Module Generator waits until the compilation process is complete and you
have made the xterm go away.

Editing a Module’s Source Code

The Edit button causes an xterm running a text editor (with the module source
code loaded into it) to appear in the middle of the screen. If you have the
UNIX environment variable EDITOR defined, the Module Generator will use
your defined editor, otherwise, it will default to popping up an xterm running
the vi text editor.

The Edit option uses xterm to run the selected editor in. On some platforms,
either there is no xterm program or xterm is not in the default path. To work
around this inconsistency, the Module Generator checks for the environment
variable: AVS_XTERM. If this variable is set, it uses what the variable is as-
signed to rather than xterm. For instance, on the SUN SPARC station, you will
probably want to set the AVS_XTERM variable to /usr/share/lib/xterminfo/x/
xterm. You must exit AVS to do this.

The editor is run in background mode, so you can continue to do things with
the Module Generator without exiting the editor. In order to make the editor
window disappear, you must exit the editor.

Detailed Description of Controls

THE AVS MODULE GENERATOR 2-21

Loading a Compiled Module into AVS

There are several ways to load a successfully compiled module into AVS.
These include:

• Using the Read Module(s) button in the Module Tools section of the Net-
work Editor.

• Typing: mod_read module_name into the AVS command line interpreter
(CLI).

• Hitting the Load button found at the bottom of the Module Generator
main control panel. An error is reported if a valid, executable module
cannot be found.

Debugging a Module

The final software engineering tool is the Debug option for the Module Gen-
erator. When this button is hit, an xterm appears in the middle of your screen
running avs_dbx on your module executable. Note that avs_dbx varies from
hardware system to hardware system as to which debugger it will run. Please
see the "AVS Modules" chapter of the AVS Developer’s Guide for more informa-
tion on using avs_dbx.

Port Editing

Ports for AVS modules are limited to a few cases. The Port Editors provide
tools for specifying what type each port should be. The only difference be-
tween the menus for editing Input Ports and editing Output Ports is that In-
put Ports can be flagged as being either required or optional.

Ports are specified in a three step process: activating the port by giving it a
name; specifying the port name; and refining the description. Currently, the
Module Generator allows you to specify up to six input and six output ports.
Inactive ports have the names "Unused 0" through "Unused 5". To activate a
port, first choose one of the six ports presented and give it a name. Like mod-
ule names, valid port names must start with a character and can contain dig-
its, spaces, and underscores (_). To disable a previously activated port, give
the port the name “Unused”. The Module Generator checks to see if the name
you have supplied is currently in use by another port or parameter.

After you have selected a port and given it a unique name, you must choose
what data type this port will input or output. This is done with the radio but-
tons found at the bottom of the Port Editor. The ports can be selected from:
field, ucd, geom, colormap, pixmap, molecule, integer, real, string, user_data,
upstream_geom, and upstream_transform. Because you can further refine the
specification for fields and geoms, additional editor control panels will ap-
pear whenever these options are selected.

Detailed Description of Controls

2-22 THE AVS MODULE GENERATOR

The other data type which requires more information to be supplied is User
Defined Data. Whenever a port is selected to be user_data, you must further
specify (a) the name of the structure which is to be used and (b) a (absolute
path) file name which contains that structure. This information is provided in
two pop-up typeins: for input data these are labelled IUData Struct Name
and IUData File Name; for output ports these are labelled OUData Struct-
Name and OUData File Name. Each input and output port may have a
unique user data structure associated with it.

Field Editor

For field ports, you may want to further describe the field type. This is done
for two reasons: to limit the type of data you want the module to accept or
produce; and, in the case of output fields, to give the Module Generator
enough information about the nature of the field to produce "hint" code show-
ing possible allocation strategies. (See Figure 2-11.)

There are five possible variables for fields which can be specified: the number
of dimensions; the physical space; the data type; the vector length; and the
spacing of the data. A more detailed description of what each of these repre-
sent can be found in the "AVS Data Types" chapter of the AVS Developer’s
Guide. When left "Unspecified", no restrictions are put on the field.

 Figure 2-10: Input Port Editor

Detailed Description of Controls

THE AVS MODULE GENERATOR 2-23

Suppose a module is to accept only image data (such as the display image
module). Image data is considered to be 2D 4-vector uniform byte data. The
port would be specified as a required field port whose Dimensions are set to
2, Physical Space is 2, Data Type is byte, Vector Length is 4, and Spacing is
uniform. In this case all the options are specified. If, however, you wanted this
module to work on any dimensionality of 4-vector uniform byte data, then you
would reset the Dimensions and the Physical Space to Unspecified.

This version of the Module Generator has the following limitations: it current-
ly only supports up to three dimensions, three physical spaces, and a vector
length of 10. These are user interface imposed limitations (not AVS limita-
tions) and can be overcome by editing the source code for the file. When the
file is read back in, these modifications, which the Module Generator does not
understand, will be lost.

Geometry Editor

Like the Field Editor, the Geometry Editor is used to refine the selection of
geometry ports for output ports only. (See Figure 2-12.) This information is only
used to create the hints section in the compute routine. There are five possible
geometries that can be produced: meshes, polyhedra, polytri (and polyline)
strips, spheres, and labels. Please see the "AVS Data Types" chapter and the
"Geometry Library" appendix of the AVS Developer’s Guide for a more detailed
look at these constructs.

There are several calls to AVS geom library routines that can produce any of
these geometric primitives. The "hints" area generated in the compute routine

 Figure 2-11: Field Editor

Detailed Description of Controls

2-24 THE AVS MODULE GENERATOR

for the module will illustrate what the appropriate calls are, what the argu-
ments for those calls are, and will make suggestions about the right way to
build geom edit lists to produce these geometries. This can be a valuable tool
for learning how to construct geom edit lists.

Parameter Editing

There are seven basic kinds of parameters and nineteen widgets that you can
use in a module. The Module Generator gives you access to all of them. These
categories are:

• integer—dials, sliders, typeins, toggles, tristates, and oneshots
• real—dials, sliders, and typeins
• string—text, typeins, file browsers, and text browsers
• string_block—test block browsers and text blocks
• choice—radio buttons and choice_browsers
• others—color_editors, and trackballs

See the "AVS Library Routines" appendix of the Developer’s Guide for detailed
descriptions of these widgets. The relevant calls are: AVSadd_parameter(),
AVSadd_float_parameter(), AVSadd_parameter_prop(), and AVSconnect_-
widget().

When specifying integer and real parameters, you need to specify the mini-
mum, maximum, and default values. The Module Generator has default val-
ues of 0 for default minimum, 1 for default maximum, and 0 for default
parameter values.

For string-related parameters, these initial conditions have different mean-
ings:

Table 2-1. String Parameter Default Settings

Widget Type Minval Maxval Default

typein IGNORED IGNORED TEXT
text IGNORED IGNORED TEXT

 Figure 2-12: Geometry Editor

Detailed Description of Controls

THE AVS MODULE GENERATOR 2-25

No initial values are needed for oneshots, tristates, toggles, color editors and
track balls.

browser IGNORED File types Filename
text_browser Comment Char IGNORED TEXT
text_block_browser IGNORED IGNORED TEXT
textblock Comment Char IGNORED TEXT
radio_buttons choice list separator default choice
choice_browser choice list separator default choice

Table 2-1. String Parameter Default Settings

Widget Type Minval Maxval Default

Detailed Description of Controls

2-26 THE AVS MODULE GENERATOR

THE DATA VIEWER 3-1

CHAPTER 3 THE
DATA
VIEWER

Why a Data Viewer?

The AVS Data Viewer is a simplified user interface to the Application Visual-
ization System's most commonly used scientific visualization techniques.

The centerpiece of any AVS session is a visualization network. (See the facing
figure.) A network is essentially a graph that defines the flow of data through
a series of programs, called modules, that process the data into a picture that
can be viewed on the screen.

At the top of all networks is a data input module that reads data files off disk
and into the network. Next may come a series of filter modules that pre-pro-
cess the data (extract a single scalar element from a vector of data values, crop
or thin out the data to a more manageable size, take a single 2D plane from a
3D volume, etc.). This is followed by one or more mapper modules that turn
the data into a picture that is some analog representation of the numeric val-
ues: a familiar XY graph, a grid of spheres floating in 3D space whose color
represents the data value, a 3D surface that is a contour through all equal val-
ues showing their distribution through a volume, and so on. Last comes
some kind of data output module that actually produces the picture on the dis-
play screen.

You construct networks with the AVS Network Editor. The usual procedure
is to scroll through the columns of modules on the module "palette," seeking
the ones which you want. You drag modules one-by-one into the large empty
workspace, then connect the modules together, in the right order, into a flow
network. As you interact with your data, you may decide that you need dif-
ferent, additional data representations. To do this, you go back to the palette
for more modules, bring them into the workspace, then change the connec-
tions between modules to hook in the new ones, producing a new data flow
network.

There is a learning curve associated with building AVS networks similar to
that of any language. The vocabulary of modules is rich; there are over 140
modules supplied with AVS. These can be extended indefinitely by user-
written modules. Their names (bubbleviz, thresholded slice, ucd stream-
lines, field legend, hedgehog, etc.), though descriptive once you understand
them, may be obscure at first.

Why a Data Viewer?

3-2 THE DATA VIEWER

Also like a language, networks have a grammar that guides but does not ex-
haustively define what visualization constructs you can build. The grammar
is much richer than the linear input -> filter -> mapper -> output outlined above.
It is more like the production rules of human languages.

There can be multiple inputs, or input can be coming from a simulation that
runs as an asynchronous process. Filters may work upon data in parallel, or
serially. Additional inputs may feed into the middle of a network. Data may
be broken out into pieces that are worked on by different, parallel branches of
a network, then composited back together again for final viewing, or viewed
in separate windows in different representations. Intermediate data can be si-
phoned off into files, or for intermediate visual representations.

As a new AVS user, you are rather in the position of a visitor to a foreign
country whose language you do not yet speak. You are standing on a street
corner; you have a dictionary in one hand (the AVS Module Reference manual),
and a grammar book (the "Network Editor" chapter of the AVS User’s Guide)
in the other. You know what you want to say, and you know that you proba-
bly hold all the pieces in your hands that you need to be able to say it. The
problem is putting them together.

The Data Viewer takes an alternative "phrasebook" approach to visualization
network construction. Rather than building networks "manually" by select-
ing the individual modules and connecting them together, the Data Viewer
provides a pulldown menu interface. There is a menu for each of the main
module categories (input, filter, mapper, output). From each menu, you select
which input data type you need to use (AVS field or unstructured cell data),
then any filter operation (crop, downsize, extract scalar), then any combina-
tion of data mapping techniques (slice planes, contour surfaces, vector
streamlines). Each of these choices represents a predefined subnetwork. Be-
hind the scenes, the Data Viewer automatically selects the corresponding
modules and constructs the network. All that you see on the screen and need
to deal with is the final output of the network—the data visualization in a dis-
play window.

This "pick one from column A," "some from column B," "some from column
C," "some from column D" approach to visualization preserves a large mea-
sure of the original flexibility and dynamics of visualization possible with
manual network construction, while eliminating much of the detail knowl-
edge of network structure, data types, and mouse button mechanics required
to perform it. As a new AVS user, you can concentrate on learning the actual
visualization techniques.

Should you be curious, it is possible to view the networks underlying the vi-
sualizations as the Data Viewer builds and re-builds them, thereby learning
basic network construction approaches. As you watch the networks, be
aware that, though the Data Viewer’s built in network grammar is flexible, it
implements only a subset of the network structures supported by the full Net-
work Editor. Examples of these more sophisticated visualization structures
can be found in the other AVS learning tool, the AVS Demo Suite.

Starting the Data Viewer

THE DATA VIEWER 3-3

Starting the Data Viewer

You can start the Data Viewer in one of three way:

1. From the AVS Applications menu. On the main AVS menu, select
AVS Applications. This brings up a secondary menu. (See Figure
3-1.) Select Data Viewer. This is the usual way to start the Data
Viewer.

2. From within the AVS Network Editor. The Data Output column in
the module palette contains a Data Viewer module. Use the left
mouse button to drag this module into the large blank workspace.
You would probably use this method if you were intent upon
watching the networks as the Data Viewer constructs them. (The
Data Viewer provides its own switch that also lets you watch the
networks as they are built and rebuilt.)

3. Directly from the system shell, as you start AVS. Type:
avs -network /usr/avs/networks/dv/data_viewer

 Figure 3-1 Starting the Data Viewer from the Applications Menu

Leaving the Data Viewer

3-4 THE DATA VIEWER

Figure 3-2 shows the Data Viewer as it appears on the screen. It may take sev-
eral seconds to initialize.

Leaving the Data Viewer

At the top of the Data Viewer's control panel is an Exit button. (See Figure 3-
3.) When you press this button, a warning message appears as shown in Fig-
ure 3-4.

If there is work that you wish to save, click Cancel on the message panel.
Press the Viewer button on the Menu Bar and select the Save Viewer State
from the pulldown menu that appears. You are presented with a File Browser

 Figure 3-2 Data Viewer After Initialization

 Figure 3-3 Exiting the Data Viewer

Leaving the Data Viewer

THE DATA VIEWER 3-5

widget. Select either New Dir or New File. This raises a panel (Figure 3-6)
into which you type a file specification and press Enter. The Data Viewer will
save its current state. You can then exit the Data Viewer.

Otherwise, just click OK on the warning message panel. Exiting the Data
Viewer returns you to the AVS Application menu.

 Figure 3-4 Work Will Not Be Saved Warning Panel

 Figure 3-5 File Browser Widget

Leaving the Data Viewer

3-6 THE DATA VIEWER

 Figure 3-6 Save State File Typein Panel

Leaving the Data Viewer

THE DATA VIEWER 3-7

.

Control Panel

Control List

Output Window

Menu Bar

THE DATA VIEWER INTERFACE 4-1

CHAPTER 4 THE
DATA VIEWER
INTERFACE

Introduction

There are four main elements to the Data Viewer interface: the Menu Bar,
the Control List window, the Control Panel, and the Output window. (See
facing figure.)

Of these, the Menu Bar and the Control Panel are always visible, while the
Control List window and the Output window appear only after you have
selected an input data type from the Menu Bar.

The sections below describe each interface element.

The Menu Bar

Across the top of the screen is the Data Viewer's main Menu Bar. There are
six buttons, each of which calls up a pulldown menu.

You interact with the Menu Bar in the way that you would expect: it be-
haves like most button-across-the-top, pull-down-menu interfaces found in
today's software products. Pressing any mouse button calls up the pull
down menu; hold the mouse button down as you move the mouse cursor
down the list; release the mouse button over your selection; or roll the
mouse cursor off the list and release the mouse button to choose nothing.
"Not applicable" items will be shaded out automatically according to con-
text. For example, some techniques work only with field data, and will be
shaded out if you are working with UCD data.

You can select among the buttons and their menus in random order
throughout your session. Nothing—except choosing an input data type—
has to come first. The Data Viewer's built-in network grammar takes care of

 Figure 4-1 The Menu Bar

The Menu Bar

4-2 THE DATA VIEWER INTERFACE

adding, inserting, deleting, and duplicating techniques in their proper place
in the underlying network.

Viewer
The Viewer menu contains general utility functions: Read/Save Viewer
State, Delete/Duplicate/Clear visualization techniques from the Control
List, and a Show Network Editor button that opens up the large AVS
Network Editor panel so that you can watch the networks as they are be-
ing built.

If you watch the networks, it may be necessary to use the left mouse but-
ton to rearrange the module icons so that you can clearly see the connec-
tions.

Geometry
The Geometry menu contains buttons that affect the appearance of ob-
jects in the Output window. Its choices are really a "most-critical, most
useful" subset of the many functions available in the full AVS Geometry
Viewer. For example, you can temporarily Hide/Show objects in the out-
put window, or change their rendering from a Surface representation to
a wireframe Lines representation. Some techniques may shade out some
of these choices.

The two functions that you will use most often are Reset and Normalize.
Reset returns the an object to its original position in the window. It is a
"start over" button. Normalize changes the size and position of an object
so that it fills the Output window. Center does not center the object in the
Output window. Rather, it sets the Center of rotation of objects to their
physical centers.

There may be multiple geometry objects in the Output window. The Con-
trol List selection establishes which object will be affected by this Geome-
try menu. If a Mapper> technique is selected, then only the object
representing that technique will be affected. If the top-level Data Input>

 Figure 4-2 Viewer Pull Down Menu

The Menu Bar

THE DATA VIEWER INTERFACE 4-3

technique is selected, then all objects in the Output window will be affect-
ed.

Data
Filters
Mappers
Output

The Data, Filters, Mappers, and Output buttons select the actual visual-
ization techniques.

Data
As you begin a Data Viewer session, you will always use the Data
menu to select the type of input data you will work on, either an
AVS field or an AVS unstructured cell data (UCD) format input file.
Once you have done this, the Control List and the Output window
will appear. Unlike the complete AVS Network Editor, there can be
only one input dataset per network.

Thereafter, your navigation through the Filters, Mappers, and Output
menus is up to you.

Mappers
Most of your Menu Bar activity will involve selecting one or more
visualization techniques from the Mappers column. This is where
the core visualization techniques (Orthogonal Slice, Isosurface,

 Figure 4-3 Geometry Pull Down Menu

 Figure 4-4 Data Pull Down Menu

The Menu Bar

4-4 THE DATA VIEWER INTERFACE

Colored Streamlines, etc.) that produce the actual pictures in the
Output window reside.

Output
You may also, with less frequency, select from the Output menu.
The network fragments represented by these buttons perform func-
tions that will be of interest to you both while you are doing your
visualization (for example, Field Statistics displays field or UCD
minimum, maximum, and mean data values which you may need
to define upper and lower bounds on dial control widgets); and be-
fore you leave the Data Viewer. (Postscript, for example, creates a
gray-scale or color PostScript file of the image in the Output win-
dow that can be sent to a printer.)

 Figure 4-5 Mappers Pull Down Menu

 Figure 4-6 Output Pull Down Menu

The Control List

THE DATA VIEWER INTERFACE 4-5

Filters
The Filters menu contains buttons that call up network fragments
that will pre-process the raw input data before it reaches the map-
ping technique(s). For example, Crop will pare down the size of
the input data in any or all dimensions, like "cropping" a picture.
Downsize will "thin out" the data, selecting perhaps only every
other, or every fourth value in the input field to pass along to the
mapper.

In addition to their function as visualization utilities, both Crop
and Downsize are also tools to keep the sheer size of the data that
the Data Viewer's network must process—and the 3D drawing fa-
cilities must render—within the realistic bounds of your worksta-
tion's capacity and rendering speed.

The Control List

As you select techniques from the Data, Filters, Mappers, and Output menus,
the techniques are added to the Data Viewer's Control List window. (See Fig-
ure 4-8.)

 Figure 4-7 Filters Pull Down Menu

 Figure 4-8 Simple Control List

The Control List

4-6 THE DATA VIEWER INTERFACE

The Control List has three related functions:

• The Control List represents the content and structure of the visualization
that you are performing.

• The Control List selects which objects will be affected by choices made in
the Menu bar. For example, if you wish to delete an item from the Con-
trol List, first select it. Then, use the Viewers menu’s Delete Selected
Item function. If you wish to reset an object back to its original position
when it entered a geometry Output window, select its corresponding
Mapper> in the Control List. Then, use the Geometry menu’s Reset but-
ton to reset the object.

• The Control List selects which technique’s control widgets are displayed
in the Control Panel at the left of the screen.

The Control List is organized as an indented hierarchy. At the root of every
visualization is a Data Input> technique. The second level of the hiearchy can
be occupied by zero, one, or multiple Filter> techniques. These Filtering
techniques will act serially upon the various Mapper techniques, e.g., first you
Crop the data, then you Downsize it. The leafs of the hiearchy are always
one or more Mapper> or Output> techniques.

Each visualization requires, at minimum, a Data Input> technique and a
Mapper> technique. Filter> and Output> techniques are optional.

There can be only one Data Input> technique at a time. Although AVS's Net-
work Editor easily allows multiple input datasets to feed into the same net-
work and be composited together in one output window (for example, a
dataset containing people's ages mapped onto a geographic coordinate grid,
and a separate dataset containing people's income in the same geographic
area), the Data Viewer's more restricted network grammar allows just one in-
put dataset.

These simple rules allow a wide variety of visualization network construc-
tions.

Figure 4-8 is the simplest of constructions. This visualization network reads
in an AVS field, then uses one mapper technique, Orthogonal Slice, to display
the contents of the field as a "slice" through the volume that is orthogonal to
the data's I, J, or K axis. All visualization networks contain the utility mapper
Volume Bounds that displays lines around the volume's extents (borders) in
space. In UCD networks, Volume Bounds also controls the appearance of the
UCD cells. For example, you can display only cell edges, only exterior cell
faces or all faces, and you can shrink the cells to make their structure more ob-
vious. Volume Bounds appears automatically when you select a Data tech-
nique.

Figure 4-9 is a slightly more complex construction:

This visualization network is identical to the previous, except that two map-
pers have been added: Histogram, which creates a graph Output window
that contains an XY graph of the distribution of data values in the input data;

The Control List

THE DATA VIEWER INTERFACE 4-7

and Isosurface, which creates a 3D surface through all data values in the vol-
ume that are equal. The Isosurface and Orthogonal Slice will appear compos-
ited together in a geometry Output window.

The visualization network in Figure 4-10 is identical to the previous, except
that a Filter> Downsize has been inserted before the mappers to thin out the
data. This network also includes an Output> technique that will display
some useful statistics about the data content of the field.

When adding items to the Control List with the Menu Bar, keep these rules in
mind:
• You must select a Data input technique first.
• The Mapper> technique will appear after the current Control List selec-

tion. However, their position in the Control List does not really have any
affect on their behavior because Mapper techniques are always leafs in
the hierarchy and they are peers of each other. Multiple Mapper tech-
niques create parallel branches in the underlying network, each produc-
ing a different picture from the same data. The pictures are composited

 Figure 4-9 Control List with Multiple Mapping Techniques

 Figure 4-10 Control List with Filter and Output Techniques Added

The Control Panel

4-8 THE DATA VIEWER INTERFACE

together in the geometry Output window, or appear in additional graph
and/or image Output windows.

• Output techniques always appear at the end of the Control List as leafs in
the hierarchy.

• Filter techniques are always inserted before a Mapper> or Output> tech-
nique selected in the Control List. If the selection is a Filter> or the Data
Input> technique, the Filter is inserted immediately after.
Note: Filter techniques actually present a bit of a problem. It is possible
to make an indented hierarchical representation in the Control List win-
dow using Filters that does not accurately reflect the structure of the un-
derlying network. Some rules of thumb to avoid this are:
• Do not have Volume Bounds selected when you insert a Filter. This

applies the Filter only to the Volume Bounds technique, not to the ac-
tual data.

• If you want to filter all Mappers (the most typical case), first select
Data Input> in the Control List, then choose from the Filter menu.

• If you want to filter just an individual Mapper, put that Mapper at the
end of the Control List, select it in the Control List, and then choose
from the Filter menu:

Data Input> AVS_Field
 Mapper> Volume Bounds
 Mapper> Isosurface
 Filter> Downsize
 Mapper> Bubbleviz

This Downsizes just Bubbleviz. In this case, there can be only one Fil-
ter in the Control List. The second Filter added will cause all of the
Filters to act serially upon all Mappers. For example, subsequently
attempting to use a different filter on Isosurface:

Data Input> AVS_Field
 Mapper> Volume Bounds
 Filter> Crop
 Mapper> Isosurface
 Filter> Downsize
 Mapper> Bubbleviz

actually causes both Bubbleviz and Isosurface to be both Cropped
and Downsized, even though the indentation does not suggest that
this is true.
You can use the Viewer menu’s Show Network Editor selection to
see the structure of any network underlying a Control List.

The Control Panel

Each visualization technique in the Control List has a set of widgets that al-
low you to control its functions. (See Figure 4-11.)

Widget controls are organized onto pages. The pages are in a metaphorical
"stack" on the Control Panel at the left of the screen.

The Control Panel

THE DATA VIEWER INTERFACE 4-9

By clicking on different techniques in the Control List, you bring up the
different pages of widget controls on the Control Panel.

For example, the Orthogonal Slice technique has three buttons that control
whether the slice plane is oriented in the I, J, or K (X, Y, or Z) plane. There is a
dial that controls the Distance of the slice through the volume (plane 0, plane
2, plane 3,...plane n). The Z dial can be used to alter the appearance of the
slice plane: higher values will be mapped as a distortion in the plane in the
third dimension.

Some techniques have multiple pages of controls. For example, both of the
Data techniques, (Read AVS Field and Read Unstructured Cell Data) have
three pages. You switch between these multiple sub-pages by clicking on the
choice buttons at the top of the Control Panel. (Figure 4-12.)

One page contains a file browser that you use to pick the input dataset (Read
Field in Figure 4-12). One page contains the colormap editor widget that con-
trols the mapping from data values to colors (Colormap in Figure 4-12).

 Figure 4-11 Orthogonal Slice Control Panel

The Control Panel

4-10 THE DATA VIEWER INTERFACE

Fields and UCD data can contain multiple values (a vector) at each grid point.
Though there are techniques that will draw objects that represent magnitude
from three components (Hedgehog, Streamlines, Colored Streamlines, Parti-
cle Advector), most of the time you select just one of the vector elements and
map its data values. Thus, the third page on the read technique (Choose Sca-
lar) selects which of the vector values to send through the network to the
Mapper.

Field Legend
When you first read in a dataset, the colorbar Field Legend will appear at the
bottom of the screen, produced by the field legend module in the underlying
network. Field Legend is a way of selecting data values by their representa-
tive color rather than by numeric values. However, the Field Legend control
widget only works with these field Mapping techniques: 3D Line Contour,
Isosurface, and Colored Isosurface; and these UCD Mapping techniques:
Threshold Slice, 3D Line Contour, Isosurface, and Colored Isosurface. If you
are not using one of these techniques, you should iconify and ignore the Field
Legend widget.

 Figure 4-12 Read AVS Field Technique—Selecting Among Control Panel Pages

The Control Panel

THE DATA VIEWER INTERFACE 4-11

Control Widgets

Use of the control widgets that appear in the Control Panel is fairly intuitive.
There are browsers to select input and output files, radio buttons to select
among options such as which vector element to send through the network,
switch buttons to turn options on and off, and typeins to specify exact nu-
meric values and file names (Ctrl-u clears a typein; Backspace erases single
characters).

The Colormap Editor found under the Data Input> technique is described in
detail in the "Using the Colormap Control" section of the AVS User’s Guide
"Network Editor" chapter, and again on the generate colormap page of the
AVS Module Reference manual.

Dial widgets are largely intuitive, but do have some subtleties:

• Dragging the dial needle with the mouse button causes the network to be
updated continuously. Click on the perimeter of the dial to jump the nee-
dle to a new value.

• To enter a specific value, click on the small circle at the base of the dial
needle. The resulting Dial Editor has a typein for specific values.

• The resolution of an unbounded dial is "once around is 200". Datasets
with narrow data ranges (e.g., -0.4 to +2.5) may make the dials too sensi-
tive to use effectively. Use the Dial Editor’s Max and Min typeins to reset
the dial’s resolution. Both the Histogram Mapper technique, and the
Field Statistics Output technique will show a dataset’s data range.

Dial widgets are described in detail in the "Using Dial Controls" section of the
User’s Guide "Network Editor" chapter.

 Figure 4-13 The Dial Editor

The Output Window

4-12 THE DATA VIEWER INTERFACE

The Output Window

There are three kinds of Output windows:

• "Geometry" output windows that display the output from mappers
as 3D objects. Most mappers produce geometry Output windows.

• "Graph" output windows that display the output from mappers as an
XY 2D graph. Two field techniques, Histogram and 2D Line Graph
produce graph Output windows.

• "Image" output windows display the visualization as a 2D image.
The Volume Rendering Mapper produces an image Output window
that is really the display tracker module. The Image Output tech-
nique produces an image window that is the image viewer module.

Depending upon which techniques you have selected, you may have one,
two, three or four output windows—one of each type—on the screen at once.
In most cases, however, there will be just one geometry output window.

Geometry Output Windows

A geometry Output window is depicted in Figure 4-14. The window is not a
"dead, for display only" output window. You can interactively manipulate
the objects in geometry output windows: rotate the objects to get a better
point of view; rescale them larger or smaller; or shift them up, down, left, and
right—all using direct manipulation with the mouse buttons.

Across the top of the geometry output window are a series of buttons that
also allow you to quickly change your point of view on the object. For exam-
ple, you can look at it from its Top, Front, and Right views and their inverses.
You can cause the object to be presented as a Perspective projection (instead
of parallel) giving you a better sense of depth perception. Bounds will reduce
the amount of drawing that your system has to perform as you move objects,
speeding the interaction.

A geometry output window is actually being produced by the geometry
viewer module in the underlying network. You can exact much finer, de-
tailed control over the contents of the output window (lights, cameras, object
properties, etc.) by using the AVS Geometry Viewer subsystem. This is acces-
sible from the Data Viewer using the Data Viewers pulldown menu at the top
of the Control Panel. In general, the simplified controls provided in the Data
Viewer are sufficient. There are occasions when you may need to call up the
full Geometry Viewer.

Mechanics
Three mechanisms control objects in a geometry Output window:

• Mouse buttons
• The buttons along the top of the geometry Output window
• The Data Viewer Menu Bar’s Geometry menu.

The Output Window

THE DATA VIEWER INTERFACE 4-13

When using mouse buttons and the buttons on the geometry Output window,
you choose which object(s) will be affected with the mouse buttons.

When using the Geometry pulldown menu, you choose which object(s) will
be affected with the Control List. Selecting Data Input> selects all objects.

You can move (translate), rotate, and scale objects in the output window.
These operations are collectively called transformations.

Objects in the geometry output window are organized into a hierarchy. Top is
the "top" of the hierarchy. All other objects are children of the Top object and
peers of each other.

Mouse Buttons
The upper left corner of the geometry output window shows the current ob-
ject. This is the object that will be transformed by the mouse buttons inTable
4-1.

 Figure 4-14 Geometry Output Window

The Output Window

4-14 THE DATA VIEWER INTERFACE

To set the current object, point at it with the mouse cursor and press the left
mouse button. To make Top the current object, point at the window back-
ground and press the left mouse button.

Many objects cannot be transformed independent of the Top object with the
mouse buttons (Volume Bounds, Orthogonal Slices). These objects are either
immobile for logical reasons (Volume Bounds), or are moved using dials on
their respective control panels.

Geometry Output Window Buttons

The geometry Output window buttons perform these functions:

User
Returns the objects in the window to their orientation prior to pressing
Top/Bottom, Front/Back, Left/Right. Thus, you may use the mouse but-
tons to transform the objects in the window to any orientation. This par-
ticular view is always retrievable by pressing User.

Top/Bottom
Top views the objects from the positive Z axis. Bottom views the objects
from the negative Z axis.

Front/Back
Front views the objects from the negative Y axis. Back views the objects
from the positive Y axis.

Left/Right
Left views the objects from the negative X axis. Right views the objects
from the positive X axis.

Persp
Turns on a perspective view of the objects. This makes it easier to detect
depth and location.

a. Transformations occur in XYZ of the view vol-
ume, not object space.

b. Use Bounds for faster rendering.
c. Use Persp to see object change size.

Table 4-1. Mouse Button Transformationsa

Actionb Mouse Button

pick current object left
rotate middle
scale shift-middle
translate XY (move) right
translate Zc shift-right

The Output Window

THE DATA VIEWER INTERFACE 4-15

Bounds
Reduces rendering overhead. Instead of moving objects directly, you
move a bounding box that surrounds the objects. When the bounding
box is correctly position, release the mouse button. The objects are re-
drawn at their new location. The bounding box is also an orientation aid.

Geometry Menu

Different techniques may shade out one or more of these options.

Hide/Show
Temporarily "undisplay" the current object.

Opaque/Transparent
Makes the current object semi-transparent.

Note: Not all workstation hardware renderers support transparency. If
this button has no effect, you will need to switch to the software renderer.
At the top of the Control Panel at the left of the screen, press and hold
down Data Viewers. When the pop-up appears, select Geometry View-
er. The full AVS Geometry Viewer’s control panel will appear. Press
Cameras on the menu below the miniature object wndow. Select Soft-
ware Renderer. Press Close at the top of the panel to remove the Geome-

+Y

+X-X

-Y

RIGHT

LEFT

FRONT

BOTTOM

TOP

BACK

+Z

-Z

 Figure 4-15 Views Produced by Geometry Output Window Buttons

The Output Window

4-16 THE DATA VIEWER INTERFACE

try Viewer. One can always access the main AVS subsystems from the
Data Viewer in this way.

You may also need to switch to the software renderer if your hardware
does not render spheres. The Bubbleviz Mapper technique produces
spheres. If no spheres or dots appear when you use this technique, even
after adjusting the various radius dials, switch to the software renderer.

Surface/Lines
Render the current object as solid, or as a wireframe of lines.

Reset
Return the current object to its original size and position.

Normalize
Resize the current object until it just fills the geometry Output window.

Center
Set the current object’s center of rotation to the center of its extents in
space. This will remedy the situation where objects appear to be rotating
off-center.

Show Objects
Brings up a Current Object Browser listing all objects in the geometry
Output window. Clicking on the names in the list is an alternate way to
select the current object.

Graph Output Windows

A graph Output window is depicted in Figure 4-16. This window is not inter-
active, being for display only. The graph output window is actually being
produced by a graph viewer module in the underlying network. You can
control the display in this window (for example, the number of tic marks,
whether new plots are added to the window or replace the existing plot) by
using the AVS Graph Viewer subsystem, accessible from the Data Viewer us-
ing the Data Viewers pulldown menu at the top of the Control Panel.

Image Output Windows

The image Output window produced by the display tracker module when
using the Volume Rendering technique is interactive. Table 4-1. shows the
mouse buttons functions

The image Output window produced by the Image Output technique is inter-
active. The image Output window is actually being produced by an image
viewer module in the underlying network. You can use the image viewer to
perform image processing upon the results of a visualization. For example,
you can increase its contrast so that it reproduces better in print. To access

The Output Window

THE DATA VIEWER INTERFACE 4-17

the full Image Viewer, use the Data Viewers menu on the Control Panel. Ta-
ble 4-3 shows mouse button manipulations possible in this window..

Table 4-2. Display Tracker Mouse Button Transformations

Action Mouse Button

reset object left
rotate middle
scale shift-middle
translate XY (move) right

Table 4-3. Image Viewer Mouse Button Transformations

Action Mouse Button

pick current image left
scale shift-middle
translate XY (move) right

 Figure 4-16 Graph Output Window

The Techniques

4-18 THE DATA VIEWER INTERFACE

The Techniques

To determine the purpose and use of the control widgets that appear on the
left Control Panel with each technique, use the Viewers menu’s Show Net-
work Editor option to display the underlying network in the Network Editor.
As techniques are added, their implementing modules will be included into
the network.

Explanations of these modules’ control widgets are found in two places:

• The Module Reference manual that accompanies each AVS release.
• In online help files. To access these help files, click on the module icon’s

small "dimple." A Module Editor Control panel will appear. Click on this
panel’s Show Module Documentation button. This brings up a text
browser containing the "man page" for the module with a detailed expla-
nation of the purpose and use of each control widget. Realize that the
Data Viewer may be collecting the widgets of several modules together
on one page.

	Table of Contents
	Chapter 1 (AVS Data Interchange Application: ADIA)
	Overview
	AVS Data Interchange Application: ADIA
	System Components
	Tutorial: Reading in the AVS .x Image Format
	Tutorial: Reading in a PLOT3D Data File
	AVS Control Panel Widgets
	AVS Field Description Form Widgets
	data dictionary Module

	Chapter 2 (The AVS Module Generator)
	Overview
	General Module Structure
	Example Session
	Adding Code to the USER-SPECIFIED CODE SECTIONS
	Hints
	Detailed Description of Controls

	Chapter 3 (The Data Viewer)
	Why a Data Viewer?
	Starting the Data Viewer
	Leaving the Data Viewer

	Chapter 4 (The Data Viewer Interface)
	Introduction
	The Menu Bar
	The Control List
	The Control Panel
	The Output Window
	The Techniques

