
_________ _ ___

AVS on LINUX
WORKSTATIONS
INSTALLATION/
RELEASE NOTES____________

Release 5.5 Final (50.86)
November, 1999

Advanced Visual Systems Inc._ _______
Part Number: 330-0140-02 Rev B

NOTICE

This document, and the software and other products described or referenced in it, are confidential and
proprietary products of Advanced Visual Systems Inc. or its licensors. They are provided under, and are
subject to, the terms and conditions of a written license agreement between Advanced Visual Systems
and its customer, and may not be transferred, disclosed or otherwise provided to third parties, unless oth-
erwise permitted by that agreement.

NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT,
INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR SUI-
TABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A WARRANTY
BY ADVANCED VISUAL SYSTEMS FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF
ADVANCED VISUAL SYSTEMS WHATSOEVER. ADVANCED VISUAL SYSTEMS MAKES NO WAR-
RANTY OF ANY KIND IN OR WITH REGARD TO THIS DOCUMENT, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE.

ADVANCED VISUAL SYSTEMS SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR
IN THIS DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMI-
TATION INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR
RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF ADVANCED
VISUAL SYSTEMS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The specifications and other information contained in this document for some purposes may not be com-
plete, current or correct, and are subject to change without notice. The reader should consult Advanced
Visual Systems Inc. for more detailed and current information.

Copyright  1999
Advanced Visual Systems Inc.

All Rights Reserved

AVS and IVP are trademarks of Advanced Visual Systems Inc.
AVS/EXPRESS is a registered trademark of Advanced Visual Systems Inc.

All other product names mentioned herein are the trademarks or registered
trademarks of their respective owners.

RESTRICTED RIGHTS LEGEND (U.S. Department of Defense Users)

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights In Technical Data and Computer Software clause at DFARS 252.227– 7013.

RESTRICTED RIGHTS NOTICE (U.S. Government Users excluding DoD)

Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of
this computer software, the rights of the Government regarding its use, reproduction and disclosure are
as set forth in the Commercial Computer Software — Restricted Rights clause at FAR 52.227– 19(c)(2).

Advanced Visual Systems Inc.
300 Fifth Ave.

Waltham, MA 02451

Printed in U.S.A.

_________ _ ___
CONTENTS

_________ _ ___
1 AVS 5.5 Linux Release Notes__
Release Highlights 1-1
Organization 1-2
AVS 5.5 Media Kit 1-3
Implementation Overview 1-3

2 AVS 5.5 Installation__
Introduction 2-1

Remote Installations 2-2
Step 1: Decide Where to Install AVS5 2-2
Step 2: Mount the CD 2-2
Step 3: Install AVS5 from the CD 2-3

RPM installation 2-3
Traditional AVS5 installation 2-5

Step 4: Install man pages 2-7
Step 5: Tell Users How to Find AVS 2-8

Setting the AVS_PATH 2-8
Setting up links 2-9

Distribution Contents 2-9
Source Code 2-11

3 AVS 5.5 on UNIX Platforms__
Introduction 3-1
New Features in AVS 5.5 3-2

Geometry Camera 3-2
Function Key, Arrow Key, Mouse Event Masking 3-3
New Example modules 3-4
AVS/Animator source code 3-5

Documentation updates 3-6
AVS 5 Documentation set in PDF format 3-6
New Chapter: Debugging in AVS 5 3-7
AVSfield_points_array_size 3-7
AVSoutput_string 3-8

__________________ _ _______
Contents AVS 5.5 Release Notes iii

_ ___ _________
AVSpath variable 3-8
Choice value output example 3-8
Read Field module accepts short data 3-9
Geometry Viewer object parameter 3-9
Unexposed command line options 3-9
New Arbitrary Slice parameter Slice Size 3-10

X Windows and Graphics 3-11
X Implementation 3-11
Graphics Libraries: OpenGL 3-12
X Server Color 3-16
Window Manager 3-19
X Terminal and Remote Display Support 3-21
Stereo Support 3-23
Japanese, Greek, and Cyrillic Labels in Geometry Viewer 3-25

Programming Considerations 3-26
GEOMint_color 3-26
C++ Support 3-27
FORTRAN Modules on 64-bit systems 3-27

Fixed in AVS 5.5 3-29
User Interface Issues 3-29
AVS Kernel, LibFlow or CLI issues 3-30
Geometry Viewer issues 3-31
Licensing Issues 3-32
Module Issues 3-33

Known Problems 3-35

4 AVS 5.5 for Linux__
Introduction 4-1
Hardware Prerequisites 4-1

Workstation Models 4-1
Graphics Hardware 4-1
Memory Requirements 4-2
Disk Space 4-2
Determining Your Configuration 4-3

Software Prerequisites 4-3
Linux Operating System 4-3
Compilers 4-4
Dependencies 4-4
X Servers 4-4
Swap Space 4-4

Using AVS on Linux Workstations 4-5
General 4-5
Window Manager 4-5
Starting AVS 4-6

Image Viewer 4-6
Network Editor 4-6

Modules 4-7
Image Output 4-7

_ _______ __________________
iv AVS 5.5 Release Notes Contents

_________ _ ___
Graph Viewer 4-7
Geometry Viewer 4-7

Stereo Support 4-7
Rendering Features 4-7
Notes 4-9

Programming Considerations 4-10
Compiling and Linking Modules 4-10
FORTRAN Modules 4-12

AVS on Linux Workstations: Known Problems 4-12
AVS on Linux Workstations: Fixed Problems 4-13

5 Extended Features__
Overview 5-1
Cool CD and UCD Builder 5-1

Support 5-2
AVS/Graph 5-3
Japanese Online Help 5-3
AVS/Voxel 5-4

Using AVS/Voxel 5-5
Documentation 5-6

Demos 5-6
Installing the Demos 5-6
Uninstalling the Demos 5-7
Running the Demos 5-7

6 Debugging in AVS 5__
Introduction 6-1
Coding and Porting 6-2

Module Generator 6-2
Common issues 6-2
Building for Debugging 6-5
AVS Examples 6-7

Command Line Interpreter 6-8
Debug switches 6-8
Writing scripts 6-9
Playing back scripts 6-10

Debugging Modules 6-10
Input and Output Data 6-11

Test input 6-11
Diagnostic output modules 6-11

Kernel debugging 6-13
Debug output 6-13
Runtime conditions 6-14

Working with AVS support 6-14
Requesting Module Source Code 6-15

__________________ _ _______
Contents AVS 5.5 Release Notes v

_ ___ _________

_ _______ __________________
vi AVS 5.5 Release Notes Contents

_________ _ ___
AVS 5.5
RELEASE

NOTES CHAPTER ONE_________ _ ___
__ _ _______

Release Highlights
This document describes Advanced Visual Systems Inc.’s Application
Visualization System (version 5.5) as it runs on Linux workstations.

AVS5.5 NOTES: As a convenience to the reader, changes made for
AVS 5.5 are summarized at the beginning of each chapter in "AVS
5.5 NOTES" blocks.

This release contains an operating system update to RedHat 6.0, plat-
form specific improvements (AVSGraph for Linux, shared library
kernel to support hardware graphics with shared OpenGL libs), new
features and documentation (including an online AVS5 doc set and
new debugging chapter) and bug fixes. The AVS Animator is now
unlicensed and included in the standard AVS 5 package; its source
code is provided in the examples directory and described further
under Chapter 3, "AVS 5.5 on UNIX Platforms."

This release provides the following enhancements:

Operating System Updates
Support for the RedHat 6.0 Linux operating system on PC’s. This
distribution has been tested using the egcs compilers standard in
that release.

OpenGL Graphics Library Support
Support for the OpenGL graphics renderer using the Mesa 3D
graphics library, an OpenGL-like library that supports software
rendering. A second kernel, avs_shr, is now provided which uses
shared Mesa libraries that can be replaced by the user with
OpenGL libraries to support hardware graphics adapters. Note:
Given the variety of cards and the rapidly changing market
place, AVS only supports and tests software rendering using the
Mesa libraries. AVS makes no representation as to the reliability
or quality of the graphics output when using substitute shared
libraries.

__________________ _ _______
AVS 5.5 Linux Release Notes Introduction 1-1

_ ___ _________
Release Highlights
(continued)

Foundation Improvements
A number of product improvements are in this release. These
include several new example modules, a new Geometry Camera
module, and new documentation of existing features. See Chapter
3 for cross platform changes and Chapter 4 for Linux specific
issues.

Documentation
Several AVS 5 documentation improvements have been made with
this release.

The AVS 5 documentation set is now available online in Adobe
PDF files providing the core set of books in a viewable, searchable,
and printable format. The set can be installed (AVS5_DOC product
archive) or read from the CD (/cdrom/avs5_doc on most platforms).
For more information, see Chapter 2, "AVS 5.5 Installation" for ins-
tallation options and Chapter 3, "AVS 5.5 on UNIX Platforms" for
information on obtaining an Adobe PDF reader for UNIX or Win-
dows platforms.

A new chapter has been added to this release note document that
provides an overall summary of how to approach debugging
modules in AVS 5.5 and prior releases. This chapter draws
together information and techniques from throughout the AVS 5
product and is targeted towards both new and experienced module
writers.

Licensing
The Linux port does not use any licensing software. The
AVS/Animator is now completely unlicensed on all platforms and
the full source code for it has been included into
$AVS_PATH/examples/animator.

___ _______
Organization

These Installation and Release Notes contain the following chapters.

Chapter 2: AVS 5.5 Linux Installation
Describes how to install AVS on your system from the media kit.

Chapter 3: AVS 5.5 on UNIX Platforms
Provides information common or important to all platforms,
including how AVS works under X windows and common pro-
gramming considerations. This chapter also includes a list of gen-
eral product improvements for the AVS 5.5 release. All users
should review this chapter in addition to the specific chapter for
their platform.

Chapter 4: AVS 5.5 for Linux
Describes platform specific information for the Linux platform

_ _______ __________________
1-2 Introduction AVS 5.5 Linux Release Notes

_________ _ ___
Organization

(continued)

including system prerequisites, release notes, and recent improve-
ments and known limitations.

Chapter 5: Extended Features
Describes a number of extensions made to AVS 5 in recent releases,
including the Cool CD, AVS/Voxel, Japanese Help and additional
Demonstration networks.

Chapter 6: Debugging in AVS 5
Provides a summary of suggestions and tips on developing and
debugging AVS modules; it draws together a number of techniques
and features that are available in different areas of the product.

__ _ _______
AVS 5.5 Media Kit

The AVS5.5 media kit contains the AVS5.5 Linux CD and release notes.
New users will also receive the AVS5 Documentation Set and Cool CD.

The Cool CD provides a wealth of third party software from the IAC
and other sources. The UCD Builder software on this CD does not
currently support Linux.

For AVS 5.5, the Cool CD was not updated; for the latest public
domain modules and information, users are invited to visit the Interna-
tional AVS Center web site at the University of Manchester at
http://www.iavsc.org. For more information see Chapter 5, Extended
Features.

__ _ _______
Implementation

OverviewThis product is a full implementation of Advanced Visual Systems
Inc.’s Application Visualization System (Release 5.5) on Linux worksta-
tions. With the addition of AVS/Graph and a shared library strategy
for accessing hardware graphics accelerators, the Linux port is now
comparable to other front line UNIX platforms.

Features introduced in recent releases are described in the Extended
Features chapter below.

AVS is fully described in the following manuals that accompany this
product in hardcopy and in the PDF archives on the CD:

• AVS Technical Overview

• AVS User’s Guide

• AVS Tutorial Guide

__________________ _ _______
Implementation Overview Introduction 1-3

_ ___ _________
Implementation Overview
(continued)

• AVS Module Reference Manual

• AVS Developer’s Guide

• AVS Application’s Guide

• AVS 5 Update

• AVS/Graph User’s Guide

The AVS Animator, which is now part of the standard AVS 5.5 release
is documented in its own manual, Animating AVS Data Visualizations.

The UCD Builder User’s Guide describes the UCD Builder, an unsup-
ported product delivered on the Cool CD. Note: This product is not
available for Linux at this time.

The Molecule Data Type, the libchem library that manipulates it, and
the collection of chemistry and example modules that show how to
program with libchem are documented in the Chemistry Developer’s
Guide manual. This manual is not included in hardcopy with the AVS
release but is available in the online PDF archive. It can be requested
separately from support@avs.com and will be provided free of charge.

Note: A few books were not available in PDF format at release time
(AVSGraph User’s Guide, Technical Overview, and UCD Builder’s Guide);
contact AVS Customer Support for possible future availability of these
book files from our web site.

_ _______ __________________
1-4 Introduction Implementation Overview

_________ _ ___
AVS 5.5

INSTALLATION
CHAPTER TWO_________ _ ___

__ _ _______
Introduction

AVS 5.5 is supplied on a multi-product compact disk (CD-ROM) pro-
viding AVS5 for Linux along with optional products including
AVS_DEMOS, a collection of extended product demos, and
AVS_JHELP, a Japanese version of AVS online help files.

There are five steps to an AVS5 installation:

Step 1
Decide where you want to install AVS5

Step 2
Mount the CD

Step 3
Install AVS5 from the CD, using either the RedHat RPM package
manager or using the install.avs installation script to unpack tar
archives

Step 4
Install the man pages if desired. Because the RPM packages are
relocatable this can’t be done reliably using RPM.

Step 5
Inform your users how to set the variables necessary to find AVS5
when they try to start it

AVS5.5 NOTE: No significant changes in installation have been
made from the AVS 5.4 release, except for the addition of the
AVS5_DOC archive containing the AVS 5 doc set in PDF format. If
you are already familiar with this process proceed with mounting the
CD, running gnorpm, and select which product(s) to install.

__________________ _ _______
AVS 5.5 Installation Installation 2-1

_ ___ _________
Introduction
(continued)

___ _______
Remote Installations

The installation process assumes that the system reading the installa-
tion media is where you also want to install the software. There is no
provision for "remote" data reads across the network. If the system
with the CD-ROM drive can’t access the file space where you want to
install AVS5, then:

• Mount the CD as described in Step 2.

• Copy the necessary files from the CD to disk space that is accessi-
ble to the remote system. This requires either the RPMS directory
or the install.avs script and the required <product>.Z files.

• Execute Step 3 to install the software on the remote system, using
the disk space pathname as if it were a CD.

___ _______
Step 1: Decide Where
to Install AVS5 AVS5 assumes it will be installed under /usr/avs, but it can be installed

anywhere in a file system hierarchy.

The Linux port requires around 55 Megabytes of disk space, with more
space required to compile the module examples or to install optional
packages. This sort of space may not be readily available under /usr so
you may want to select other disk space.

Decide on a location that will have adequate space and access for your
users. Once installed you can need to tell your users how to set up
their path environment to use AVS. For more information, see "Step 5"
instructions below.

___ _______
Step 2: Mount the CD

Mount the CD-ROM to make its contents accessible. Login as the
"root" user, insert the CD and use the appropriate mount command for
your Linux distribution. The standard command for RedHat is

mount -r /dev/cdrom /mnt/cdrom

NOTE: If you experience difficulty mounting the CD, please confirm
that it is functioning normally using other CD’s you have, such as the
RedHat distribution CD or by running /usr/bin/X11/xplaycd with a
music CD.

When you are finished, you will need to unmount the CD, which usu-
ally uses this command:

_ _______ __________________
2-2 Installation AVS 5.5 Installation

_________ _ ___
Step 2: Mount the CD

(continued)

umount /mnt/cdrom

__ _ _______
Step 3: Install AVS5

from the CDThere are two different ways to install AVS5 and the optional products
from the CD. Users of the RedHat Linux distribution should use the
RPM mechanism for greater convenience installing and managing the
products. If RPM is not available on your system, you can use the
traditional AVS5 installation tool, install.avs, which presents a list of
available products, checks space requirements, and handles unpacking
the selected tar archives. Either way you select, the package contents
are the same.

__ _ _______
RPM installation

RPM packages can be installed either using the GUI interface (gnorpm)
or using the command line interface (rpm). The GUI interface is the
most convenient but will only allow you to install AVS5 into the
default location, which is /usr/avs. The command line interface provides
an option to install AVS5 into a different location, because the AVS5
RPMS are "relocatable".

RPM installation using gnorpm

The basic steps for installation are as follows:

1. Login as "root" and startup the gnorpm package manager, usually
from the menu bar.

2. Hit the "Install" button, then hit the "Add" button, and select the
directory /mnt/cdrom/RPMS/i386.

3. Select one or more of the following packages (where ∗ varies each
release):

• avs5-5-∗: AVS5.5 for Linux, default pathname /usr/avs,
around 55 Megabytes.

• avs5demos-5∗: AVS5 extended demo package, default path-
name /usr/avs_demos, around 25 Megabytes. See Chapter 5
for more information on installing the demo package and
setting it up after installation.

• avs5jhelp-5-∗: AVS5 help in Japanese /usr/avs_jhelp, around 3
Megabytes initially, approximately 10 Megabytes once built.

• avs5doc-5-∗: AVS5 Doc set in PDF format for viewing,
searching, and printing. Runs around 40 megabytes.

__________________ _ _______
AVS 5.5 Installation Installation 2-3

_ ___ _________
Step 3: Install AVS5 from
the CD
(continued)

4. Once you have determined what to add, select "close" on the
browser then hit the "Install" button. The packages will be
installed into /usr.

RPM installation using rpm

Using the rpm utility directly allows you to install the packages some-
place other that /usr. Once installed, you can use gnorpm to query, ver-
ify, or remove them later. NOTE: Make sure that gnorpm is not running
when you try to use rpm - they can’t both access the RPM database at
the same time.

Login as "root" and then list out the actual package names you have to
select from on the CD.

ls /mnt/cdrom/RPMS/i386

Install the desired package(s) where you want. For example, the fol-
lowing command would install the avs5 package under /home/me/avs.

rpm -Uvh --prefix /home/me /mnt/cdrom/RPMS/i386/avs5-5-1.rpm

Once installed, you can either set up a soft link from /usr/avs to the
install area,

ln -s /home/me/avs /usr/avs

or access it from the install area, using one of the techniques described
below under "Step 5" below.

When you are finished, you will need to unmount the CD, which usu-
ally uses this command:

umount /mnt/cdrom

Uninstalling RPMS

You can use gnorpm to uninstall any of the AVS5 packages.

First "clean up" the installed products.

• For avs_demo, go to the /usr/avs_demo and run the
"uninstall_demo" script to "detach" the demos from
/usr/avs/demosuite. Then type "make port_mods_clean" to
remove any built modules or data sets.

• For avs, go to /usr/avs/examples and type "make clean". This will
remove any built demos.

_ _______ __________________
2-4 Installation AVS 5.5 Installation

_________ _ ___
Step 3: Install AVS5 from

the CD
(continued)

Now use gnorpm by selecting the Applications and Graphics folders,
then selecting the package you want to delete, then selecting the
"Uninstall" button. If there are complaints about directories that can’t
be removed because of leftover files (like built examples, etc) use "rm"
to remove these manually.

__ _ _______
Traditional AVS5

installationNOTE: If you have already installed using RPMs, please skip ahead
to section "Step 4: Install man pages".

The install.avs installation script uses the tar command to read AVS 5
off of the media. In almost all cases, tar will keep the AVS 5 file pro-
tections as they are on the media. The script will catch and warn you
when this may not be true.

During installation tar will assign the files the user and group owner-
ship of the user executing the installation script. Be conscious of this
and execute the installation script as the entity—either root or
otherwise—suitable for the pattern of use at your installation.

1. Run the install.avs installation script.

/mnt/cdrom/INSTALL.AVS

2. Product Selection:

You will see a table of possible product choices.

This CD-ROM provides the following AVS products:

Name Platform Product Version Size in Megabytes
LINUX LINUX AVS 5.5 (50.79) 55 (55034 Kbytes)
AVS_DEMOS all AVS_DEMOS 5.5 (1.4) 25 (25600 Kbytes)
AVS_JHELP all AVS_JHELP 5.01 (1.4) 3 (3072 Kbytes)
AVS5_DOC all AVS5_DOC 5.5 (1.0) 40 (40000 Kbytes)

Please enter the Name of the product to install [default LINUX] or type quit:

Enter the name of the product you want to install, for example:

LINUX

NOTE: See Chapter 5 for more information on completing the
installation of the AVS_DEMOS demo package.

The script confirms the selection with a message like the following:

__________________ _ _______
AVS 5.5 Installation Installation 2-5

_ ___ _________
Step 3: Install AVS5 from
the CD
(continued)

Selecting LINUX

3. The script asks to confirm the CD-ROM mount directory:

The default CD-ROM directory is /mnt/cdrom
If this is OK, hit return, otherwise enter the appropriate directory:

Either press return or enter a different CD-ROM directory.

4. Select Installation Directory

The script prompts for an installation directory. The default
("[/u2]:" for the example) is the current directory. Note: the
script creates the avs directory automatically. Pressing return at
this point will create /u2/avs.

Enter directory in which to install AVS
[/u2]:

Since you’ve already changed to the directory in which you want
to install AVS, press return.

5. If this directory contained an existing copy of a directory called
avs, you will see the following:

There is an existing directory called /u2/avs.
Move it now or it will be removed.
[Hit return to continue]:

If you do not want the existing copy deleted, then use another
window to move it or type Control-C to terminate the installa-
tion.

6. Next you will see:

mkdir /u2/avs; cd /u2/avs

followed by a message like the following. The exact format and
size estimate varies from platform to platform.

Installing AVS in: /u2/avs

AVS requires approximately: 60 Megabytes (61440 Kbytes) of data
df -k yields:
File System kbytes used avail capacity Mounted on
/dev/sd0a 7735 5052 1909 73% /
/dev/sd0g 151399 126178 10081 93% /usr
/dev/sd1c 299621 185600 84058 69% /u2

_ _______ __________________
2-6 Installation AVS 5.5 Installation

_________ _ ___
Step 3: Install AVS5 from

the CD
(continued)

/dev/sd3c 189534 126055 44525 74% /home2

Ensure that /u2 has enough space then hit return or type quit:

Note that the actual Kbyte size may vary from what is listed
here.

7. Hit return and the installation will begin.

Note: At the end of the installation the script tells you that you
may optionally run "install.avs links to setup links from /usr".
Read the discussion under "Step 5" before deciding to do this.
The links from /usr are no longer required.

Reading AVS from media
Reading LINUX archive
tar -xvof /dev/rmt/0m
x .version, 33 bytes, 1 blocks
x ./bin/avs_dbx, 2708 bytes, 6 blocks
x ./bin/avs, 2589380 bytes, 5058 blocks

.

.
122978 blocks
Read from media successfully
Installation of AVS is complete.
You may optionally run "./install.avs links" to setup links from /usr.

Note that the actual block count may vary from what is listed
here.

8. Unmounting the CD

If you mounted the CD as root, you will need to unmount as root
also. This is usually done with the umount command with either
the directory name or device name as argument:

umount /mnt/cdrom

__ _ _______
Step 4: Install man

pagesThe avs man page is supplied in two forms:

• an avs.6 nroff/troff source file. This file can be copied to one of the
unformatted /usr/man/man man page directories and renamed
appropriately. This is what RedHat 6.0 expects.

__________________ _ _______
AVS 5.5 Installation Installation 2-7

_ ___ _________
Step 4: Install man pages
(continued)

cp <install_dir>/avs/runtime/help/modules/avs.6 /usr/man/man1/avs.1

• an avs.txt pre-formatted ASCII text file. This file can be copied to
one of the pre-formatted /usr/man/cat man page directories and
renamed appropriately

cp <install_dir>/avs/runtime/help/modules/avs.txt /usr/man/cat/avs.1

Copy the file, in whichever form is suitable for your system, to its
appropriate man page directory. See your platform’s documentation
for more information on how man pages are handled on your system.

You may need to manually update the whatis database with the one-
line description at the top of the man page to make it findable with the
man -k command. On Redhat, as the root user, run /usr/sbin/makewhatis
to update the database.

___ _______
Step 5: Tell Users How
to Find AVS This section summarizes what users need to do to find AVS. The story

is described in more detail in the "$Path—Installing and Finding AVS
Anywhere in a Directory Tree" section of the AVS5 Update manual.

In order to find AVS, you and all of your users will have to define the
AVS path or set up links to direct /usr/avs to point to where avs is
installed. Using the path approach is recommended.

___ _______
Setting the AVS_PATH

Briefly, assuming AVS5 was installed in /u2/avs, both you and your
users would:

1. Add /u2/avs/bin to your directory file search path.

2. Tell AVS5 where to find itself by one of three methods, in this
order of precedence:

• Start AVS5 with the -path option:

avs -path /u2/avs

• or, define Path in your personal .avsrc file:

Path /u2/avs

_ _______ __________________
2-8 Installation AVS 5.5 Installation

_________ _ ___
Step 5: Tell Users How to

Find AVS
(continued)

• or, set the AVS_PATH environment variable in one of the
user’s startup files, usually either .login or .cshrc (csh), or
.profile (sh/ksh).

csh: setenv AVS_PATH /u2/avs

sh/ksh: AVS_PATH=/u2/avs
export AVS_PATH

It is convenient to define AVS_PATH even if the other
mechanisms are used so that one can find AVS5 files by
referring to $AVS_PATH/filespec.

• If none of these is explicitly defined, Path will default to
/usr/avs.

__ _ _______
Setting up links

To avoid the need to work with the path, you can set up links that
point from /usr/avs to the actual installation area. Additional links are
needed to find the include directory, etc. The install.avs install script
offers to set these up for you but it may be easier to set them up
manually so you know explicitly what is involved.

Assuming that AVS is installed in /u2/avs, you would create the follow-
ing link as the root user:

ln -s /u2/avs /usr/avs

These additional optional links can be added to make it easier to run
the standard AVS executables and to more readily reference the AVS
include files:

ln -s /usr/avs/bin/avs /usr/bin/avs
ln -s /usr/avs/bin/avs_dbx /usr/bin/avs_dbx
ln -s /usr/avs/include /usr/include/avs

__ _ _______
Distribution Contents

All files for this distribution are kept in the directory in which you
installed AVS.

The following is a detailed listing of the contents of this release:

avs/LUI
Contains LUI-specific runtime files, the pixmaps for the icons used
in AVS.

__________________ _ _______
AVS 5.5 Installation Installation 2-9

_ ___ _________
Distribution Contents
(continued)

avs/applications
Contains the command files for the canned applications.

avs/avs_library
Contains the supported module executables. Also contains the Ani-
mator executable and the animation module executables.

avs/bin
Contains most of the geometry conversion executables that were
created in the filter directory and the avs and avs_dbx programs.

avs/chem_lib
Contains the Chemistry module executables.

avs/data
Contains sample datasets for use with AVS.

avs/demo
Contains a number of demonstration CLI scripts that allow you to
more easily explore AVS5 functionality. You can access the scripts
through the Help Demos button on the Help Browser.

avs/demosuite
Contains all the CLI scripts and help text associated with the AVS
Demo Suite. You can access the scripts through the AVS5 Demo
button under AVS5 Applications.

avs/examples
Contains source files for example AVS5 modules. It also contains a
Makefile that you should use as a template for your own module
make files.

avs/filter
Contains the source and some example data for building geometry
tools and for template/example geometry converters.

avs/include
Contains the header files necessary for using the AVS5 libraries.

avs/lib
Contains the library files necessary for using the AVS5 libraries.

avs/math
Contains information and files to enable a direct interface between
AVS5 and Mathematica. (See the README file in that directory
for more information.)

avs/networks
Contains links to the viewer subdirectories of avs/applications,
which can be used to access sample networks that make up the

_ _______ __________________
2-10 Installation AVS 5.5 Installation

_________ _ ___
Distribution Contents

(continued)

canned viewer applications.

avs/relnotes
Contains printable PostScript versions of these Installation and
Release Notes. The printer must support the Palatino font.

avs/runtime
Contains AVS-specific files that must exist in order to run bin/avs,
including the online help files.

avs/test
Contains an automated test procedure for verifying AVS5 opera-
tion.

avs/unsupp_mods
Contains the unsupported module executables.

__ _ _______
Source Code

Source code provided with this release consists of templates and exam-
ples that are useful for creating new geometry converters (in
<installdir>/avs/filters) and AVS modules (in <installdir>/avs/examples).
The AVS/Animator module source code is now under the
examples/animator directory as well. For more information see Chapter
3, "AVS 5.5 on UNIX Platforms".

Source code for AVS supported modules may be requested through
AVS Customer Support. Please see Chapter 6, "Debugging in AVS5.5"
for more information.

__________________ _ _______
AVS 5.5 Installation Installation 2-11

_ ___ _________
Source Code
(continued)

_ _______ __________________
2-12 Installation AVS 5.5 Installation

_________ _ ___
AVS 5.5 ON UNIX

PLATFORMS
CHAPTER THREE_________ _ ___

__ _ _______
Introduction

This chapter discusses information common to all platforms - new
features and documentation; implementation information regarding the
X Window environment and OpenGL graphics libraries; programming
tips and topics; and defects fixed for this release.

AVS 5.5 NOTE: Several new features have been added (Geometry
Camera module, new examples, Event masking) and the Animator
source code is included; OpenGL stereo support has been broadened
to include higher end SGI workstations, Compaq Tru64 Alpha,
Solaris, and HP Workstations (IBM and Linux have not been tested);
the AVS 5 documentation set is now online on the CD in PDF for-
mat; new documentation has been added on a number of topics; and
a significant number of bugs have been fixed affecting all platforms.
See the appropriate sections below.

NOTE: This document only covers platforms and operating systems
that are currently supported for AVS 5.5. If you require versions of
AVS 5 to run on older operating systems, please contact AVS Custo-
mer Support or your local distributor for appropriate media and
release notes.

Following this chapter are platform specific chapters which document
the differences, special considerations and known problems unique to
that platform. Each chapter provides information on the following:

• hardware prerequisites (graphics hardware, memory, disk space
and swap space)

• software prerequisites (operating system, graphics software, and
other topics)

• general usage information (how AVS subsystems work)

• programming considerations for C, C++, and FORTRAN module
writing.

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-1

_ ___ _________
Introduction
(continued)

___ _______
New Features in AVS
5.5 AVS 5.5 includes the following new features:

• Geometry Camera module provides a better secondary camera to
support the Geometry Viewer module

• Event Masking provides a means of masking out undesirable
mouse or function key input to the Geometry Viewer

• Additional example modules provide a sample FORTRAN corou-
tine, a new test field data generator, and a GEOM data
output/viewer module

___ _______
Geometry Camera

A new builtin "Geometry Camera" module has been added to provide
improved support for secondary cameras associated with a Geometry
Viewer module. This wraps a camera window within a user interface
like the Geometry Viewer module’s main camera window, but does
not provide image output and other Geometry Viewer features.

The Geometry Viewer module produces a main camera ("view") with
the following characteristics:

• a title bar editable by the Layout Editor and recorded in net-
works

• an upper-left-dimple activated menu including zoom, unzoom,
etc.

• resistance to being closed using ordinary window manager com-
mands

• position and layout recorded in networks and scripts

In the Geometry Viewer (as opposed to the module with the same
name), adding a new camera (Camera/New Camera) produces a cam-
era without these characteristics.

The new Geometry Camera module takes as input a specific Geometry
Viewer module output ("Trigger" - colored pink and now visible) to
associate itself with that module and adds a new camera to this main
view with all the characteristics noted above. A Geometry Camera can
be detached from one viewer and reattached to another, restored from
a network file properly, edited by the Layout Editor, and destroyed
without adverse effects.

_ _______ __________________
3-2 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
New Features in AVS 5.5

(continued)

Demonstration:

• Start the Network Editor, then on "AVS Network Editor" panel,
hit Help, then hit Demos. Close Help window.

• Select "..(demo)" at the top of the menu to go up one directory
then go down into the "geom_viewer" directory.

• Run geom_camera script to create multiple Geometry Viewers
with geom_camera modules attached to them.

__ _ _______
Function Key, Arrow

Key, Mouse Event
Masking

A new feature has been added to "mask out" events coming from
specific function keys, arrow keys or mouse events. This permits custo-
mers to prevent their end users from inadvertently performing various
Geometry Viewer transformations linked to these keys. The developer
encodes the key values in a "mask" in which each bit represents a func-
tion key, arrow key or mouse click. The combined mask is then set in
the .avsrc file.

Function Key mask (KeyMask):

• Bits, 1-12: Function Key 1-12

Arrow Key mask (ArrowMask):

• Bits 1-4: Left/Right/Up/Down

• Bits 5-8: Shift Left/Right/Up/Down

Mouse key values: (MouseMask)

• Bits 1,2,3: Left/Middle/Right

• Bits 4,5,6: Control - Left/Middle/Right

• Bits 7,8,9: Shift - Left/Middle/Right

Sample .avsrc file: (Values may be in hex, decimal, octal, etc)

KeyMask 0x3 (Bits 1, 2 - masks out Function Key 1, 2)
ArrowMask 0x1 (Bits 1 - masks out Arrow key 1 (left)
DebugMask 0x1 (Bits 1 - prints out debug messages)
MouseMask 0x48 (Bits 4, 7 - mask out Control-Left and Shift-Left)

Demonstration:

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-3

_ ___ _________
New Features in AVS 5.5
(continued)

• Create a .avsrc file in your home directory or the current direc-
tory with the sample shown above. See the AVS User’s Guide,
page 5-12 "Transforming Objects" which details what mouse key
strokes should do.

• The DebugMask will show debug messages like "Mask Values:"
and "Masking out xxx" as appropriate events occur and are
masked out.

___ _______
New Example modules

Several new example modules have been added in AVS 5.5.

• Corout f.f - a second FORTRAN coroutine example showing how
basic data types are passed in and out

• Test field.c - a more advanced field data pattern generator for
testing

• Write geom.c - a diagnostic output module for the GEOM data
type

Corout f.f

This module is a more complete example of a FORTRAN coroutine
that shows all basic data types being passed in as inputs and parame-
ters and then copied out as outputs.

A test script is provided to show all inputs and outputs in use -
$AVS_PATH/demo/examples/corout_f.scr

Test field

This module has been used extensively in internal testing at AVS and
is being provided to help users produce a wider range of diagnostic
test field data for testing their own modules or providing simple test
cases back to AVS Customer Support to demonstrate problems they
are having with supported modules. It also provides a more extensive
example of a module that is actively managing and reconfiguring its
user interface using CLI commands and the AVScommand function.
NOTE: Test field’s name is close to that of two earlier and simpler test
field examples, used to demonstrate C and FORTRAN field creation.

Documentation is provided as an online module man page under
$AVS_PATH/runtime/help/modules/test_fld.txt which should appear when
you select module documentation for the module.

A test script is provided to show several different sample outputs -
$AVS_PATH/demo/examples/test_fld.scr.

_ _______ __________________
3-4 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
New Features in AVS 5.5

(continued)

Write Geom

This module provides a variant on the "print field" diagnostic module
that provides both binary and text output from GEOM data. It is use-
ful to help diagnose GEOM data issues by displaying the data in a
more readable form; often issues relate to extreme data values and
invalid values such as "NaNs" (not-a-number). It also provides a sim-
ple example of how modules such as "print field" are able to display
text files in a text window as part of an AVS 5 network.

Write Geom writes GEOM format data to a binary output file then
uses an external filter program ($AVS_PATH/bin/geom_to_text) to con-
vert the binary file to a text file. It then uses an AVS text browser
widget to view the text file within the AVS user interface. The binary
file is readable by "read geom"; the text file can be read using any text
editor.

The binary file name must be set before any output is generated. Once
this is set, the binary file is written out and the text file automatically
produced and read into the browser. A very large GEOM file might
generate enough data to cause the module to crash when read in.
Unsetting the text file name in the module will prevent it being gen-
erated or read in; you can use geom_to_text externally as needed.

A test script is provided to show this module in use -
$AVS_PATH/demo/examples/write_geom.scr.

__ _ _______
AVS/Animator source

codeThe AVS/Animator module source code is now provided with the
example modules, both to provide a more extensive example module
and to offer users the opportunity to extend the Animator to provide
alternate output formats not currently supported. For more informa-
tion in general, see the associated end user documentation in the
Animating AVS Data Visualizations manual included in the main doc set
and in the online PDF files provided with AVS 5.5.

The source code is located under $AVS_PATH/examples/animator and
consists of a number of subdirectories containing the Animator
module, supporting libraries, and the associated modules that make up
the Animator package. It consists of the following subdirectories:

• anim_lib: Animation operations needed by the Animator module.

• asf: Applications Support Functions library which is responsible
for the parsing of the menu file and the generation of the user
interface menus.

• avs_library: Empty directory that the modules will be installed
into

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-5

_ ___ _________
New Features in AVS 5.5
(continued)

• bfa: The Animator module source code, starting with bfa_main.c
which defines the Animator user interface and module compute
operations.

• lib: Empty directory that anim_lib and asf will copy libraries to;
the Makefile will add links to standard AVS libraries here also.

• modules/animator: Source code for supporting modules such as
output ImageNode, output VideoCreator, prepare video, read

frame seq and write frame seq.

In order to make the animator from source code, do the following:

cd $AVS_PATH/examples/animator
make

This will create a few links from the animator source to the standard
$AVS_PATH installation areas, then visit the subdirectories to make the
supporting libraries and modules.

___ _______
Documentation
updates

___ _______
AVS 5 Documentation
set in PDF format The AVS 5 documentation is now available online in Adobe PDF (Port-

able Document Format) files providing the core set of books in a view-
able, searchable, and printable format. The set can be installed from the
AVS5_DOC product archive or read directly from the CD
(/cdrom/avs5_doc on most platforms). Advanced Visual Systems grants
users permission to print and make copies of part or all of the docu-
mentation set for internal use at their site. Note: A few books were not
available in PDF format at release time (AVSGraph User’s Guide, Techni-
cal Overview, and UCD Builder’s Guide); contact AVS Customer Sup-
port for possible future availability of these book files from our web
site.

Installation

The AVS 5 Documentation package can be installed onto your hard
disk if you use install.avs and select the AVS5_DOC package to install
in $AVS_PATH/avs5_doc or a directory of your choice. The same files
are available for direct access on the CD in the avs5_doc directory at the
top level; the full pathname may be /cdrom/avs5_doc or
/CDROM/AVS5_DOC depending on your platform’s CD conventions.

You will need a copy of the Adobe Acrobat Reader in order to read or
print the PDF files. If you don’t have a copy you can download the
software at no cost from the Adobe web site at

_ _______ __________________
3-6 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
Documentation updates

(continued)

http://www.adobe.com/prodindex/acrobat/readstep.html. Most UNIX plat-
forms are supported as well as Windows 95 and NT.

Getting Started

Once you have obtained an Acrobat reader and have installed the
package or mounted the CD for direct access, open up the introductory
file, $AVS_PATH/avs5_doc/intro.pdf, which provides a general overview
of the organization and evolution of the AVS 5 documentation set,
information on where to get started, and direct links into the indivi-
dual manual PDF files stored under the books subdirectory. Live links
are highlighted with a red border and will take you directly to the
appropriate section or manual file as appropriate; the Table of Con-
tents of each manual also contains live links into the chapters and sub-
sections of each manual for easier access.

If you should have any troubles using the external links in the intro.pdf
file, you can directly access the individual manuals in the books sub-
directory. Note: If you are printing out sections of the PDF files, you
must set the Postscript level to "Level 1" in the print dialog; selecting
"Level 2" will cause problems with some of the images.

__ _ _______
New Chapter:

Debugging in AVS 5A new chapter has been added to this release note document that pro-
vides an overall summary of how to approach debugging modules in
AVS 5.5. This chapter draws together information and techniques from
throughout the AVS 5 product and is targeted towards both new and
experienced module writers.

__ _ _______
AVSfield_points_array_size

The AVSfield_points_array_size routine was not previously docu-
mented but has been available since AVS 5.0.

C:
AVSfield_points_array_size (uniform, ndim, nspace, dimensions)

int uniform, ndim, nspace, ∗dimensions;

FORTRAN:
AVSFIELD_POINTS_ARRAY_SIZE (UNIFORM, NDIM, NSPACE, DIMENSIONS)

INTEGER UNIFORM, NDIM, NSPACE
INTEGER DIMENSIONS(ndim)

This routine calculates the number of items in a field points array
depending on the type of field it is.

Inputs: uniform - One of UNIFORM, RECTILINEAR, IRRREGULAR,
or UNIFORM_DONTCARE.

ndim - Number of dimensions in computational space.
nspace - Number of dimensions in model space.

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-7

_ ___ _________
Documentation updates
(continued)

dimensions - Array of ndim values.

Returns: Number of floating point values required for the points array.

___ _______
AVSoutput_string

The AVSoutput_string function is a utility to help FORTRAN modules
allocate strings for use as function outputs. It has existed since at least
AVS 5.3 but has not been formally documented.

FORTRAN:
INTEGER AVSOUTPUT_STRING (OUTPTR, STRING)

INTEGER OUTPTR
CHARACTER∗(∗) STRING

This routine converts a FORTRAN string value to a newly allocated
copy that can be sent to output. It will automatically allocate/reallocate
storage space as needed.

Inputs: outptr - pointer to string copy passed into the compute function
to hold the output string.

string - FORTRAN string buffer to be copied
Returns: 0 if failed, 1 for success

___ _______
AVSpath variable

AVS 5 modules can find out the path to the home AVS 5 directory by
using the AVSpath variable. This is now included in the
$AVS_PATH/include/avs.h header file but in releases prior to AVS 5.5
needs to be directly declared as shown in this example from the AVS-
Graph module which is using AVSpath while looking for the
$AVS_PATH/runtime/AVSGraph directory:

extern char ∗AVSpath;

if (AVSpath != NULL)
putenv(strcat(strcat(tmpstr,AVSpath),"/runtime/AVSGraph"));

else
putenv("UNIDIR=/usr/avs/runtime/AVSGraph");

___ _______
Choice value output
example Some customers have had trouble in successfully sending a string

value from one module to act as a choice value input or parameter
value in another module downstream. The following is an example of
of a generic choice output module description and compute function.
The resulting string will be typed as a choice and passed to any
module needing a choice parameter downstream. In this case it is up
to the user to know valid choices that will be acceptable downstream.

_ _______ __________________
3-8 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
Documentation updates

(continued)

MODchoice()
{

int choice_compute(), param;

AVSset_module_name("choice", MODULE_DATA);
AVSset_module_flags(COOPERATIVE | REENTRANT);
AVScreate_output_port("choice_value", "choice");
param = AVSadd_parameter("choice_string", "string", 0, 0, "");

AVSset_compute_proc(choice_compute);
}

static choice_compute(outvalue1,invalue)
char ∗invalue, ∗∗outvalue1;
{

if (!invalue)
return(1);

∗outvalue1 = strdup(invalue);
return(1);

}

__ _ _______
Read Field module
accepts short dataThe current Read Field documentation does not mention it, but the

module does accept short data and has done so since AVS 5.0 on all
platforms.

__ _ _______
Geometry Viewer object

parameterThe man page does not provide information on this parameter. It is
used to see what the current object is (used in the Data Viewer module
for example). You can NOT change the current object by setting this, as
it is for informational use only.

__ _ _______
Unexposed command

line optionsA number of existing AVS command line options have previously not
been exposed or documented but were used for internal testing pur-
poses. Because some of these may be useful to customers they have
been documented in the usage command line option and are described
below:

• -mod_host <host>: default host to run modules on. This will
result in nearly all supported modules being run as remote
modules on the given machine. The machine must be present in
the .hosts file.

• -mod_time: print out time spent in each module executed. This
option can be useful for analysing where execution time is being

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-9

_ ___ _________
Documentation updates
(continued)

spent.

• -no_display: run without visible windows. AVS always requires
access to an open X display in order to allocate resources for the
Geometry and Image Viewers. This option will prevent virtually
all windows from being mapped to the display, running invisibly
without disturbing existing users of the workstation.

• -swrender: Select software renderer as default instead of the
hardware renderer. The hardware renderer may still be selected,
unlike -nohw.

• -test_path: Specify testing directory, exposed to test networks and
scripts as the CLI variable $TestPath; used as a pathname refer-
ence during internal testing.

• -vistype: (New in AVS 5.5) Specify the visual type in the same
way that the "VisualType" avsrc option works. Recognizes the
first letter of the visual types for convenience and ignores the rest
of the token. Recognized values include D(irectColor),
P(seudoColor), T(rueColor), and V(isualID) <vid>. For example,
the following would set avs to use VisualID 0x31 (use xdpyinfo to
see a list of your available VisualIDs).

avs -vistype v 0x31

___ _______
New Arbitrary Slice
parameter Slice Size The arbitrary slice module selects a plane size based on the XY extent

of the object being viewed. Depending on the object, this plane may
not be large enough as it is rotated around within the overall dimen-
sions of the object - for example, an oblong brick object with the XY
cutting across the small dimension of the brick would use a small
square slice plane that won’t extend across the length of the brick.

This has been fixed by adding a new choice parameter to the module
called "Slice Size" with the following choices:

• XY slice: use the XY slice as the plane size

• YZ slice: use the YZ slice as the plane size

• ZX slice: use the ZX slice as the plane size

• Diagonal slice: use the diagonal of the extents (across opposite
corners) to determine the size of the plane.

_ _______ __________________
3-10 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
__ _ _______

X Windows and
Graphics

__ _ _______
X Implementation

AVS runs as an X Window System client. It uses X protocol requests
(via Xlib) to the X server to produce its user interface. The interface
includes:

• the main AVS menu

• the Image, Geometry, and Graph Viewer control panels

• the Network Editor

• all control widgets such as file browsers, pop-up menus, dialog,
message, and help panels

• the Image viewer’s viewport windows, and the display image
module’s output window

• the Graph Viewer’s plot windows

The images that appear in Geometry Viewer scenes windows can be
produced by two different rendering mechanisms:

• A software renderer that implements a set of graphics primitives
(polygons, lighting model, perspective, shading, color, etc.) in
software, rendering the resulting image into an X Window Sys-
tem image. The image is transferred to the X server using the
xlib XPutImage call.

• A hardware renderer that uses the hardware graphics library to
create renderings that are displayed on the screen using the
platforms’s native hardware graphics subsystem. Depending on
the platform this library will be GL, OpenGL, XGL, or PHIGS.

You can switch between hardware and software renderers while AVS
is running using the rendering switches provided on the Geometry
Viewer Cameras submenu. You can control which renderer will be the
default active renderer when AVS first starts using the -renderer com-
mand line option or Renderer keyword in your personal .avsrc file.
When multiple hardware renderers are available, you need to start dif-
ferent avs kernels to access them (avs, avs.gl, avs.phigs, etc.).

Z Buffer Required for Hardware Rendering: On IBM and SGI plat-
forms, the hardware renderer requires the presence of a Z-buffer in
order to function. A Z-buffer should be present on all SGI platforms

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-11

_ ___ _________
X Windows and Graphics
(continued)

except the Personal IRIS, where it is an option. On the IRIS Indigo, the
hardware Z-buffer and GL graphics functions are emulated in
software. On IBM or SGI systems without a Z-buffer, you must use
the software renderer.

Both hardware and software renderers will function on 8-plane pseu-
docolor or 24-plane true color frame buffers. However, you will need
to establish the correct X color visual, since the default X visual used
by the X server when it starts is not always the most powerful that the
system is capable of supporting. This is discussed in the "Starting
AVS" section of the appropriate platform specific chapter.

All screen output that AVS performs on the display via X Window
System calls is bounded by the capabilities of the X server implementa-
tion on the workstation.

All rendering AVS does via hardware graphics library calls is bounded
by the capabilities of the particular library and its underlying hardware
graphics adapter.

The software renderer implements its own 3D graphics model, and is
bounded only by what graphics primitives it does or does not imple-
ment in software. However, the final color rendition on the screen is
constrained by the number of color planes that the X server creating
the window can support: 8 bits or 24 bits.

See the table and notes in the "Geometry Viewer" section in each plat-
form specific chapter for further details on rendering capabilities.

___ _______
Graphics Libraries:
OpenGL AVS 5.5 expands the use of OpenGL as a common graphics interface

for 3D hardware rendering, providing OpenGL as the default renderer
for all supported platforms, now including HP-UX 10.20.

OpenGL provides a more standard cross platform graphics layer for
AVS 5.5 and future releases. It enhances remote display graphics sup-
port and centralizes AVS 5 cross platform graphics support, permitting
better use of shared extensions in new releases.

Common features

A number of features are common to OpenGL renderers regardless of
platform. On UNIX platforms (X Windows), GLX is the OpenGL exten-
sion. It embodies a programming interface and a protocol for client-
server communication. GLX provides a mechanism for OpenGL to allo-
cate and control display resources on the X server. It binds an OpenGL
rendering context to a specific X visual that is selected from the list of
visuals supported by the X server.

_ _______ __________________
3-12 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
X Windows and Graphics

(continued)

There are certain restrictions on the visuals that can be used with
OpenGL. Only displays that use an RGB pixel format with a Z-buffer
support the OpenGL renderer. To double buffer the view window
under GLX, OpenGL must be supported in a double-buffered
TrueColor or DirectColor X visual with an associated Z-buffer. The
GLX specification requires that at least one such visual is supported.

Several UNIX tools enumerate the available X visuals and their support
for OpenGL via the GLX extension. A standard X Window program,
called xdpyinfo, lists X server parameters and all suported visuals with
their X Window characteristics. A GLX inquiry utility, xglinfo, is usu-
ally supplied with OpenGL examples. xglinfo lists general GLX parame-
ters as well as each X visual and its support for OpenGL. OpenGL ins-
tallations can repeat X visuals, which differ only in the configuration of
additional (non-X) buffers used by OpenGL (for example, alpha, depth,
stencil). RGB visual formats can be 8-bit (3-3-2), 12 bit (4-4-4), or 24-bit
(8-8-8). The OpenGL renderer does not use blending modes that
require the framebuffer to store alpha values. Note: If you do not have
xglinfo available on your SGI system, you can download it from
ftp://sgigate.sgi.com/pub/opengl/contrib/xglinfo.tar.Z.

OpenGL Renderer Information

When AVS instances a view, a set of inquiries is performed when the
OpenGL renderer is first instanced. The values returned from the
inquiries contain information about the platform that is used as the
OpenGL server (perhaps remotely), configuration of the OpenGL
implementation, supported extensions, and characteristics of the view
window. This information is used to configure the behavior of the
renderer, and it is written to the command terminal if the environment
variable AVS_OGL_INFO is set before running AVS.

setenv AVS_OGL_INFO 1

The following information is displayed when AVS_OGL_INFO is set:

• Confirmation that GLX is running on the server and the GLX ver-
sion number.

• The OpenGL version number, vendor name, hardware name, and
a list of supported extensions.

• OpenGL parameters are displayed. These are ARGB color buffer
depths, Z-buffer depth, maximum number of lights, and max-
imum 2D texture image dimensions.

• The type of connection to the X server (Direct or Indirect), X
visual id, and X visual class (TrueColor or DirectColor). The con-
nection tells whether OpenGL and GLX have direct access to the

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-13

_ ___ _________
X Windows and Graphics
(continued)

display when client and server are on the same machine. If the
type is Indirect, the client and server are remote or are they are
on the same server but display requests pass through the X
server. In general, direct connections are faster than indirect con-
nections when the display is local.

Performance

OpenGL performance will vary widely depending on the level of sup-
port for the graphics acceleration hardware your system is using. Most
newer graphics adapters will be well supported by OpenGL; older
adapters will usually be supported but may run slower than in previ-
ous AVS 5 releases. Certain vendor specific graphics features may not
be as well supported in OpenGL as in prior graphics libraries.

For this reason, AVS 5.5 provides alternate AVS executables on dif-
ferent platforms to continue support for the prior hardware rendering
interfaces: XGL on Solaris, GL on IBM and PHIGS on HP-UX 10.20.
These executables are provided in the $AVS_PATH/bin directory as
avs.xgl, avs.gl, or avs.phigs respectively. It is hoped that for most users,
the default OpenGL renderer will be most appropriate. When that is
not the case, the user may wish to make the alternate renderer the
default executable as follows:

cd $AVS_PATH/bin
mv avs avs.ogl
ln -s avs.gl avs /∗ Or "avs.xgl" or "avs.phigs" as appropriate ∗/

The renderer is always listed at the end of the version line to help
minimize confusion for the user and AVS Customer Support when the
need arises. For example

avs -version

might show "AVS version: 5.5 (50.85 SunOS5 ogl)".

Optimizing Performance

When using AVS’s software renderer option on lower-end platforms,
you will probably want to switch on Bounding Box on the Geometry
Viewer’s control panel to reduce the amount of rendering required
when you transform objects.

If you will be rendering polygonal spheres such as those produced by
the bubbleviz/scatter dots and particle advector modules, or molecular
ball and stick models, you should use the Subdivision slider at the
bottom of the Geometry Viewer’s Object menu to reduce the number
of polygons used to approximate a sphere. The 1 value represented by
having the slider all the way at the left will render a sphere as an 8-

_ _______ __________________
3-14 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
X Windows and Graphics

(continued)

sided diamond. You can always increase the value after you have
arranged the scene for high-quality output.

Texture Mapping Limitation

Texture map size is limited by the local implementation of OpenGL
and varies across vendors and platforms, ranging from a limit of 64 by
64 pixels to 4096 by 4096 pixels or more. OpenGL also requires that
texture maps be scaled to powers of two. When you provide a texture
map that exceeds your local systems limit or is not a power of two,
you will see warning messages (OGL_load_texture errors). If this
causes problems, select the "Filter Texture" button, then reload the tex-
ture; this will scale your texture to fit the hardware limitations and
smooth out the result.

OpenGL Errors

The following explains some of the more common errors you may
encounter when running OpenGL.

Initialization Errors (GLX).

• no GLX extension on this X server OR cannot get version of GLX:
The GLX extension that supports OpenGL is not available or was
not configured in the X server when it started. On some plat-
forms, you must start the X server with command line options to
get OpenGL and double buffering. See the system prerequisites
chapter for your platform.

• cannot find OpenGL visual: GLX and OpenGL are supported, but
do not provide a satisfactory visual for use by AVS. The
specification of GLX ensures that at least one single buffered
visual is available. Try to re-instance the OpenGL renderer for a
view in single-buffered mode.

• glXCreateContext failed OR cannot create colormap: GLX and
OpenGL are available, and a satisfactory visual was found on the
server. However, other resources were not found and the server
cannot create an OpenGL renderer window or the associated X
colormap.

General Errors.

• no support for 3D texture: The application tried to display an
object with 3D texture on a system that does not support the
OpenGL 3D texture extension. Note that 3D textures cannot be
displayed from a remote client unless the client also supports the

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-15

_ ___ _________
X Windows and Graphics
(continued)

relevant extensions. If you do not have one of these high-end
machines, use the Software Renderer to display 3D texture.

• cannot create texture display list: OR texture dimensions (mxn) exceeds
system limit (N) The graphics display supports texture, but ran
out of resources allocating texture memory from the host’s main
memory or from the graphics adapter. Reduce the size of the tex-
ture using filter modules (for example, downsize), or allocate
more swap space, main memory, or hardware texture memory.

• OpenGL error X in gluBuild2DMipmaps (glTexImage3DExt,
glTexImage2D, gluScaleImage): A standard OpenGL error occurred
in one of these functions. The OpenGL error message should fol-
low this error. Possibly, texture memory overflowed, in which
case, reduce the size of the texture using filter modules (for
example, downsize) or allocate more swap space, main memory,
or hardware texture memory.

___ _______
X Server Color

On 24-plane true color systems, each pixel can have one of 256 red x
256 green x 256 blue (16,777,216) color values. There are 8 bits to
represent red tones, 8 bits for green tones, and 8 bits for blue tones.
The red, green, and blue tones combine to create the actual pixel color.

On 8-plane pseudo color systems, each pixel can have one of 216 color
values. There are 6 red tones, 6 green tones, and 6 blue tones. To
display a true color image on an 8-plane pseudo color device, AVS
takes the original red value for each pixel and finds the closest numeric
value from among the 6 reds available. It does the same for green and
blue.

AVS then takes the pixmap that is made up of these three best-matches
and applies a dithering algorithm to the pixmap. Dithering uses the
fact that the human eye will interpolate between dots of color, creating
the impression of a color value between two actual color values. The
dithering process corrects for information lost in the 256-to-6 reduction
by comparing how far off each final pixel value was from the original
value against a dithering matrix. Some pixel values have their
red/green/blue values adjusted up or down to create a closer approxi-
mation to the original true color image. This might sound very lim-
ited, but the end result is surprisingly satisfactory.

The Image Viewer and display image module have an option that
turns off dithering on 8-plane systems when no change to the original
image appearance is desired.

Note: The IBM 24-bit High Performance Adapter only supports the 8-
plane pseudo color X visual under some OS levels. See the IBM
chapter below for more information.

_ _______ __________________
3-16 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
X Windows and Graphics

(continued)

Warning: reducing color usage

On some 8-plane systems, the applications already running on the
workstation may have already allocated so many cells in the 256 entry
colormap that there are not enough for AVS to use 6 tones for red,
green, and blue. In this case, you will see a message like the following
when AVS starts up:

Warning: reducing color usage: R-5, G=5, B=5, Grey=17

indicating that AVS is reducing its colormap cell usage.

If you get this message on a truecolor system, it means you have the
wrong default visual. See the "Visual Type" section later in this
chapter.

Dark Display: Gamma Correction

On some workstations, the AVS interface (all non-graphics windows)
may appear too dark. You can lighten the interface using the -gamma
command line option, or the Gamma .avsrc startup file option. For
example, in your personal .avsrc file:

Gamma 1.7

You will have to experiment to find a satisfactory value. Values
between 1.7 and 2.2 are good starting points for experimentation.
Higher real values produce a lighter display.

How to Check the Default Visual

You can check to see what the default visual is. Type the
/usr/bin/X11/xdpyinfo command and look for the "default screen
number" line for your screen:

name of display: :0.0
version number: 11.0
vendor string: Silicon Graphics

.

.

.
default screen number: 0 <--- the relevant line
number of screens: 1

Next, find the description information of the default screen and look
for the "default visual id" line.

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-17

_ ___ _________
X Windows and Graphics
(continued)

screen #0:
dimensions: 1280x1024 pixels (340x270 millimeters)
resolution: 96x96 dots per inch
depths (6): 1, 2, 4, 8, 12, 24
root window id: 0x2d
depth of root window: 8 planes
number of colormaps: minimum 1, maximum 8
default colormap: 0x2b
default number of colormap cells: 256

.

.

.
number of visuals: 8
default visual id: 0x20 <---- the relevant line

Now, look down the visual definitions until you find the hexadecimal
visual id code that matches. This is the default visual that the X server
and AVS will use.

visual:
visual id: 0x23
class: PseudoColor
depth: 2 planes
size of colormap: 4 entries
red, green, blue masks: 0x0, 0x0, 0x0
significant bits in color specification: 8 bits
.
.
.

visual:
visual id: 0x20 <---- the relevant line
class: PseudoColor
depth: 8 planes
size of colormap: 256 entries
red, green, blue masks: 0x0, 0x0, 0x0
significant bits in color specification: 8 bits
.
.
.

This is an 8-plane pseudo color visual, as specified by the "class" and
"depth" lines.

You need to tell AVS to use a different visual. Continue to look down
the list of visual definitions until you find one with a "class" of true
color and a "depth" of 24 planes. Note its "visual id", in this case 0x29.

.

.

.
visual:

visual id: 0x29
class: TrueColor <---- A 24-plane true color visual

_ _______ __________________
3-18 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
X Windows and Graphics

(continued)

depth: 24 planes
size of colormap: 256 entries
red, green, blue masks: 0xff, 0xff00, 0xff0000
significant bits in color specification: 8 bits

.

.

.

You will see 12-plane true color visuals, and various others such as
StaticColor. Do not use these visuals.

Changing the Default Visual for AVS

To start AVS using the correct visual, make the following addition to
your personal .avsrc file:

VisualType VisualID n

Replace n with the hexadecimal visual id of the correct true color
visual.

VisualType VisualID 0x29

With AVS 5.5, there is also a new command line option, -vistype, which
provides the same functionality at runtime. See the section above on
"Unexposed command line options".

__ _ _______
Window Manager

AVS works with any of the standard X Window System window
managers, including mwm, the Motif window manager; dxwm, the
DECwindows window manager; 4Dwm, the SGI IRIX window
manager; HP VUE; and the Common Desktop Environment (CDE)
window manager. No user modifications are necessary in order to use
AVS with these window managers.

However, there are some modifications that you may want to make as
a matter of personal preference. The following examples are more
oriented towards Motif, but similar changes can be made to the other
window managers.

Click to Type

By default Motif is a "click to type" window manager. It is not enough
in all cases to simply move the mouse cursor into an input window
such as an AVS file browser typein panel or the Transformation
Options panel and begin to type. You may need to click on the left
mouse button first to make the AVS window receive events.

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-19

_ ___ _________
X Windows and Graphics
(continued)

To disable "click to type" in Motif, add or modify the following line to
your personal .Xdefaults file to match what is shown here:

Mwm∗keyboardFocusPolicy: pointer

(On some systems, the "k" in keyboard may need to be an uppercase
"K".) You may need to make additional changes to ensure that AVS
gets all button events. Consult your Motif documentation.

In the HP VUE window manager, to disable "click to type" behavior,
follow this selection sequence:

Style Manager
Window

FocusFollowsMouse
OK

For CDE window managers, the sequence is this:

Style Manager
Window

Click in Window To Make Active
OK

Intercepting Mouse Events

In a manner conforming to the interaction style of the older window
managers under which AVS was originally developed, AVS makes
heavy use of all mouse buttons. Under Motif, the window manager
may try to intercept mouse button events, particularly the left mouse
button, for its own purposes such as making a window the current
window and automatically raising it. If you have any lines like the fol-
lowing in your .mwmrc file:

<Btn1Down> frame|icon|window f.raise

You may want to change them to:

<Btn1Down> frame|icon f.raise

to ensure that AVS gets the mouse button events that occur within its
windows.

Close Function

Pop-ups menus include a Close function. However, selecting this
Close function is actually a command to kill the window, not to just
iconify (minimize) or unmap its window from the screen. Using the

_ _______ __________________
3-20 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
X Windows and Graphics

(continued)

Close function on many AVS windows will either not work, or will
put AVS into an unuseable state. You should use the various Close
buttons on AVS’s windows instead.

Window Decoration

If you do not want all AVS windows to be surrounded with the Motif
window border controls, put this line in your .Xdefaults file:

Mwm∗avs∗clientDecoration:none

Layout Editor

The Layout Editor relies on some knowledge of which window
manager you are using to reliably determine window positions for
some operations. If you have a problem in which windows move
unexpectedly when selected in the Layout Editor, use the window_mgr
CLI command to inform AVS which window manager you are using.
For more information see Chapter 5 in the AVS Developer’s Guide.

__ _ _______
X Terminal and Remote

Display SupportIn most cases, you can run AVS as a remote X client on one UNIX
workstation from another workstation with a color monitor and an X
server that supports at least an 8-bit PseudoColor visual. You can also
run AVS on a UNIX workstation from a color X Terminal. The X
Terminal’s X server must also support at least an 8-bit PseudoColor
visual.

avs -nohw Required

Except as noted below for specific platforms, you must start AVS using
the -nohw command line option or the NoHW 1 keyword in your per-
sonal .avsrc file. This will force the use of AVS’s software renderer.
Without this option, AVS will attempt to initialize the hardware
renderer when you enter the Geometry Viewer the first time and will
fail.

The software renderer will perform 3D rendering into an X image and
send the image to the X server for display. Color rendition will be up
to the capabilities of the local X server: pseudo color on X servers with
a PseudoColor visual, and true color on X server that support a
TrueColor visual. See the "AVS on Color X Servers" appendix in the
AVS User’s Guide for more information.

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-21

_ ___ _________
X Windows and Graphics
(continued)

Remote hardware rendering

In some cases when you are rendering from one hardware platform to
display on another using the same hardware graphics library you may
not need to rely on the software renderer.

• OpenGL: The OpenGL library is capable of running as a distri-
buted graphics subsystem, even across different platforms, as
long as the remote system is configured appropriately, providing
GLX support in the X server.

• HP: When you are running between HP PHIGS workstations,
you do not need to specify -nohw. The HP VMX (Virtual
Memory X) facility will emulate remote hardware rendering tran-
sparently.

• SGI: The SGI OpenGL library is capable of running as a distri-
buted graphics subsystem. This means that, in the special case
where you are running AVS on an SGI workstation from another
SGI workstation, you will still be able to use the hardware
renderer and take advantage of its superior rendering speed.
AVS on the remote system will send OpenGL library instructions
to the local graphics subsystem to be executed. No special steps
are needed to make this happen.

• IBM: If you get the following error message when you start AVS:

gl: gversion: 1345-072 The requested X Windows Server extension is not available

then you need to set the AVS_GRAPHICS environment variable
to xterm.

csh users would set this environment variable as follows:

setenv AVS_GRAPHICS xterm

ksh or sh users would set this environment variable as follows:

AVS_GRAPHICS=xterm
export AVS_GRAPHICS

• Compaq Tru64 UNIX: The -nohw command line option or the
NoHW 1 .avsrc keyword should not be necessary as AVS
automatically detects the graphics adapter type and initializes the
appropriate renderer(s).

_ _______ __________________
3-22 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
X Windows and Graphics

(continued)

__ _ _______
Stereo Support

Support for stereo viewing is now provided for SGI (N32 and N64),
Sun SunOS5 (Solaris) (OpenGL and XGL), Compaq Tru64 Alpha, and
HP Workstations (Visualize-FX4 and -FX6 graphics adapters only). In
this release, stereo support on SGI will support either "full screen" or
"stereo-in-a-window" depending on the capabilities of your platform.
Stereo on Solaris, Compaq Tru64 Alpha, and the HP workstations also
supports the "stereo-in-a-window" approach. Note: IBM and Linux
have not been tested but may work.

Stereo is supported using CrystalEyes stereo goggles from Stereo-
Graphics. One source for these is Qualix Direct, found at
http://www.qualixdirect.com. You must consult the vendor’s documenta-
tion for information on how to connect this device to your workstation.

Stereo Display

Stereo display is controlled from the Geometry Viewer’s Cameras sub-
menu.

To turn on stereo:

• Toggle the Stereo button on the Cameras submenu. You may
have to scroll to make this button visible.

• Type Ctrl-left mouse button.

The entire screen is taken over by the stereo view of the object when
using "full screen" stereo; "quad-buffered" or "stereo-in-a-window"
only affects the Geometry Viewer windows. You will not see stereo
unless you have the CrystalEyes stereo goggles.

To exit stereo mode, type Ctrl-left mouse button again or use the
Camera/Stereo toggle button. Note: You should exit stereo mode
before leaving AVS or it may leave stereo enabled. If you do leave
stereo on by accident, restart AVS and toggle stereo on/off to leave
stereo mode; or use the "off" stereo command as shown in the stereo
documentation below to exit stereo manually.

Enabling Stereo

Each platform has a different way of enabling and disabling stereo
mode. You should see the appropriate platform chapter for more infor-
mation.

Most platforms enable stereo in the X server configuration. For the
SGI, you can see the current settings for on and off commands using

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-23

_ ___ _________
X Windows and Graphics
(continued)

two debug environment flags:

setenv AVS_STEREO_CMDS_ARE 1
setenv AVS_OGL_INFO 1

In order to override these values, there are two environment variables
to set the "on" and "off" commands:

• AVS_STEREO_ON_CMD specifies the command that enables
stereo mode

• AVS_STEREO_OFF_CMD specifies the command that disables
stereo mode

Because AVS does NOT "remember" your previous mode before it
entered stereo, you may want to at least set the
AVS_STEREO_OFF_CMD variable.

Stereo Adjustment Parameters

In some cases, you may wish to make minor adjustments in the stereo
control parameters controlling apparent eye separation between the
two viewpoints or the apparent distance between the eyes and the
focal point. These are controlled differently depending on which plat-
form you are using.

On platforms supporting OpenGL stereo, the stereo parameters are
accessible through a GEOM CLI command, geom_set_stereo_params.

geom_set_stereo_params Sets the stereo viewing parameters
Usage: geom_set_stereo_params -eye <V> -dist <V> -near <V> -far <V>

This command ultimately controls the values being used in setting up
the stereo viewing matrix.

• eye: This is the "eye offset" controlling the apparent eye separa-
tion from the mid plane (nose). Used along with a fixed constant
in setting the left and right vertical clipping planes. Initial value
can also be set using the environment variable called
AVS_STEREO_EYE_OFFSET; set by default to 0.025.

• dist: Distance of the eye from the center of the space being
viewed. Initial value can be set using the environment variable
AVS_STEREO_EYE_DIST; set by default to 2.0.

• near/far: Specify distances to the near and far depth clipping
planes; both distances must be positive. Initial value can be set
using the environment variables AVS_STEREO_NEAR and
AVS_STEREO_FAR; set by default to 1.0 and 6.0 respectively.

_ _______ __________________
3-24 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
X Windows and Graphics

(continued)

The source code for the internal function that uses these values shows
exactly how they are used to make a glFrustum call in OpenGL to
create the perspective viewing matrix.

void
stereoFrustum(GLfloat near, GLfloat far,

GLfloat eyeDist, GLfloat eyeOffset)
{

GLfloat eyeShift = (eyeDist - near) ∗ (eyeOffset / eyeDist);
GLfloat limit = 0.425; /∗ from Express routine to try to match stereo ∗/

glFrustum(eyeShift - limit, eyeShift + limit, -limit, limit, near, far);
glTranslatef(-eyeShift, 0.0, 0.0);

}

With no parameters ("geom_set_stereo_params"), the current values
will be displayed. Use of either or both parameters will modify the
current values. Further information on CLI commands can be found in
the Command Line Interpreter chapter of the AVS Developer’s Guide.

__ _ _______
Japanese, Greek, and

Cyrillic Labels in
Geometry Viewer

A font type called Kanji has been defined for labels in the Geometry
Viewer. Kanji labels are supported in the software renderer using X
window fonts. The X font pattern for Kanji is:

-jis-fixed-medium-r-normal-∗

Use the xlsfonts program to discover if your X server has any match-
ing fonts installed. Typically, you will find one or more point sizes for
the JIS X 0208 1983 character set. Though named "Kanji," this character
set can also represent all of the following fonts:

• Roman, Greek, and Cyrillic alphabets

• Hiragana and Katakana (Japanese syllabaries)

• JIS Level 1 and Level 2 Kanji (Chinese characters used in
Japanese)

At present, there is no way to interactively type in or edit Kanji test in
the Labels typein. However, Kanji strings will be displayed correctly in
the Labels typein if the label is selected.

The font options Bold and Italics will not have any effect for these
Kanji fonts.

Label strings can be specified in JIS, Shift-JIS, or EUC encodings.
These are extended two-byte character codes.

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-25

_ ___ _________
X Windows and Graphics
(continued)

The labels are typeset horizontally reading from left to right.

You input the text by coding the test into a user module with the
GEOMadd_label function.

Here is a sample code fragment using an EUC coding for the three
kanji characters. Each character is assigned two octal codes.

char kanji_string[] = { "306374313334270354" };
int font_number, label_flags;
GEOMobj ∗kanji_obj;

font_number = GEOMget_font_number("Kanji", 0, 0);
label_flags = GEOMcreate_label_flags(font_number, remaining params);
kanji_obj = GEOMcreate_label(GEOM_NULL, label_flags);
GEOMadd_label(kanji_obj, kanji_string, remaining params, -1);

Consult your platform’s release notes chapter to see whether Kanji
labels are supported in your hardware renderer.

___ _______
Programming
Considerations There are some issues that are important for developers to know for all

platforms.

Use the Example Makefile as Template

You should use the makefile in <installdir>/avs/examples/Makefile as the
template for your own FORTRAN and C module makefiles. This
makefile in turn includes the file <installdir>/avs/include/Makeinclude that
contains additional macro definitions appropriate to the platform you
are using.

___ _______
GEOMint_color

The GEOM library treats integer and integer color primitive data in a
similar way, so these types should be the same length (32-bits). A new
type has been defined for integer colors in the GEOM library which
users should use for portability in both 32 bit and 64 bit platforms. For
the C binding, GEOMint_color is defined in geom.h to be unsigned int
on 64-bit platforms, such as Compaq Tru64 UNIX and SGI N64 and
unsigned long on 32-bit plaforms, such as AIX and Solaris. FORTRAN
should use INTEGER∗4 in these cases. Note: Only programmers writ-
ing modules that use the libgeom.a library should be affected by this
change; new compiler warnings may arise if function prototypes are
used (C++ or Ansi-C compilers).

The programming interface to the following functions has been
modified to accommodate this new type:

_ _______ __________________
3-26 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
Programming

Considerations
(continued)

• GEOMcreate_mesh_with_data

• GEOMcreate_polyh_with_data

• GEOMcreate_sphere

• GEOMset_color

• GEOMset_pickable

• add_to_vlist_from_int

• create_vlist_from_int

__ _ _______
C++ Support

Users writing C++ modules should use a special version of the subrou-
tine module library called $AVS_PATH/lib/libflow_C.a. This library uses
a main() function that has been compiled under C++, thereby including
C++ initialization calls that were not invoked using libflow_c.a. Subrou-
tine modules making use of C++ stream I/O functions must use this
library to work properly, while other C++ modules may not require it.

The C++ examples in $AVS_PATH/examples should build directly in
most environments. The Makefile and Makeinclude files were changed to
use the most common names and paths for the C++ compilers and
libraries. Read the Makefile for more specific information and exam-
ples.

__ _ _______
FORTRAN Modules on

64-
bit systems

On 32-bit platforms, integer (int) and pointer (int∗, void∗, etc) types are
the same size and have historically been used as if they were the same.
On most 64-bit platforms (Compaq Tru64 UNIX and SGI N64) pointers
are 8 bytes and integers are 4 bytes; the two data types can NOT be
used interchangeably without causing problems (bizaare values, 0’s,
etc.)

Portability issues and tools

Many AVS FORTRAN functions pass pointer values which have usu-
ally been declared as FORTRAN INTEGER variables on 32 bit plat-
forms; FORTRAN does not have a standard "pointer" data type. On
the Compaq Tru64 UNIX and SGI N64, these pointers MUST be
declared as INTEGER∗8 (8 byte) variables to avoid the module crash-
ing with bad data. This primarily affects compute function arguments
(input and output data pointers for complex data types like fields) and
array offset values used in some data access functions such as

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-27

_ ___ _________
Programming
Considerations
(continued)

AVSfield_data_offset.

There is no standard data type to handle pointers on both architectures
so truly portable FORTRAN code is not possible. One solution is to use
C-like macros for the "pointer" data type and a macro preprocessor but
this is not commonly used in FORTRAN and is not universally avail-
able on all platforms.

Instead, AVS 5 relies upon a set of "tags" to mark pointer variable
declarations and a utility program to convert source code from 32-bit
to 64-bit compliant. This allows portability to be managed but does not
rely upon a compile-time macro preprocessor.

AVS 5.5 provides the source for the tools that have been used inter-
nally for converting files. These utility shell scripts are in the
$AVS_PATH/examples/f77_tools directory in the Compaq Tru64 UNIX
and SGI N64 platforms. They consist of a makefile, a generic converter
program (f77_converter.c) and a shell script to apply the tool to a file
tree (convert_f77). For historical reasons, the "tag" value used in AVS is
"ALPHA_OSF" but other values can be used in the shell script. NOTE:
These tools only provide one possible way you may address the porta-
bility problem - you are not required to use them, particularly if you
do not plan on porting your code.

As an example, let’s look at the sample FORTRAN file CHEMelestf.f in
/usr/avs/examples/chemistry.

You’ll notice that all integer variables that are really pointers in dis-
guise are declared as INTEGER∗8.

C %IFDEF ALPHA_OSF
integer∗8 mol_input,ep_field

C %ELSE
C integer mol_input,ep_field
C %ENDIF ALPHA_OSF

AVSfield function argument changes

IMPORTANT NOTE: Because of problems encountered with 64-bit
pointers under SGI N64, several functions needed to be modified for 64
bit systems. In particular functions which pass "array offset" values
had to be modified to use INTEGER∗8 arguments to be able to hold
large enough offset values. The following changes were made and
affect the Compaq Tru64 UNIX and SGI N64 platforms ONLY.

_ _______ __________________
3-28 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
Programming

Considerations
(continued)

AVSfield_data_offset(field, offset, basevec)
AVSfield_points_offset(field, offset, basevec)
AVSload_byte(base, offset)
AVSstore_byte(base, offset, value)
AVSload_short(base, offset)
AVSstore_short(base, offset, value)

offset is INTEGER under 32-bit platforms, INTEGER∗8 under 64-bit platforms

Compaq Tru64 UNIX data offsets

Due to the way the FORTRAN compiler generates code for subscript-
ing, the trick with AVSfield_data_offset and AVSfield_points_offset
doesn’t work. The compiler does support %VAL() for function argu-
ments, so the more straightforward AVSfield_data_ptr and
AVSfield_points_ptr can be used.

C %IFDEF ALPHA_OSF
call load_pnts(%val(AVSfield_points_ptr(ep_field)),

1 res,extents,xinc,yinc,zinc)
C %ELSE
C iresult=AVSfield_points_offset(ep_field, coords, ocoords)
C call load_pnts(coords(ocoords+1),res,extents,xinc,yinc,zinc)
C %ENDIF ALPHA_OSF

__ _ _______
Fixed in AVS 5.5

The following bugs have been fixed in the AVS 5.5 release. Those
affecting multiple platforms are covered here. Additional information
may be found in the platform specific chapters.

__ _ _______
User Interface Issues

7389/7517: AVS Message popup window should be a regular window

Problem Description:
The popup message window used to support the AVSmessage,
AVSwarning, AVSerror, and AVSfatal information calls did not
have window decorations or other conventional window manager
access, preventing it from being iconified, moved, resized, or
reordered amidst other windows. It has been changed to work
like all the other standard windows.

7260: Typein widgets don’t handle strings over 64 characters well

Problem Description:
Typein widgets will handle value strings of arbitrary length but
do not scroll or resize dynamically with longer values.

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-29

_ ___ _________
Fixed in AVS 5.5
(continued)

Workaround: The typein widget will generally size itself to at
least contain the initial value string being used. Setting the
default to a long string initially will stretch it out. Using the
width property is another way to control the size to make it large
enough for the desired value.

17567: Demos: AVS5 Features/AVSGraph menu empty

Problem Description:
This submenu was still referencing an discontinued version of
AVSGraph from an earlier release. It has been updated to refer-
ence the current AVSGraph module’s sample scripts.

___ _______
AVS Kernel, LibFlow or
CLI issues 7824: image_list_image_names command returns error incorrectly

Problem Description:
The image_list_image_names CLI command added in AVS 5.4
always returned an error code at the end incorrectly. This has
been fixed.

17213: Demo script information window clipping comments

Problem Description:
The demo viewer script controller window and the network edi-
tor script controller window were clipping long comments from
view. This has been fixed.

17441: Demos leave some viewer windows behind after exit

Problem Description:
Many of the demos create geometry viewers and their associated
windows while they run, and have only cleaned up these win-
dows after a full run is completed and the clean up commands
are run at the end of the script. This would tend to leave around
unused windows after incomplete demos. This has been fixed so
that starting a new script or leaving the AVS Demos application
will cause a general cleanup of left over geometry and image
viewer windows.

7728: AVSdata_alloc allocates fewer bytes than needed

Problem Description:
In some cases, the AVSdata_alloc routine allocated fewer bytes
than were needed for user data structures, depending on align-
ment issues on different platforms. The allocation size has been
padded to cover these differences.

_ _______ __________________
3-30 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
Fixed in AVS 5.5

(continued)

8064: Some AVS modules ignore the AVS -path option

Problem Description:
AVS 5 uses the AVSpath value to determine its home location
and this can be set in various ways - command line option,
environment variable, etc. While the kernel itself worked with
the AVSpath value and communicated it to the external module
processes, many of the modules paid no attention to it, so they
relied on finding AVS in the default /usr/avs location.

This has been fixed by modifying all AVS 5 supported modules
to use the value of the AVSpath variable when they need to
know where AVS 5 is. Modules affected include the Geometry
Viewer, the Data Viewer, vbuffer, and AVSGraph among others.

7322: UCD_TRIANGLE definition missing from FORTRAN include files

Problem Description:
The UCD_TRIANGLE definition was missing because of a bug in
the FORTRAN interface program, f77_binding. This has been fixed
and the definition is included in the avs.inc files for AVS 5.5.

17656: geom_save_postscript documentation missing argument

Problem Description:
The geom_save_poscript CLI command does not mention how or
where it wants to get a filename argument, leaving the user to
guess. It expects the final argument "filename" to come after the
preceding -option phrases. The builtin help has been updated to
reflect this.

__ _ _______
Geometry Viewer issues

16962: Stereo picking inaccurate

Problem Description:
Picking in stereo was problematic because it was using the non-
stereo transformation matrix to determine what was being
picked. This has been improved.

16967: Stereo view different from original non-stereo view

Problem Description:
When switching to stereo, a new transformation matrix must be
used for the new view. The matrix used substantially changed the
appearance of the scene. This has been fixed by adjustments in
the stereo transformation matrix that much more closely match
the original non-stereo view.

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-31

_ ___ _________
Fixed in AVS 5.5
(continued)

___ _______
Licensing Issues

7793/7812: Developer’s AVS: AVS-Runtime encryption problems

Problem Description:
AVS 5.4 and earlier releases used a different encryption code for
runtime licensing than what was used in the standard licenses.
With the upgrade to FlexLM 4.x in the AVS 5.3 upgrade, support
for this second encryption code was lost causing problems with
existing licenses in the field and temporary difficulty making
working licenses. This has been fixed for AVS 5.5 and offers the
Developer customer two options:

1. AVS 5.4 and earlier: AVS-Runtime features use the alternate
encryption code and must be run using the old FlexLM
(2.4c) AVS lmgrd daemons provided with AVS5.02. AVS5.3
and AVS5.4 use these codes but their lmgrd daemons won’t
recognize them.

2. AVS 5.5 and AVS 5.4 patch: AVS-Runtimes are generated
using AVS 5.5 or AVS 5.4 with a patch available from AVS
Customer Support. They use the same encryption codes as
standard AVS, and must run using FlexLM 4.x or higher
daemons. AVS5.5 and beyond will make this the default
code. Existing AVS 5.4 or earlier runtime licenses should be
reissued by Customer Support.

If you are affected by this issue, please contact AVS Customer Support
(support@avs.com) for more information or new licenses.

11139: Demo_license Y2K problem

Problem Description:
The demo_license program used for creating temporary licenses
for users evaluating AVS 5.4 was using 2-digit years. The result-
ing licenses still appeared to work, but the program has been
upgraded to handle 4-digit years. This issue did not affect the
permanent licenses given to registered users.

17568: Animator and BTF Renderer need to be unlicensed

Problem Description:
Both the Animator module and its supporting modules, and the
BTF renderer modules have been unlicensed and are now avail-
able to all users.

_ _______ __________________
3-32 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
Fixed in AVS 5.5

(continued)

__ _ _______
Module Issues

8529: Module Generator puts ’struct’ in user data declarations

Problem Description:
The Module Generator erroneously was adding the "struct" key-
word to user data declarations, causing compiler errors and
requiring manual editing. This has been fixed.

7822: Arbitrary slice plane may use wrong field extents

Problem Description:
The arbitrary slice module selects a plane size based on the XY
extent of the object being viewed. Depending on the object, this
plane may not be large enough as it is rotated around within the
overall dimensions of the object - for example, an oblong brick
object with the XY cutting across the small dimension of the brick
would use a small square slice plane that won’t extend across the
length of the brick.

This has been fixed by adding a new choice parameter to the
module called "Slice Size" with the following choices:

• XY slice: use the XY slice as the plane size

• YZ slice: use the YZ slice as the plane size

• ZX slice: use the ZX slice as the plane size

• Diagonal slice: use the diagonal of the extents (across oppo-
site corners) to determine the size of the plane.

3428: Set View module doesn’t work properly on SGI platforms

Problem Description:
The set view module was producing a bad transformation matrix
on the SGI N64 platform causing the geometry viewer to show
nothing in some views. This has been fixed.

14838: read_ucd does not recognize tab delimited files

Problem Description:
The read_ucd module did not recognize the use of tabs as delim-
iters in data files. It has been fixed to recognize these as it does
other white space characters such as space and end-of-line.

7426: Module Generator produces incorrect FORTRAN code for UCD
calls

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-33

_ ___ _________
Fixed in AVS 5.5
(continued)

Problem Description:
The Module Generator was producing references to
"UCDstructure_x" calls based on the C naming convention rather
than "UCDstruct_x" as used by the FORTRAN API. It was also
using the function call convention ("call UCDstructure_free")
rather than the subroutine calling convention (result =
UCDstructure_free()"). Both of these problems have been fixed.

7738/7825: AVSGraph needs AVS_PATH to be set

Problem Description:
The AVSGraph module needs to find some underlying Toolmas-
ter definition files in the AVS home directory. When AVS was
not installed in /usr/avs it would fail to run at all. This has been
fixed so that AVSGraph checks the definition of the AVSpath
variable to find the home directory.

7745: AVSGraph does not remove temp file

Problem Description:
The AVSGraph module was always writing debugging informa-
tion to a log file in the /tmp directory that was named
AVSGraph.log<processid> which it left around when it exited.
AVSGraph has been modified to NOT write out any file unless
the user indicates that the log file is desired by defining the
AVS_AGX_DEBUG environment variable to any value.

7756: AVSGraph writes to unnecessary temp file

Problem Description:
The AVSGraph module was always writing debugging informa-
tion to a log in the /tmp directory named AVSGraph.log. When
multiple users tried to use AVSGraph, the file was written out
owned by the first user, then subsequent users would fail because
they couldn’t gain write access to the same file. The file naming
convention has been changed to AVSGraph.log<processid> to
always create unique names to avoid this problem.

16167: UCD_Legend typein parameter override

Problem Description:
Difficulty was reported using typein parameters for ’value’, ’lo
value’ or ’hi value’. Whenever a parameter or the radio dials
change, the module compute routine ensures that the ’radio dials’
are displayed correctly and are in sync with the parameter
widget dials and legend scale.

The problem occured when the parameters were given a typein
value instead of using the dials. The value was scaled to the radio
dial, which was then scaled to the data, which then over rode the

_ _______ __________________
3-34 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
Fixed in AVS 5.5

(continued)

typed in value, preventing the user from controlling the precision
as desired.

This has been fixed by preventing this circular update when the
user provides typed in data.

16417: Minmax module crash

Problem Description:
The minmax module was crashing with repeated use due to
memory not being reallocated correctly. This has been fixed.

17422: Color legend: Text disappears when increasing thickness

Problem Description:
When modifying the thickness parameter, the spacing of the text
below or to the side of the color legend bar was adjusted propor-
tionately, often sending the text off the screen for a thick bar. The
spacing calculation has been changed to not reflect the thickness
but to make some adjustment for the font height instead.

13262: geom_set_camera_name has no effect on window decoration

Problem Description:
The geom_set_camera_name CLI command can be used to set the
name of geometry viewer cameras, which are names like "Camera
1" by default. However these did not have any visible impact on
the user interface and were of limited value.

AVS 5.5 has been modified to display the Camera name as part
of the standard window decoration. Changes made using this
command are immediately reflected in the window title and icon
names, making it easier to identify cameras. Also see the new
"Geometry Camera" module documented under "New Features"
that provides a camera "wrapper" similar to the main view win-
dow associated with the "Geometry Viewer" module, providing
Layout Editor capability, pull down menu, close-window
resistence, etc.

__ _ _______
Known Problems

8195: Inconsistent ambient light coeeficient

Problem Description:
The default coefficient for ambient light (hardware mode) on GL
platforms is 0.2, and the default object coefficient (software mode)
for ambient light is 0.3; this results in brighter objects when
switching from hardware renderering to software rendering.

__________________ _ _______
AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms 3-35

_ ___ _________
Known Problems
(continued)

8549: Blank lines in CLI scripts cause problems

Problem Description:
Empty lines in CLI scripts may cause problems during script
playback. Under some circumstances the CLI may interpret the
previous line alright but then get stuck on the blank line. AVS is
still interactive and the user can abort or interrupt the script.
Remove empty lines or use the "#" leader to indicate the line is a
comment line.

14421: Shared memory segment left after AVS exits

Problem Description:
AVS allocates an initial shared memory segment to act as an
index of all the other shared memory segments used by the ker-
nel and module for passing Field and UCD data around. On exit,
this segment may be left in use as various modules are in the
process of exiting and cleaning up the data memory segments.
Sometimes this results in this index memory segment being left
around after all other processes have completed, something you
may see when using the ipcs -m command. It will be reused by
the next AVS session by the same user so it is not a cumulative
problem. If desired you can manually remove this segment using
the ipcrm command.

17399: AVS Demos - Network Editor ’exit’ button may cause crash

Problem Description:
When running the AVS Demos (main menu, Applications,
Demos), the user can exit using the pull down menu
Control/Return-Exit button or using the "exit" button that may
appear on the left panel with module user interfaces. The second
approach does not exit as cleanly as the first and in some anima-
tion demos, may cause AVS to crash. Please use the pull down
menu approach instead.

_ _______ __________________
3-36 AVS 5.5 on UNIX Platforms AVS 5.5 on UNIX Platforms

_________ _ ___
AVS 5.5 FOR

LINUX
CHAPTER FOUR_________ _ ___

__ _ _______
Introduction

This chapter describes AVS 5.5 as it runs on Linux workstations. It
covers hardware and software prerequisites needed to run AVS; differ-
ences and special considerations for running AVS on this platform; and
known problems.

AVS5.5 NOTE: The operating system support has been upgraded to
RedHat 6.0 and the AVS/Graph module is now fully supported
based on Toolmaster 7.1. A second version of the AVS kernel,
(avs_shr), linked dynamically to the Mesa graphics libraries, permits
users to substitute their own local versions of OpenGL drivers to
support hardware graphics adapter drivers. A few additional bugs
have been fixed.

NOTE: See the section below on Data and Module portability in "Pro-
gramming Considerations" for important discussion such as "little-
endian" data format compatibility. Additional information on using
AVS under X windows, general programming considerations, and bugs
fixed in AVS 5.5 can be found in the AVS 5.5 on UNIX Platforms
chapter.

__ _ _______
Hardware

Prerequisites

__ _ _______
Workstation Models

AVS will execute on any x86-based PC workstation meeting the
requirements described below.

__ _ _______
Graphics Hardware

This release of AVS does not directly support any specific graphics
hardware due to the evolving Linux marketplace. AVS 5.5 does pro-
vide a dynamically linked version of the AVS kernel,
$AVS_PATH/bin/avs_shr, which allows users to experiment with

__________________ _ _______
AVS 5.5 for Linux Linux 4-1

_ ___ _________
Hardware Prerequisites
(continued)

substituting OpenGL driver libraries provided by graphics adapter
vendors. The Mesa libraries avs_shr was linked against should provide
basic OpenGL API compatibility. Note: AVS makes no representation
as to the reliability or quality of the graphics output when using sub-
stitute shared libraries.

In order to use this shared library kernel, set the library path as fol-
lows:

setenv LD_LIBRARY_PATH $AVS_PATH/lib

to enable avs_shr to locate the default Mesa libraries, libGL.so and
libGLU.so. To confirm where avs_shr is obtaining the shared files, type:

ldd $AVS_PATH/bin/avs_shr

If you have alternate vendor specific versions of libGL.so and libGLU.so,
set the LD_LIBRARY_PATH variable to the appropriate directory
where they may be found. Note: The Mesa libGLU.so library has been
successfully mixed with at least one hardware vendor’s libGL.so shared
library when needed.

AVS 5 uses two different mechanisms to produce its screen renderings
of Geometry Viewer objects and scenes however. The "hardware"
renderer uses the Mesa 3D graphics library which performs software
rendering unless it is replaced by the user with hardware drivers. The
standard AVS5 software renderer implements a set of graphics primi-
tives (polygons, lighting model, perspective, shading, color, etc.) in
software, rendering the resulting image into an X Window System
image.

See the "Geometry Viewer" section below for specific information on
which rendering features are supported by the software and hardware
renderers.

___ _______
Memory Requirements

AVS requires that the system upon which it will execute be configured
with a minimum of 64 megabytes of main memory. More real
memory, such as 128 megabytes, is strongly recommended and will
improve performance. In addition to real memory requirements, there
is a minimum system swap space requirement (see below).

___ _______
Disk Space

AVS 5.5 requires approximately 65 megabytes of disk storage to install
AVS from the CD. More disk storage may be required for swap space
(see below). The df -k command reports available disk space.

_ _______ __________________
4-2 Linux AVS 5.5 for Linux

_________ _ ___
Hardware Prerequisites

(continued)

__ _ _______
Determining Your

ConfigurationTo interactively determine your workstation’s configuration, use the
following commands.

To determine your memory configuration,type:

cat /proc/meminfo

and you should see a display that looks like this:

total: used: free: shared: buffers: cached:
Mem: 64675840 62750720 1925120 30797824 27463680 20041728
Swap: 133885952 151552 133734400
MemTotal: 63160 kB
MemFree: 1880 kB
MemShared: 30076 kB
Buffers: 26820 kB
Cached: 19572 kB
SwapTotal: 130748 kB
SwapFree: 130600 kB

where "MemTotal" is the amount of RAM and "SwapTotal" is the
amount of swap space.

To find out more about your CPU, you can type

cat /proc/cpuinfo

which will describe your CPU model, clock speed, and vendor.

__ _ _______
Software Prerequisites

__ _ _______
Linux Operating System

There is only one version of AVS for Linux. The supported Linux dis-
tribution is RedHat 6.0 (kernel 2.2.5-15) for the x86 PC family. Compa-
tible Linux distributions (based on glibc) will likely work but have not
been tested.

The /bin/uname -a command will list which version of the Linux kernel
is running on the system.

__________________ _ _______
Software Prerequisites Linux 4-3

_ ___ _________
Software Prerequisites
(continued)

___ _______
Compilers

AVS5 was built and tested under RedHat 6.0 (kernel 2.2.5-15) using the
standard egcs (2.91.66, release 1.1.2) compilers. It has not been tested
under the older versions of RedHat 5.x - these are supported under
AVS 5.4.

The Fortran compiler used was g77 (2.91.66), based on the egcs com-
piler.

___ _______
Dependencies

The AVS5 packages depend on the following libraries to be installed:

• libm.so.6

• libc.so.6

• libXext.so.6

• libX11.so.6

• ld-linux.so.2

___ _______
X Servers

___ _______
Swap Space

Recommended Swap Space Size

We recommend that your system be configured with a minimum swap
space size that is twice the real memory size or 128 megabytes, which-
ever is greater. Very large datasets flowing through networks with
many modules and connections may require even larger swap spaces.
As noted above typing "cat /proc/meminfo" will tell you how much
swap space you have.

Running out of Swap Space: Message, Abort, or Hang

Depending upon the circumstances, when AVS runs out of swap space
it either produces a message box, aborts, or hangs. In many cases,
AVS itself receives the error during a malloc call. In this instance,
either individual modules or the entire AVS system may abort with the
following error message:

_ _______ __________________
4-4 Linux Software Prerequisites

_________ _ ___
Software Prerequisites

(continued)

Failure allocating memory:
See Installation/Release Notes to increase swap space and/or
shared memory segment size

This message may be followed by many additional "tcp read" error
messages as each module expires. Scroll to the top of the error mes-
sages to see this first message that indicates the actual cause of the
failure.

In some cases, other parts of the system will generate the error and
you will not see the above message. If you suspect that swap space
may be the culprit, you can restart AVS, repeat the sequence of steps
that led to the abort or hang, while monitoring AVS’s consumption of
swap space by entering successive cat /proc/meminfo commands.

How to Increase System Swap Space

See the man page for mkswap for more information on how to create
and initialize more swap space for your system.

__ _ _______
Using AVS on Linux

WorkstationsThe following sections describe in detail the differences between using
AVS on a Linux workstation and AVS as it is described in the standard
documentation.

__ _ _______
General

Dial Box

The Dial Box I/O device mentioned in the AVS User’s Guide is not sup-
ported in this release of this product.

Spaceball

The Spaceball device driver has been linked in but has not been tested
for this release.

__ _ _______
Window Manager

AVS works with any of the standard X Window System window
managers. See the "Window Manager" section in Chapter 3, AVS 5.5
on UNIX Platforms for more information on using different window
managers.

__________________ _ _______
Using AVS on Linux Linux 4-5

_ ___ _________
Using AVS on Linux
Workstations
(continued)

___ _______
Starting AVS

There is one difference to starting AVS on a Linux workstation from
the account in the AVS User’s Guide and the avs man page. You may
need to change your display size if you have a small framebuffer size
(1280x768).

Reconfiguring this involves making changes to your personal AVS
startup file (.avsrc) in your HOME directory. If you don’t already have
an .avsrc file, copy the sample file from <installdir>/avs/runtime/avsrc to
your home directory and edit it to include the necessary lines.

Display Size

AVS normally expects to execute on 1280x1024 resolution displays. If
the display is smaller or larger than this, AVS will try to automatically
rescale its interface to fit on the screen. If AVS’s automatic efforts are
not satisfactory (for example, the bottoms of menus are being clipped
by the window manager or the Network Editor panel is overlapping
other windows), you can explicitly set a virtual screen size and a posi-
tion for the Network Editor window by adding lines such as the fol-
lowing to your personal .avsrc file:

NetworkWindow 650x750+250+20
ScreenSize 1024x768

You can also experiment with different display sizes using the -size
command line option which does the same thing.

avs -size 1024x720

Note that the font sizes selected for smaller display sizes may be lower
quality than the larger fonts selected for the default size.

___ _______
Image Viewer

All functions and behavior in the Image Viewer are as described in the
AVS User’s Guide. Color rendition will be up to the capabilities of the
X server.

On pseudocolor systems, the Image Viewer’s Images submenu will
have a choice of dithering options.

___ _______
Network Editor

The Network Editor functions as described in the AVS User’s Guide
and Module Reference manual.

_ _______ __________________
4-6 Linux Using AVS on Linux

_________ _ ___
Network Editor

(continued)

__ _ _______
Modules

The following modules documented in the AVS Module Reference
manual do not appear in the AVS release for Linux workstations.

alpha blend
transform pixmap

__ _ _______
Image Output

While using the hardware renderer, if you are using the image to
postscript module to get output from the geometry viewer module, or
any of the Animation Application output modules such as write frame
seq, all parts of the Geometry Viewer scene window must be visible.
No parts of the display window can be off the screen or obscured by
other windows. If they are, any module downstream of geometry
viewer will not receive the off-screen or obscured portion of the pix-
map.

__ _ _______
Graph Viewer

There are no significant differences between AVS Graph Viewer
behavior on Linux workstations and the Graph Viewer descriptions in
the AVS documentation. On pseudo color systems image data loaded
as a background to a plot will be dithered to 8-bit pseudo color rather
than appear in true color.

__ _ _______
Geometry Viewer

The Geometry Viewer (or the geometry viewer module) will be using
either the software renderer or the hardware renderer to produce the
contents of its scene windows.

__ _ _______
Stereo Support

AVS 5.5 for Linux does not include currently support for stereo view-
ing; the OpenGL stereo feature may work on Linux but this has not
been tested.

__ _ _______
Rendering Features

The following table lists the rendering features described in the
"Geometry Viewer" chapter of the AVS User’s Guide, including new
AVS 5 features, down the left column, and the AVS software renderer
and the AVS "hardware" renderer’s (Mesa) implementation across the
top. The table intersections show which features are present on each
platform, and draw your attention to more detailed explanations of
behavior later in this section.

__________________ _ _______
Using AVS on Linux Linux 4-7

_ ___ _________
Geometry Viewer
(continued)

Table 4-1. Geometry Viewer Behavior Across Platforms
_ __
Rendering Feature Software Renderer Hardware (Mesa)
_ __
Arbitrary Clip Planes yes, 8 planes no (note 1)
Geometric

Volume Rendering yes yes
Vertex Transparency no (note 2) yes (note 2)
Vertex Colors yes (note 3) yes

Edit Property
RGB/HSV Colors yes (note 3) yes
Ambient yes yes (note 4)
Diffuse Lighting yes yes (note 4)
Specular Highlights yes yes
Gloss yes yes
Transparency yes (note 5) yes (note 6)
Metallic yes yes

Edit Texture yes yes (note 6)
2D Texture Mapping yes yes
3D Texture Mapping yes no
Filtered Textures no yes
Alpha Textures yes no

Rendering Options
Points yes yes
Lines yes yes
Smooth Lines no no
No Lighting yes yes
Flat Shading yes yes
Gouraud Shading yes yes
Outline Gouraud yes yes
Phong Shading no no
Backface Properties

Cull front no no
Cull back yes yes
Flip normals no no

Lights
Number of Sources 16/8 (note 7) 8
Ambient yes yes
Directional yes yes
Bi-Directional yes yes
Point no yes
Spot no no
Light Colors yes yes_ __

_ _______ __________________
4-8 Linux Using AVS on Linux

_________ _ ___
Geometry Viewer

(continued)

Table 4-2. Geometry Viewer Behavior Across Platforms (continued)
_ __
Rendering Feature Software Renderer Hardware (Mesa)
_ __

Cameras
Depth Cue yes yes
Perspective yes yes
Accelerate no no
Front/Back Clipping yes yes
Axes for Scene yes yes
Double Buffer no yes
Sorted Transparency no no
Shadows no no
Polygonal Spheres yes (note 8) no
Stereo no no
Head Tracking no no

Labels
Drop Shadow no yes
Stroke Text no no
Kanji yes no_ __

__ _ _______
Notes

1. Arbitrary clipping planes are used by the clip geom module.

2. Vertex transparency is used by the colorize geom module.

3. When using the software renderer, the number of colors that will
appear on the screen (216 pseudo color, 16,777,216 true color, or
some number in between) is dependent upon the X server visual
support present on the display hardware. Internally, 24-bit true
color is always used and will be output on the geometry viewer
module’s image output port.

4. The Ambient and Diffuse sliders have no effect on objects with
vertex colors.

5. The software renderer supports single-pass transparency. Single-
pass transparency correctly renders a transparent surface that is
over an opaque surface. Multi-pass sorted transparency is
required to correctly render multiple overlapping transparent sur-
faces.

6. Enabling the feature has no effect.

7. When, at AVS startup, you initialize the software renderer only
(-nohw or NoHW), then there will be 16 light sources in the
software renderer. If, by default, both hardware and software

__________________ _ _______
Using AVS on Linux Linux 4-9

_ ___ _________
Geometry Viewer
(continued)

renderers are initialized, then the minimum common number of
light sources will be used. Thus, both renderers will have eight
light sources.

8. A feature in the software renderer is the ability to render spheres
directly instead of subdividing them into polygons. This saves a
tremendous amount of memory when rendering spheres. The
algorithm’s execution speed is bound by the size of the spheres it
has to render. This feature may be disabled by toggling the
Polygonal Spheres button under the Cameras menu. Spheres will
now be rendered by subdividing them into polygons.

___ _______
Programming
Considerations There are a few platform-specific issues to take into account when

developing AVS modules on Linux workstations.

___ _______
Compiling and Linking
Modules Be sure that you have installed the most current versions of the FOR-

TRAN (g77) and C compilers and their associated libraries that accom-
pany the RedHat 6.0 system.

Data portability issues

The Linux platform uses a data-storage format that is "little-endian" in
contrast to most other AVS5 UNIX platforms which are "big-endian"
(Compaq Tru64 UNIX is one other little-endian platform). This means
that binary data generated by another platform may not be read
correctly on Linux because the data format is incompatible. There are a
number of ways that this may cause problems:

• Geometry Viewer crashes: Incompatible data may be read in and
flow through a number of modules until it reaches the Geometry
Viewer. The Mesa graphics library is fairly intolerant of bad data
in vertex information and will often crash during renderering.
You can enable verification of geometry integrity as follows:

setenv AVS_GEOM_VERIFY 1

When this flag is on, it will double check all the geometry ele-
ments for reasonable data. If it complains about "NANs" (invalid
numeric values) in the incoming geometry, look back upstream to
look for sources of binary data.

• Unexpected results: Field values may be read in as extremely
small or large values resulting in unusual results down stream.
Use the Print Field module to examine data values on the Linux
machine and compare the output against a different UNIX plat-
form.

_ _______ __________________
4-10 Linux Programming Considerations

_________ _ ___
Programming

Considerations
(continued)

There are several ways to address these issues:

• Convert field data to XDR format: On the original source
machine, use the Write Field module (or equivalent for other
data types) and write out the data using the "XDR" portable for-
mat. XDR will be read correctly on all platforms.

• Modify reader modules to handle byte swapping: Modules that
read binary data directly should be coded to handle byte swap-
ping. The AVS include file, avs/include/port.h has either
"AVS_BIGENDIAN" or "AVS_LITTLEENDIAN" defined depend-
ing on the platform. If all the source data is "big endian", then
the code can be modified to do byte swapping when run on a
system that has "AVS_LITTLEENDIAN" defined.

• Use remote modules to read the data: Use your reader module
on a remote system that can read the data properly. Remote
modules then communicate to the local system using the XDR
portable format.

Use the Example Makefile as Template

You should use <installdir>/avs/examples/Makefile as the template for
your own FORTRAN and C module make files. This make file in turn
includes the file <installdir>/avs/include/Makeinclude that contains addi-
tional macro definitions appropriate to the Linux platform, its com-
pilers, compiler options, include files, and libraries.

As an examination of the Makeinclude file would show, when compiling
modules written in C you must use the egcs compiler or modify or
override the CC macro to use the gcc compiler.

Module portability issues

If you are using the same conventions that the AVS examples use
(Makefiles including Makeinclude, etc) you should have fewer prob-
lems. The following issues were found during porting and beta testing:

• LEX/YACC problems: The Linux version of these utilities wasn’t
always as robust as other platforms used for AVS5. The C code
output (lex.yy.c, etc) sometimes needed minor modifications.

• Gmake - Trailing white space: All trailing white space must be
deleted in variable declarations, otherwise gmake takes the white
space as part of the variable, i.e.

__________________ _ _______
Programming Considerations Linux 4-11

_ ___ _________
Programming
Considerations
(continued)

on the sun:

SC=/source #this is a comment (note the white space before the comment)

on linux:

SC=/source#this is a comment (note the lack of white space before the comment)

• Gmake - $$@ doesn’t work in dependency line: gmake does
not recognize $$@ on a dependency line. A new makefile rule
may need to be written to work around this limitation.

• Gmake - $$@F doesn’t work: this can’t be used to get the
filename portion of the make line.

• -DBSD needs to be defined: Without this flag (or -DUSE_BSD)
defined, some include files like <sys/types.h> will leave
undefined data types such as caddr_t, etc. This flag is included
in the Makeinclude file as part of the ACFLAGS macro.

• Porting flags may be needed: The avs/include/port.h file is not
included by most customer modules but does provide some help-
ful cross platform parameters. It is used internally to define vari-
ous platform specific characteristics, such as endian-ness, BSD or
not, data sizes of LONGS, etc. Using it may improve the porta-
bility of your module.

___ _______
FORTRAN Modules

On 32-bit platforms, integer (int) and pointer (int∗, void∗, etc) data
types are the same size and have historically been used as if they were
the same. On most 64-bit platforms (Compaq Tru64 UNIX and SGI
64-bit platforms) pointers are 8 bytes and integers are 4 bytes; the two
data types can NOT be used interchangeably. See the section on "FOR-
TRAN Modules on 64-bit systems" in the UNIX Platforms chapter for
critical information on this topic.

___ _______
AVS on Linux
Workstations: Known
Problems

This section lists the known problems with this release of AVS 5.5 that
are unique to Linux platforms.

Warning: reducing color usage: R=8,G=8,B=8,Grey=256:

Problem Description:
This message is sometimes received depending on the X server
configuration.

_ _______ __________________
4-12 Linux Known/Fixed Problems

_________ _ ___
AVS on Linux

Workstations: Known
Problems

(continued)

X11201: Geometry Viewer - scale reduced to zero not recoverable

Problem Description:
Once objects are scaled down to 0 in the Geometry Viewer, they
may not scale back up again. Some other UNIX platforms seem
to recover from this situation more readily and will scale back up
from 0. This is under investigation.

__ _ _______
AVS on Linux

Workstations: Fixed
Problems

This is the list of fixed problems for AVS 5.5 on the Linux platforms.

17565: Set_view module crashes

Problem Description:
The set_view module was crashing under various circumstances.
This has been fixed.

16418: Translate_molecule module crashing on Linux

Problem Description:
The translate_molecule module was crashing on exit and leaving
a core file behind. This has been fixed to eliminate the crash.

17440: AVS crashing when exiting some demos

Problem Description:
It was found that after exiting the AVS Demos application, then
attempting to reenter the demos, caused AVS to crash. This has
been fixed.

__________________ _ _______
Known/Fixed Problems Linux 4-13

_ ___ _________
AVS on Linux
Workstations: Fixed
Problems
(continued)

_ _______ __________________
4-14 Linux Known/Fixed Problems

_________ _ ___
EXTENDED
FEATURES

CHAPTER FIVE_________ _ ___
__ _ _______

Overview
AVS 5.5 is primarily a platform maintenance release; its main purpose
is to update AVS to run on major new operating system releases and
provide critical bug fixes. For an overview of what is specifically in the
AVS 5.5 release, please see the "Release Highlights" in Chapter 1.

AVS5.5 NOTE: The AVS_DEMOS have been revived and retested on
all platforms and a number of bugs have been fixed. The BTF
renderer (AVS/Voxel) has been unlicensed to help simplify AVS 5
licensing. AVS/Graph has been ported to Linux using Toolmaster 7.1
for its underlying graphics support.

This chapter also describes the Cool CD and UCD Builder materials
provided with AVS 5.3 and other features added in earlier releases of
AVS 5, such as AVS/Graph, AVS/Voxel, Japanese Online Help, and
the AVS Demos. Fixes for known problems are discussed in the intro-
ductory UNIX chapter and the chapters for the specific platforms.

__ _ _______
Cool CD and UCD

BuilderThe Cool CD is an extensive collection of public domain and 3rd party
modules and data sets, conference proceedings, and other valuable
material to expand your use of AVS 5 products.

Much of the Cool CD comes from the International AVS Centre (IAC)
through the contribution of users like yourselves who have developed
AVS 5 modules and data sets and offered them to the AVS user com-
munity. The IAC, now based at the University of Manchester in Eng-
land, makes these modules available in source form through its World
Wide Web site. The Cool CD delivers them to you for convenience but
make sure to visit the new IAC Web site for ongoing contributions and
updates at http://www.iavsc.org.

Additional 3rd party modules are also on the Cool CD, including
modules that help you -

__________________ _ _______
Extended Features Extended Features 5-1

_ ___ _________
Cool CD and UCD Builder
(continued)

• Read and write VRML (Virtual Reality Markup Language), an
emerging 3D modeling language for the World Wide Web

• Read input from FEA and CFD applications to create UCD data
structures (UCD Builder) (Note: This is not available for Linux)

• Read I-DEAS FEM data (FEMbridge) or write data to a V-LAN
based video recorder (VIDEOkit), available for evaluation or pur-
chase through KGT, Inc.

Additional information on other third party AVS5 and AVS/Express
modules and applications available through other companies is also
included.

The Cool CD also included a snapshot of the corporate website for
Advanced Visual Systems; this has become substantially outdated since
the CD was last updated. Please visit our online website at at
http://www.avs.com.

The Cool CD is specially formatted to allow you to browse the con-
tents with your favorite Web browser without having to install any-
thing. Just mount, browse, and choose what you want to use; in some
cases, the software can be run off the CD with no installation.

___ _______
Support

Because the Cool CD contents are primarily from third parties and are
not part of the AVS 5 product line, AVS Customer Support will not
support them or answer questions about them. The contents of the
Cool CD are provided "AS IS", with no warranty or support of any
kind. We are making them available to you as a service to make it
easier for you to explore and experiment with the wide world of pub-
lic domain AVS 5 modules available.

If you do have problems, you should contact the appropriate third
party for help or suggestions. For modules from the International AVS
Centre, start by contacting the IAC directly or the original module con-
tributor if they have provided contact information.

For most of the third Party modules (FEMbridge, VIDEOkit, VRML
reader and writer), follow instructions on the Cool CD to contact KGT,
Inc. for further information.

The UCD Builder product was developed by Scientific Visualization
Associates Inc. Working with Advanced Visual Systems, the company
is making its product available to you in binary form for free as a con-
tribution to the AVS 5 community. This is an unsupported product and
Advanced Visual Systems assumes no responsibility for it; if you do
have problems or questions about it, see the related Web page for
instructions. Note: It is not currently supported for Linux.

_ _______ __________________
5-2 Extended Features AVS/Graph

_________ _ ___
Cool CD and UCD Builder

(continued)

__ _ _______
AVS/Graph

AVS 5.5 NOTE: The AVS/Graph module has been ported to Linux
using the latest version of Toolmaster 7.1.

AVS/Graph is a graphing tool which allows you to plot AVS field data
in a variety of ways (curve, scatter, bar, area, polar, pie, images), con-
trol the appearance of the graph (titles, axes, logarithmic scales,
legends, tick marks) and generate hardcopy output in a variety of for-
mats (PostScript EPS, PostScript Color EPS, CGM Binary, CGM Clear
Text, etc.) AVS/Graph consists of the Data Output module named
AVS/Graph with its own extensive user interface, a set of demonstra-
tion scripts, and a set of example networks.

The AVS/Graph module is a part of the Supported AVS Module
Library. The module is a synchronous coroutine module (i.e., it runs
as an independent process that is triggered when one of its inputs
changes).

AVS/Graph is implemented using the Advanced Visual Systems pro-
duct Toolmaster-agX. The source to the module is included with the
release. If you also purchase Toolmaster-agX, you can use the module
source as a guide to extending AVS/Graph functionality to perform
additional tasks such as contouring, data interpolations and smoothing,
3D graphs, and note and arrow annotations.

For complete AVS/Graph documentation, see the AVS/Graph User’s
Guide included in the standard doc set.

__ _ _______
Japanese Online Help

This release contains a complete set of AVS 5 online help in Japanese.
All of the material in runtime/help has been translated, including the
module man pages and the help files for the various subsystems. In
addition, users can create their own Japanese language online help files
to support their applications.

The k14 and a14 X fonts must be present on your system.

To install Japanese Online help:

1. Use either the RPM (avs5jhelp-∗-∗.rpm) or the install.avs script.
When the install.avs script presents its list of installable products,
select AVS_JHELP. This one help directory supports all platforms
and takes approximately 3 megabytes of disk space.

The installation creates an <install-dir>/avs_jhelp directory. This direc-
tory can be anyway in the file system hierarchy, both within the avs
installation directory or outside it.

__________________ _ _______
AVS/Graph Extended Features 5-3

_ ___ _________
Japanese Online Help
(continued)

2. With the AVS_PATH environment variable set to point to the
AVS directory, execute the script <install-
dir>/avs_jhelp/test/SETUP. If unset, AVS_PATH defaults to /usr/avs.

This script adds the correct fonts to the runtime/avs.Xdefaults file and
sets the AVS_HELP_PATH environment variable to point to the
Japanese help files.

3. You can check that the installation went correctly by executing
the <install-dir>/avs_jhelp/test/RUNME script.

For information on creating your own Japanese online help files, see:

• test/kanji.eucf: Man page that describes how to make a module
with a Japanese help file. (This file is in Japanese).

• test/kanji.scr: AVS script for making a module with a Japanese
help file.

• test/kanjiall.txt: The table of EUC codes.

___ _______
AVS/Voxel

AVS/Voxel is a Back-to-Front (BTF) direct volume renderer consisting
of a set of modules provided in the Unsupported library for customers
to use and experiment with. NOTE: The BTF renderer is not pro-
vided on Compaq Tru64 UNIX.

The BTF renderer renders volumes one slice at a time, beginning from
the back of the volume, and composites each new slice as it renders the
volume. It is based on a high performance algorithm that achieves its
speed by exploiting memory coherence and by optimizing cases
involving transparency. In addition, BTF has support for a binary
occupancy volume that increases rendering performance for cases that
involve clipping, region growing, and segmentation. This volume
renderer is extremely well suited for data sets where much of the data
in the volume will be transparent (e.g. seismic interpretation and medi-
cal imaging).

The BTF renderer is a set of modules that are currently placed in the
Unsupported library. It consists of the following modules:

btf shade
Performs back-to-front (BTF) volume rendering. This module takes
a volume, which can be visualized as a block of cubic "voxels"
(volume elements), and generates a 2D image using a back-to-front
(btf) direct volume rendering technique.

btf anim
Performs back-to-front (BTF) volume rendering like btf shade

_ _______ __________________
5-4 Extended Features AVS/Voxel

_________ _ ___
AVS/Voxel
(continued)

except that it allows the user to select a region of the volume and
show intermediate rendering results, layer by layer to more clearly
see the internal structure. Provides parameters to select starting
and ending layers, number of steps between views, and run con-
trol.

btf bitvol
Creates a bit volume for use with btf volume renderer. This
module generates a bit volume from a 3D scalar byte or 16-bit
integer field using the opacity channel from a colormap. The
rendering speed of the btf shade and btf anim modules can be
increased substantially by using the btf bitvol module. Perfor-
mance can be increased by a factor of 2-4 depending on the occu-
pancy level of the volume, i.e. the number of non-zero voxels in
the volume.

norm8 encode
Computes gradient vectors for 3D data sets and encodes them into
bytes. The norm8 encode module computes the gradient vector at
each point in a 3D field of data. The gradient vector can be used as
a "pseudo surface normal" at each point. This vector is then
encoded into a byte and packed into a 16-bit integer value along
with the original input value.

norm8 table
Generates a lookup table for an encoded gradient. The norm8
table module accepts an optional transformation matrix as input. It
builds a 256-entry intensity lookup table using the ambient and dif-
fuse coefficients and the light source direction for all possible
values of the encoded normal information (gradient vector). This
table is then used during the shading process by the btf shade and
btf anim modules to interpret the gradient information that was
encoded into a byte by the norm8 encode module.

__ _ _______
Using AVS/Voxel

On platforms that support AVS/Voxel, the BTF modules are located in
the Unsupported library. There are several demonstration scripts that
can be found in the $AVS_PATH/demo/man_scripts directory, all named
with titles beginning with "BTF volume rendering". These are found
by selecting the Help button and then selecting Help Demos to bring
up the Script Controller which presents a list of demonstration scripts.

The BTF modules no longer require any additional licensing from
Advanced Visual Systems. You may see a "AVS/Voxel" entry in your
AVS5 license but this is no longer needed for AVS 5.5. You may wish
to retain this feature line for older versions of AVS 5 still in use at
your site.

__________________ _ _______
AVS/Voxel Extended Features 5-5

_ ___ _________
AVS/Voxel
(continued)

___ _______
Documentation

The man pages for the BTF modules are available online in the
$AVS_PATH/runtime/help/modules directory along with the other AVS 5
modules. Press the module’s dimple to get the Module Editor panel
and then press "Show Documentation".

___ _______
Demos

AVS5.5 NOTE: These demos have been rebuilt and retested under all
AVS 5.5 platforms and problems have been addressed.

This release provides an optional package of AVS Demos that can be
loaded from the CD after AVS has been installed. These demos can be
used to see additional ways that AVS can be used and to obtain new
demonstration datasets to augment those found in $AVS_PATH/data.
Most of these datasets and demonstrations have been contributed by
AVS users for the benefit of the AVS user community. While our
users have permission to use them for demonstration purposes, they
are not necessarily public domain and should not be used in products
outside of AVS without express written permission from Advanced
Visual Systems Inc.

___ _______
Installing the Demos

You will require approximately 25 Megabytes to unload the Demos
from the CD and another 5 to 10 Megabytes to build them for a total
of 50 Megabytes. The demos are NOT precompiled but must be built
in order to work.

1. Install AVS if you haven’t already done so. The Demos will
expect to reference a standard AVS product in $AVS_PATH
(/usr/avs by default).

2. Install the DEMOS product from the AVS CD using the RPM
(avs5demo_∗-∗.rpm) or the install.avs script used for installing the
standard product. They will be installed into avs_demos.

3. If you are installing the demos from a remote login window you
must make sure that your DISPLAY environment variable is set
to an open display, e.g. "setenv DISPLAY :0.0". The installation
procedure will attempt to run avs to run some data conversion
scripts and this will fail if there is no DISPLAY set.

4. Change directory (cd) to the avs_demos directory and run the
install_demo script found there to install a reference (link) from
the $AVS_PATH/demosuite area to the place where the Demos are
located. The install_demo script will do the following:

_ _______ __________________
5-6 Extended Features AVS/Demos

_________ _ ___
Demos

(continued)

• Move aside the existing $AVS_PATH/demosuite/demo_menu
file to demo_menu.orig and install a new version of the
demo_menu file with the Demos scripts appended as an
"Extended" menu.

• Create a link from $AVS_PATH/demosuite/DEMOS to the
avs_demos directory. This link is required for making the
Demos files since some of them expect to find DEMOS in
$AVS_PATH/demosuite.

• Offer to "make" the Demos. You should reply "yes" to
immediately make the modules and local data files that
make up the Demos.

__ _ _______
Uninstalling the Demos

Change directory (cd) to the avs_demos directory and run the script
uninstall_demo which will do the following:

• Remove the Demos version of $AVS_PATH/demosuite/demo_menu
and move the original demo_menu.orig back into place.

• Remove the link from $AVS_PATH/demosuite/DEMOS to the
avs_demos directory.

• Offer to remove the entire current directory (assumed to be the
avs_demos directory).

__ _ _______
Running the Demos

Once installed, the Demos are accessible as a top level menu in the
standard AVS demosuite. To run them, run avs, select AVS Applica-
tions and then select AVS Demo. The Demos should appear as a new
menu called Extended and are organized by different market seg-
ments. Each demo consists of one or more demonstration scripts.

The following demos are part of the AVS Demos package:

Medical Imaging

Helen’s Neck
MRI (Magnetic Resonance Imaging) study of Helen’s neck. The
data set consists of eleven slices of 256x256 images taken sagittally.
On slice 5, you can clearly see her brain, spinal column, and the
vertebrae surrounding the spinal cord. This is a real life example
based on a study performed on a friend of Advanced Visual Sys-
tems Inc.

__________________ _ _______
AVS/Demos Extended Features 5-7

_ ___ _________
Demos
(continued)

Brain
Stereotactic Radiosurgery: This demonstration shows the planned
treatment for a real patient. The patient was a 2 year old girl with
a brain tumor located dangerously close to her brain stem and
inoperable by conventional surgical methods. Provided by Dr.
Hanne Kooy at the Dana Farber Cancer Institute.

Geographic Information Systems (GIS)

World
This demo shows outlines for the following global features: con-
tinental outlines; islands; lakes; rivers; country borders; United
States borders.

FlightPath
The flight path module takes a scatter field position list and ani-
mates the camera path along the trajectory. The modules is
derived from $AVS_PATH/examples/camera.c. The scatter path field
is in the form of "field 1D 3-space irregular float" where the coordi-
nate information in the field specifies the path. The data values are
ignored. It moves %top, not the camera, so multiple camera views
can be set up to watch the path. The file_descriptor or read_field
modules can be used to get the path from an external file. The
animated integer module can be used to control time, for a mov-
ing sequence.

Terrain
Terrain Reconstruction from Digital Elevation data. This demo
shows an elevation map and a landsat image (full color) of Orange
County, with a perspective view. The image is rendered with a
synthetic light source direction. The texture processing is per-
formed by the AVS software renderer, or hardware adapters that
support this operation.

Seal Tracks
Southern Elephant Seal movement and dive data in the South
Atlantic. Provided by the SEA Mammal Research Unit, British
Antartic Survey, NERC, Cambridge, UK. Ref: Dr. Ollie Cox and
team.

Meteorology

Weather
Weather Satellite Images: If you have ever watched TV weather
forecasts, you probably have seen the short "movies" of the clouds
moving over the earth, especially when there is a hurricane off the
coast. A new satellite photo is available every hour via the Inter-
net. We have put together a series of 12 such photos from daytime

_ _______ __________________
5-8 Extended Features AVS/Demos

_________ _ ___
Demos

(continued)

on July 21, 1992. The images register infrared light and therefore
indicate temperature. These images were taken by the GOES-7
satellite and retrieved from a machine at University of Illinois at
Urbana-Champaign, Illinois.

Oil and Gas

Velocity 3D
This is a demo of a synthetic 3D velocity profile field, with a
"plumb line" interactive fence diagram picking module.

Intera
This is a series of representative models of oil and gas exploration
projects produced by InteraView, a product of Intera Information
Technologies Limited, Petroleum Production Division that uses
AVS to deliver end user solutions.

Computational Fluid Dynamics (CFD)

Phoenics
PHOENICS fluid flow simulation, courtesy of CHAM (UK). The
PHOENICS CFD code is interfaced to AVS for both pre-processing
and post-processing. Includes Hot Electric Box, Smoke Spread in
House (two versions), Cooling Tower and Turbine Blade.

Vortex
CFD RIBBONS - generate ribbon representation for streamlines.
The ribbons module generates a set of geometric ribbons by taking
the polyline output of the streamlines module and replacing them
with finite width colored and textured polytriangle ribbons. The
data set shows a 3D vortex field from NCSA researchers.

Mechanical

Automobile
Max vonMises Stress on a Mercedes: In this demonstration, NAS-
TRAN was used to compute the Max vonMises stresses for a
Mercedes-Benz automobile. This finite element dataset contains
15,843 cells. Provided by Keith Redner, Scientific Visualization
Associates.

Crankshaft
Displacement on a Crankshaft: In these demonstrations, stress is
applied to a crankshaft. This finite element dataset contains 609
cells. Provided courtesy of Pafec, Ltd.

__________________ _ _______
AVS/Demos Extended Features 5-9

_ ___ _________
Demos
(continued)

Chemistry

Fast Animate
Water over Clay: Dr. Keith Refson, University of Oxford, UK uses
a molecular dynamics program to simulate the interaction of water
and cat ions with layers of clay. The simulation requires
significant processing per time step, so it is run offline with the
molecules’ positions at each time step saved into files. This
demonstration shows Dr. Refson’s AVS animation module.

BGF Ribbon
The code in this directory is for the PROTEIN module, which
reads a Biograf file and creates various displays of the molecule.

Statistics

City Scape
City Scape Data Analysis Display: Network Line Statistics are
displayed using a 3D Bar-Chart technique, called "City Scape".
The height and color of each cell shows two variables, while row
and column averages are computed dynamically and shown as
projected side panels. Provided by Advanced Visual Systems, Inc.

Jigsaw
The jigsaw module is a tool to show irregular boundary regions,
defined in 2D, like map boundaries, and apply data to loft them
into 3D with data defined height, and to apply color to indicate a
second variable. Provided by Advanced Visual Systems, Inc.

Magnetics

Vector Fields
Vector Fields Magnetic Flux Modeling: This structure represents
the result of an electro-magnetic flux analysis using "Tosca" from
Vector Fields Ltd. The magnet core is shown as a ring structure,
with air cells surrounding, with interpretive vector display
modules. The model is axial-symmetric, so a geometry duplication
method is used to construct the complete model for viewing. The
Vector Fields interface, this network, and the visualization project
is by Janet Haswell, Rutherford Appleton Labs, Oxfordshire, UK.

Texture

Texture Sampler
A set of texture image files such as rock, sand, and clouds from
Evans and Sutherland.

_ _______ __________________
5-10 Extended Features AVS/Demos

_________ _ ___
DEBUGGING

IN
AVS 5.5 CHAPTER SIX_________ _ ___

__ _ _______
Introduction

This chapter is a summary of suggestions and tips on developing and
debugging AVS modules; it draws together a number of techniques
and features that are available in different areas of the product. More
detailed documentation is referenced when available elsewhere.

AVS 5.5 NOTE: This entire chapter is new for AVS 5.5. It covers
features documented in prior releases as well as new features or
documentation in such areas as internal debugging flags, include
files, and test data generator modules.

The information is organized into the following sections:

• Coding and Porting - general advice on approaching portability

• Building for Debugging - suggestions on making modules easier
to debug

• Examples - borrowing code and techniques from module source
code examples

• Command Line Interpreter - setting up reproducible tests and
using debug flags

• Debugging Modules - using avs_dbx

• Input and Output Data - using standard test data sets during
shakeout

• Kernel Debugging - seeing what is going on in the overall system

• Working with AVS Customer Support - preparing questions,
options

__________________ _ _______
Debugging in AVS 5 Debugging in AVS 5 6-1

_ ___ _________
___ _______

Coding and Porting
___ _______

Module Generator
If you are writing a new module, use the Module Generator module to
create and manage the module throughout its life span. Described in
Chapter 2 of the Application Guide, the Module Generator will not
only create a source code "template" for your new module but it will
read your module back in later and allow you to make changes as it
evolves. It provides support for the following operations:

• Creating source code - you enter the desired name, properties,
inputs, parameters, outputs, etc. and it generates the matching
source code for either a subroutine or coroutine, creating the
source file with appropriate header file includes, description and
compute functions with proper declarations in C or FORTRAN,
and initialization calls

• Creating a makefile - a working Makefile using the recommended
Makeinclude definitions file is generated, supporting general por-
tability

• Creating man page template - creates a sample man page to fill in

• Compiling the module - compiles the module for debugging or
not as desired

• Loading the module - loads the module into the current Network
Editor, current module library

• Debugging the module - runs the module in avs_dbx, the module
debugger

• Reading existing module source - reads the module back in, inter-
preting the header information (inputs, outputs, parameters) and
remembering user code between special markers to include in the
new output.

___ _______
Common issues

There are a few areas that frequently cause problems that you should
be aware of.

Porting between 32 and 64 bit platforms

On 32 bit platforms, the integer (int) and pointer (int∗, void∗, etc) data
types are both 32 bits and can be (and often are) treated as the same;
poor programming practice has tolerated code in which these types are

_ _______ __________________
6-2 Debugging in AVS 5 Debugging in AVS 5

_________ _ ___
Coding and Porting

(continued)

cast back and forth to each other, or in which pointer values are
accepted and stored as ints, etc.

Unfortunately, the SGI N64 and Dec Alpha platforms are 64 bit plat-
forms that store ints as 32 bits, and pointers as 64 bits. This can result
in bizarre values arising inside your 32-bit code when it is run on a
64-bit platform - pointer values can be sliced in half, sometimes result-
ing in extreme values or 0.

The bottom line is to carefully use ints and pointers correctly and look
for problems like this if you are having porting problems.

FORTRAN and 64 bit platforms

When AVS 5 was originally developed, FORTRAN had no pointer
variable capabilities. In order to pass pointers to fields and other data
structures, FORTRAN functions would receive pointer values as
INTEGERs, then pass these into C functions to do operations such as
reallocating memory or computing offsets. In order to have FORTRAN
code that runs on both 32 and 64 bit platforms, you need to change the
declarations for values that receive pointer arguments from INTEGER
to INTEGER∗8. See "FORTRAN Modules on 64 bit Systems" in Chapter
3, "AVS 5.5 on UNIX Platforms", for more information on how best to
do this.

XDR data format

Binary data file formats vary from one platform to the next and can
cause serious problems between 32 and 64 bit platforms and also
between big- and little-endian systems. Use "XDR" data format when-
ever possible to minimize these issues; see documentation on the Read
Field and Write Field modules for more information.

Incorrect input and output declarations

It is easy to misdeclare the compute function arguments or not handle
data allocation correctly, causing unexpected behavior downstream
when the data isn’t what is expected.

• Use the Module Generator and the "include hints" operation as
much as possible; this will help reduce initial coding errors.

• Review the available AVS 5 example modules in
$AVS_PATH/examples to find an example of data being passed or
allocated similarly to what you need. The new corout_f FOR-
TRAN coroutine example shows most data types being passed in
and copied to outputs. The widgets examples are also good

__________________ _ _______
Debugging in AVS 5 Debugging in AVS 5 6-3

_ ___ _________
Coding and Porting
(continued)

samples of how to pass parameter values.

• FORTRAN string output requires that you allocate a string that
will persist after you exit the compute routine, something that is
difficult to do in FORTRAN. See the newly documented
AVSoutput_string function in Chapter 3, "AVS 5.5 on UNIX"
under the "New documentation" section for help in doing this.

• Use output diagnostic modules downstream to check that you are
getting what you expect (see section below).

• Visit the IAC module repository (http://www.iavsc.org) for related
module source.

• Request AVS 5 module source code for modules handling similar
operations. For more information see "Working with AVS Sup-
port" below.

Performance - Reducing data copying and processes

AVS 5 uses a variety of techniques to minimize the number of data
copies it needs, including shared memory and direct module communi-
cations. These work reasonably well but there are still times where
AVS 5 will make extra copies of data, for example to send the data
from module A (original copy), through the kernel (2nd copy), to
module B downstream (3rd copy). This particularly affects user data
types which do not use shared memory.

The best solution, when possible, is to combine modules into a single
"mongo" module and clean them up to be "reentrant" and "coopera-
tive" (see next issue about Global Data). When the modules are in the
same process, they can pass data just by passing pointers rather than
having to serialize the data and transmit it between processes, which
takes time and makes extra copies. Cutting down on the number of
module processes also saves memory usage and disk space, and
reduces the number of processes at run time. See "Multiple Modules in
a Single Process", page 4-21 in the AVS Developer’s Guide, for more
information on making modules behave well in shared processes.

You can combine your modules with AVS 5 standard modules as
needed as well, because the module binaries are included in a series of
libraries. See the $AVS_PATH/examples/multi_hog.c for an example of
how to do this.

Global Data and AVSstatic

In order to make your module code "cooperative" and "reentrant"
(allowing multiple module instances to share the same process), you
need to be especially careful about using global variables (variables

_ _______ __________________
6-4 Debugging in AVS 5 Debugging in AVS 5

_________ _ ___
Coding and Porting

(continued)

declared outside a particular function). These are often used for
remembering state information between compute function calls, but
when more than one module instance is involved this "state" informa-
tion may not be saved as originally expected.

The solution is to use the AVSstatic variable, documented in the sec-
tion on Mutiple Modules (page 4-21 AVS Developer’s Guide), mentioned
above. You declare a local "state" data structure that can hold all the
"global" state info for your module, make an instance of this data
structure and store the pointer to it in AVSstatic. When your module is
finished the value is stored away and then reset back when your
module runs the next time. The AVSstatic variable is now declared in
$AVS_PATH/include/avs.h; in releases prior to AVS 5.5 you will need to
declare this variable locally as follows:

extern char ∗AVSstatic;

Port.h

An undocumented header file, $AVS_PATH/include/port.h, contains a
number of platform specific compiler flags and declarations that permit
AVS supported modules to work across machines. It provides flags to
define characteristics such as endian-ness, BSD or not, data sizes of
LONGS, etc. If you run into platform specific behavior, you may want
to first review this file to see if there are appropriate declarations cov-
ering the areas of concern. Few changes have been made in this file
over the last few releases.

__ _ _______
Building for Debugging

When you write your module, it can be helpful to build in debugging
aides that will produce diagnostic output when you want it. There are
a few ways to do this.

AVSmessage

The AVSmessage function and its convenience forms (AVSinfo,
AVSwarning, AVSerror, and AVSfatal) provide a means of sending
multiple levels of information to dialog boxes, stdout, and a log file.
Using AVSinfo may allow you to include debug output from your
module. For more information on AVSmessage see "Handling Errors in
Modules", page 3-13 in the AVS Developer’s Guide.

The AVSmessage function has four levels of severity - (1) information,
(2) warning, (3) error, and (4) fatal - corresponding to the four shortcut
function calls. By default there is a "dialog cutoff level" of 2 - levels 2
through 4 will result in a dialog box being displayed with the message,

__________________ _ _______
Debugging in AVS 5 Debugging in AVS 5 6-5

_ ___ _________
Coding and Porting
(continued)

requiring the user to acknowledge before the module continues. Below
this cutoff level (2), lower level messages (in this case just "(1)informa-
tion") are displayed to standard output (stdout). All messages are
recorded to a log file, called /tmp/avs.log_<ProcessId> for the duration of
the session. You can tell AVS to preserve this log file after the session
is completed by using the SaveMessageLog option in your .avsrc file.

This "cutoff" level can be adjusted using the CLI "debug" command
on the "AVSmessage_dialog" flag. Start up using "avs -cli" and then
type "debug" to see or change the current debug flag settings. The
level can be raised or lowered to suppress or enable dialog output
above a certain level.

See the example $AVS_PATH/examples/widgets for an example of how
AVSmessage can be used.

Invisible parameters

You can include extra debug control parameters in your module
declaration that are not shown to users by default. Use the
AVSconnect_widget function to select "none" (or clicking the option in
the Module Generator) and no widget will be attached by default.
Later when you wish to use this invisible parameter you can either use
the CLI "parm_set" command for your module or bring up the Module
Editor and from that the Parameter Editor to attach a widget to the
parameter, making it accessible. One thing your parameter might con-
trol is additional debug output to stdout or AVSinformation().

Text browsers

The print field module shows an example of a module that writes text
output to a file and then provides a window onto that file using a "text
browser" widget. The parameter provides the name of a file that the
module then writes to; when the module signals for a widget update,
the widget reads in the text file to refresh its output. Though narrow
by default, the module can select to make this window wider and
parent it to the main shell window if desired.

The end user can do the same thing using the Layout Editor mode in
the Network Editor, reparenting the module panel to the shell win-
dow, stretching the text browser, and reconfiguring the module panel.
For an example of how to use text browser widgets this way see the
new example module, $AVS_PATH/examples/geom_write.c

_ _______ __________________
6-6 Debugging in AVS 5 Debugging in AVS 5

_________ _ ___
Coding and Porting

(continued)

Memory leaks

A number of good commercial memory management packages, such as
Purify from Rational Software, are available to help you track down
memory leaks and mismanagement. AVS 5 also contains a less power-
ful memory management diagnostic package, invoked by including
$AVS_PATH/include/mem_defs.h and defining MEM_DEFS_ENABLE
during compilation.

This package redefines the front end to many string management and
memory management functions and can provide verbose output. These
macros insert a layer of error checking routines between the applica-
tion and the system memory allocation routines. For instance if you
call ’malloc’, this substitutes a macro for the function call so it calls
’MEMmalloc’ instead. It collects statistics, does error checking, and
optionally prints out debugging information. These substitutions can
cause some strange syntax errors under certain conditions. See
"Memory Allocation Debugging", page 4-1 in the AVS Developer’s Guide
for more details.

__ _ _______
AVS Examples

When you need module source code examples to see how more com-
plex operations are done there are a number of sources.

• $AVS_PATH/examples - the first place to start for examples of C,
FORTRAN, and C++ example modules. Several new module
examples have been added in AVS 5.5; see Chapter 3, "AVS 5.5
on UNIX Platforms" under the "New Example modules" section.

• AVS_DEMOS - the extended demo package includes a number of
customer module contributions which are compiled from source
when the package is installed. See the chapter on "Extended
Features" under the "Installing the Demos" and "Running the
Demos" sections for more information.

• International AVS Center: The IAC has a large number of custo-
mer and AVS contributed source code modules. Visit their web
site at www.iavsc.org. An older snapshot of the IAC web site is
available on the "Cool CD" originally shipped with AVS 5.3 and
all new shipments.

• AVS supported module source code: You can request the source
code for most supported modules from AVS Customer Support
after signing a source code agreement. Nearly all non-builtin
modules are available. For more information see "Working with
AVS Support" below.

__________________ _ _______
Debugging in AVS 5 Debugging in AVS 5 6-7

_ ___ _________
___ _______

Command Line
Interpreter The AVS Command Line Interpreter (CLI) can be useful for testing in

the following ways:

• providing access to a number of debug switches for producing
more verbose output

• timing how long it takes a particular command to execute

• recording test and demo scripts to test networks or reproduce
problems more easily

• playing back test scripts providing either stepping or time
delayed execution or early termination.

In order to use the CLI directly, just start "avs -cli" and the "avs>"
prompt indicates AVS is listening for CLI commands. For more general
information see Chapter 5 in the AVS Developer’s Guide.

___ _______
Debug switches

The "debug" command will either list or change a series of debug
switches. The values shown are the default settings. A number of these
are unsupported and incomplete but work well enough to be very use-
ful.

debug [UNSUP] Set or view internal debug switches
Without arguments will list and describe the known switches.
With just the name of the switch it will show the current value.
All switches take an integer value, with off being 0 in most cases.

Usage: debug {<switch> <value>}

• AVScommand_debug 0 # Echo commands received through
AVScommand and their results

• AVScomm_debug 0 # Enable module communications debug
output (0 or non-zero)

• AVSfield_debug -1 # Enable field debug output levels -1, 0-4
increasing output

• AVSmessage_dialog 2 # AVSmessage level that presents dialog
(0-4 = info-fatal)

• CLIrecord_LUI 0 # Enable recording of LUI button hits during
script output (INCOMPLETE AND SUBJECT TO SEVERE LIMI-
TATIONS)

_ _______ __________________
6-8 Debugging in AVS 5 Debugging in AVS 5

_________ _ ___
Command Line Interpreter

(continued)

• CLIscript_dialog 1 # AVSmessage (during scripts) present dialog
(1)

• CLItime 0 # Display the time each CLI command takes to exe-
cute (1)

• EDITORmacro_mode 1 # System mode for implementing macros.
0 means old macros, 1 is new

• FlowConcurrent 0 # Turn on or off concurrent starting of net-
works with parallel forks

• FlowVerbose 0 # Make internal kernel operations report status
information

• MEM_verbose 0 # Print a line for every allocate & free. 1 =
within module compute function only; 2 = outside; 3 = Every-
where.

• MEM_check 0 # Fill memory on allocate or free. Also report
leaks on second and subsequent module compute function calls.

• MEM_history 0 # If non-zero: Fences and history of allocations.
More checking and better messages on free. 2 (bit 1) = check
fence posts on every allocate and free. 4 (bit 2) = when exiting,
list items allocated and never freed.

• XSynchronize 0 # Control X calls being flushed immediately (1)
or not (0)

Some of the more interesting flags are AVScommand_debug, which
shows what commands are coming in from modules using AVScom-
mand; CLItime, which activates timing and reporting on individual
CLI command executions; and FlowVerbose for gaining insight into
what module is currently executing. The "MEM" flags will affect new
module instances after they are set if the MEM package is compiled
into those modules.

__ _ _______
Writing scripts

CLI scripts are helpful for automated testing as well as reproducing
specific problems. In order to write a script use the "script" command:

% avs -cli
avs> script -open <filename>.scr -echo yes
avs_script> <do what you want>
avs_script> script -close
avs>

__________________ _ _______
Debugging in AVS 5 Debugging in AVS 5 6-9

_ ___ _________
Command Line Interpreter
(continued)

By saying "echo -yes" you will see the CLI commands being recorded
going to stdout as well. This helps the user learn basic CLI commands
and confirms what is and isn’t being recorded. Most interactive opera-
tions will be recorded - Network Editor operations and module widget
interactions in particular. Some additional operations will be recorded
when you enable the debug flag, CLIrecord_LUI, by setting it to 1.
Then when you record a script, more button hits and geometry viewer
operations will be recorded. Note: The CLIrecord_LUI option is not
supported as it is incomplete in some areas - direct interaction with the
Geometry Viewer views is not recorded for example. However it can
sometimes provide the "missing glue" that script writers need to per-
form a specific operation.

For more information on the CLI, see Chapter 5 of the AVS Developer’s
Guide.

___ _______
Playing back scripts

Scripts can be played back in several ways - using the "avs -cli" com-
mand line option, the Network Editor/Help/Demos script browser,
the AVS Demos pull down menus, or the "script -play" command as
follows:

% avs -cli
avs> script -play <filename>.scr -echo yes -action user -break step

This last is the most useful and allows you to break at every command
(step) or only at special points (check), either waiting for a user prompt
or pausing for a specified amount of time. You can break at any time
by hitting return in the CLI and it will ask if you wish to continue or
abort the script.

In combination with other debug switches, you can slow down a
prerecorded script and analyse the sequence of events taking place for
each operation by using the "script -sleep" option. For more informa-
tion type "help script" to the CLI to get the online help for this com-
mand.

___ _______
Debugging Modules

The best way to debug modules is using the avs_dbx script that effec-
tively wraps around a module and mediates with the debugger of your
choice.

This tool is just a shell script that can be printed out or changed if
necessary; by default it is set to use the most common debugger on a
given platform. It can be run either with command line arguments to
select a module or it will interactively query for the minimum informa-
tion it requires. The steps for running it are as follows:

_ _______ __________________
6-10 Debugging in AVS 5 Debugging in AVS 5

_________ _ ___
Debugging Modules

(continued)

• Compile your module for debugging using either the Module
Generator or by setting the "G" environment variable to the
needed local debug flag and calling "make".

• Use the Module Generator "debug" option or invoke avs_dbx
<binary-name>, selecting a specific module if needed with "-mod".
If desired you can select a different debugger using the "-debug"
option. Set any break points you need immediately.

• Instance the module in the Network Editor

• Type "run" AFTER the message "<module> instance waiting, fire
when ready...".

More information on avs_dbx can be found in page 3-20, AVS
Developer’s Guide.

__ _ _______
Input and Output Data

During development it can help to use test data patterns in addition to
your own data sets. Test patterns can help confirm basic operations are
working over a wide range of expected data. They can also help pro-
vide sample data sets showing problems with supported modules
when working with AVS Customer Support.

__ _ _______
Test input

Sample data sets can be either static - as found in $AVS_PATH/data,
the AVS_DEMOS package, or the IAC - or dynamic, as output by test
data generators like the new test field module
($AVS_PATH/examples/test_field.c) or the older FORTRAN examples,
test_field_f.f or test_fld2_f.f. The new test field module provides a much
more extensive set of test data patterns, dimensions, and sizes. It is
described in the UNIX chapter and documented in its own man page.

Binary data file formats vary from one platform to the next and can
cause serious problems between 32 and 64 bit platforms and also
between big- and little-endian systems. Use "XDR" data format when-
ever possible to minimize these issues; see documentation on the Read
Field and Write Field modules for more information.

__ _ _______
Diagnostic output

modulesOnce you have run data through your module without crashing, the
question is "how do you know it produced the RIGHT answer ?" There
are several ways to see what came out. Note: for more information on
these and any other modules, see the online man pages.

__________________ _ _______
Debugging in AVS 5 Debugging in AVS 5 6-11

_ ___ _________
Input and Output Data
(continued)

The most basic way is to see how the modules downstream respond to
the output. If they crash or produce unexpected results, something is
likely wrong with the data your module is producing. If you can
debug the modules downstream you may see which aspect of your
data sets are causing problems.

• Print Field - Some supported modules are provided that help
you actually look at your data more directly. Print field in partic-
ular is a very useful tool for examining AVS fields. If attached to
a field output, it will display information about the header and
some or all of the data in a text browser widget (note: Use the
Network Editor/Layout Editor to expand the default user inter-
face layout for print field or use a separate text editor onto the
same file name that print field is writing to. Print field allows you
to take various text slices through the data by selecting different
index ranges.

What you are usually looking for using Print Field and similar
modules is unusual data values, such as "NaN"s (not-a-number
values) and extreme values with high exponents that are unex-
pected. Of course, any serious deviation from your expectations
(all zeros, clipped values, etc) can give you a powerful clue to the
problem.

• Print UCD - a similar module which outputs UCD data instead
of fields.

• Write Geom - this new example module outputs binary data,
calls geom_to_text to convert the data, and displays the result in a
text window like print field. The source for Write Geom shows
how to use the text browser widget to view a file.

• Geometry Viewer - The builtin Geometry Viewer module and
the Geometry Viewer itself recognize a special environment vari-
able, AVS_GEOM_VERIFY, as a request to print a verbose
description of what they are seeing as they process a geom data
type. This output will display NaN’s and other oddities that may
give some clue to the problem.

• AVSGraph - The AVSGraph module recognizes an environment
variable, called AGX_DEBUG, to create a log file called
/tmp/AVSGraph.log of internal Toolmaster diagnostic messages.
This may help you discern problems with input data or other
problems.

• Compare Field - The compare field module serves a useful pur-
pose when the data can be directly compared to an expected
result or a similar baseline file. For example, in order to certify
that similar C and FORTRAN modules produce the same output
field, you would use compare field.

_ _______ __________________
6-12 Debugging in AVS 5 Debugging in AVS 5

_________ _ ___
Input and Output Data

(continued)

__ _ _______
Kernel debugging

__ _ _______
Debug output

Another source of problems relates more to how the system is
transmitting the data or running the module. AVS 5 is capable of pro-
ducing many different types of diagnostic output, though some of this
information may be more useful for AVS Customer Support to help
diagnose your problems than for you to make sense out of it without
understanding the internal architecture.

The Network Editor is the best way to see the network and which
module is currently executing. It provides Verbose mode under the
"Module Tools" menu, which will cause diagnostic output about which
module is executing and what connections are being made.

A related AVS command line option, "-mod_time", will time how long
a given module takes to run when it is being used. Another way to see
how long operations are taking is to use the CLI debug flag "CLIti-
mer", which will time individual CLI commands and send the output
to stdout.

A number of environment variables exist that produce some tracing
information to describe communications or module execution. These
are set using "setenv" in the C-shell.

• AVS_COMM_DEBUG - provides trace information about com-
munications traffic between the AVS kernel and all other
modules, including coroutines. This can highlight data transmis-
sion problems. Can also be set using the CLI debug command to
set the AVScomm_debug flag.

• AVS_GEOM_VERIFY - mentioned already, as a flag to enable
diagnostic output from the Geometry Viewer as it processes field
data input.

• AVS_FIELD_DEBUG - provides AVS field data information as
fields are allocated and deallocated in local or shared memory.
This can provide some idea of the size of fields moving around
as they are being created. Can also be set using the CLI debug
command to set the AVSfield_debug flag.

• AGX_DEBUG - mentioned already, provides a diagnostic output
log from the AVSGraph module.

__________________ _ _______
Debugging in AVS 5 Debugging in AVS 5 6-13

_ ___ _________
Kernel debugging
(continued)

___ _______
Runtime conditions

AVS 5 provides a number of means of handling data such as shared
memory (shm) and direct module communications (dmc) that expedite
communications and reduce data copies, but that may obscure your
problem. These communications options can be disabled using the "-
noshm" and "-nodmc" options respectively.

The AVS_OGL_INFO environment variable is useful for determining
information about your graphics adapter and OpenGL implementa-
tions. Modules may seem to produce different output when in fact the
Geometry Viewer is rendering their output differently on different
machines. Set this environment variable to 1 before starting AVS then
enter the Geometry Viewer to get diagnostic output about OpenGL ini-
tialization.

Another option to consider when isolating problems is disabling
modules selectively to pin point which module is the more likely
"culprit". Use the Network Editor/Module Tools/Disable Module
option or the CLI command, "module -off/-on" to disable individual
modules.

___ _______
Working with AVS
support Finally if you continue to have troubles with your module or applica-

tion, and are currently on maintenance for AVS 5, you should contact
AVS Customer Support for additional help or information.

The biggest problem we often face is being able to reproduce your
problem. It helps immensely if you can demonstrate the problem using
some of our supported modules and data sets. If not, the ideal is to
provide us a copy of your module or application to review the situa-
tion you are facing.

Our FTP site (ftp.avs.com) provides the best means of sending large
data sets or executables to us for help in investigating your problem
and is much more reliable than email for large files. Please contact
AVS Customer Support BEFORE you place files on our ftp server to
ensure we are expecting your files and can pull them in quickly to
attach to your case records. Follow the instructions to place them on
the ftp site, in the incoming directory.

Less effective but still useful is seeing a Postscript snapshot of your
network, obtained using the Network Editor/Network Tools/Print
Network option or seeing output views from the system using xv or
the Write Image module.

_ _______ __________________
6-14 Debugging in AVS 5 Debugging in AVS 5

_________ _ ___
Working with AVS support

(continued)

__ _ _______
Requesting Module

Source CodeIn some situations, you may feel it would be most effective to obtain
the source code to some of our supported modules, in order to make
minor changes or investigate issues. In most cases it is possible for
AVS Support to release the source code to individual AVS5 modules.
This will be considered only for customers under a valid support con-
tract.

Before the source can be sent we must receive or have on file a signed
copy of our Confidential Disclosure Agreement. In addition a signed
Source Code Addendum must be sent for each module or set of
modules requested. Both of these documents can be downloaded from
our web site at http://help.avs.com/AVS5/faq/modsrc.asp. The requests
should be faxed to the AVS main office in the U.S. at (781) 890-8287 or
through your local distributor or support office.

Once the request has been received, it will be reviewed for approval.
Certain modules will not be made available. The following lists some
of the modules not available as source code, though there may be
more. Most of the following are "builtin" modules that only work as
part of the kernel process anyway; these might be made available to
Developer AVS customers that require them.

• geometry viewer

• image viewer

• graph viewer

• display image

• isosurface

• colormap manager

• display pixmap

• render geometry

• transform pixmap

• image manager

• render manager

• ucd legend

__________________ _ _______
Debugging in AVS 5 Debugging in AVS 5 6-15

_ ___ _________
Working with AVS support
(continued)

_ _______ __________________
6-16 Debugging in AVS 5 Debugging in AVS 5

	Table of Contents
	Chapter 1 (AVS 5.5 Release Notes)
	Release Highlights
	Organization
	AVS 5.5 Media Kit
	Implementation Overview

	Chapter 2 (AVS 5.5 Installation)
	Introduction
	Step 1: Decide Where to Install AVS 5
	Step 2: Mount the CD
	Step 3: Install AVS 5 from the CD
	Step 4: Install man pages
	Step 5: Tell Users How to Find AVS
	Distribution Contents
	Source Code

	Chapter 3 (AVS 5.5 on UNIX Platforms)
	Introduction
	New Features in AVS 5.5
	Documentation updates
	X Windows and Graphics
	Programming Considerations
	Fixed in AVS 5.5
	Known Problems

	Chapter 4 (AVS 5.5 for LINUX)
	Introduction
	Hardware Prerequisites
	Software Prerequisites
	Using AVS on LINUX Workstations
	Image Viewer
	Network Editor
	Graph Viewer
	Geometry Viewer
	Programming Considerations
	AVS on LINUX Workstations: Known Problems
	AVS on LINUX Workstations: Fixed Problems

	Chapter 5 (Extended Features)
	Overview
	Cool CD and UCD Builder
	AVS/Graph
	Japanese Online Help
	AVS/Voxel
	Demos

	Chapter 6 (Debugging in AVS 5.5)
	Introduction
	Coding and Porting
	Command Line Interpreter
	Debugging Modules
	Input and Output Data
	Kernel Debugging
	Working with AVS Support

