
_________ _ ___

DEVELOPERS AVS
INSTALLATION/
RELEASE NOTES____________

Release 5.5 (50.86 / 50.88)
November, 1999

Advanced Visual Systems Inc._ _______
Part Number: 330-0150-02 Rev L

NOTICE

This document, and the software and other products described or referenced in it, are confidential and
proprietary products of Advanced Visual Systems Inc. or its licensors. They are provided under, and are
subject to, the terms and conditions of a written license agreement between Advanced Visual Systems
and its customer, and may not be transferred, disclosed or otherwise provided to third parties, unless oth-
erwise permitted by that agreement.

NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT,
INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR SUI-
TABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A WARRANTY
BY ADVANCED VISUAL SYSTEMS FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF
ADVANCED VISUAL SYSTEMS WHATSOEVER. ADVANCED VISUAL SYSTEMS MAKES NO WAR-
RANTY OF ANY KIND IN OR WITH REGARD TO THIS DOCUMENT, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE.

ADVANCED VISUAL SYSTEMS SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR
IN THIS DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMI-
TATION INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR
RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF ADVANCED
VISUAL SYSTEMS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The specifications and other information contained in this document for some purposes may not be com-
plete, current or correct, and are subject to change without notice. The reader should consult Advanced
Visual Systems Inc. for more detailed and current information.

Copyright 1999
Advanced Visual Systems Inc.

All Rights Reserved

AVS and IVP are trademarks of Advanced Visual Systems Inc.
AVS/EXPRESS is a registered trademark of Advanced Visual Systems Inc.

All other product names mentioned herein are the trademarks or registered
trademarks of their respective owners.

RESTRICTED RIGHTS LEGEND (U.S. Department of Defense Users)

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights In Technical Data and Computer Software clause at DFARS 252.227– 7013.

RESTRICTED RIGHTS NOTICE (U.S. Government Users excluding DoD)

Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of
this computer software, the rights of the Government regarding its use, reproduction and disclosure are
as set forth in the Commercial Computer Software — Restricted Rights clause at FAR 52.227– 19(c)(2).

Advanced Visual Systems Inc.
300 Fifth Ave.

Waltham, MA 02451

Printed in U.S.A.

DEVELOPERS AVS INSTALLATION/RELEASE NOTES CONTENTS-1

TABLE
OF
CONTENTS

1 Developers AVS Overview

Introduction 1-1
Developing Applications 1-1
Deploying Applications 1-2
Product Licensing 1-2
Product Software Requirements 1-5
Problems fixed in AVS 5.5 1-5

2 Installation

Installing Developers AVS 2-1
License Requirements 2-2
Distribution Contents 2-3

3 Developing Applications

Introduction 3-1
Building the Examples 3-1
Example Applications 3-1

app1: Basic Application Program 3-2
app2: Sending Command Line Arguments and
 CLI Commands to AVS 3-3
app3: Motif-Based Interface 3-4
app4, app5, and app6: Motif-Based Interface with
 Reparented Drawing Area 3-5

Common Application Features 3-7
Suppressing the AVS Menu 3-7
Licensed Applications: Defining a FLEXlm Licensing
 FEATURE String 3-8
Unlicensed Applications (OEM-Supplied Licensing) 3-9

TABLE OF CONTENTS

CONTENTS-2 DEVELOPERS AVS INSTALLATION/RELEASE NOTES

Hook for License Validation 3-9
Unlicensed AVS: Enabling the Network Editor 3-9

Application Makefiles 3-10
Deploying an Application 3-12
Optimizing Geometry Modules: Linking Modules
 with the Kernel 3-15

Procedure Summary 3-16
Changes to the Module’s Source Code 3-17
Changes to the Application Main Routine 3-18
Changes to the Module Library File 3-18
Changes to the Network File 3-19
Changes to Makefiles 3-19
Special Case: Duplicate Module Names 3-19

4 Module Source

Two Module Source Products 4-1
Compiling Modules 4-1
Module to Module Source Mapping 4-1
Module to Module Binary Mapping 4-1

DEVELOPERS AVS OVERVIEW 1-1

CHAPTER 1 DEVELOPERS
AVS
OVERVIEW

Introduction

This document describes the Developers version of Advanced Visual Sys-
tems Inc.’s AVS 5.5 product as it is implemented on all platforms.

The Developers AVS product is designed to provide application developers
with the ability to develop and deploy AVS-based applications to their users.
Although these applications will use various AVS capabilities, end-users will
often be unaware that the application they are using is built on top of AVS.

AVS 5.5 Notes: As a convenience to the reader, changes made for AVS 5.5
are summarized at the beginning of each chapter in "AVS 5.5 Notes"
blocks.

This release now includes the Linux Developer’s AVS product which is un-
licensed (you will need to buy the standard AVS release for Linux separate-
ly); several Developer’s AVS bugs were fixed; the AVS/Animator is now
unlicensed and source is provided in the standard release; some new li-
censing options exist for greater convenience (contact AVS Customer Sup-
port for details). For more information, see the Standard AVS release notes
document for your platform.

Developing Applications

During the development phase, the developer uses the standard version of
AVS to create modules, build networks, and generate an application.

The components of an application built with AVS include:

• AVS modules
• AVS networks
• AVS runtime support files
• Developer-specific application code

The developer-specific application code can take one of several forms. In all
cases, the developer application consists of one or more AVS networks, and
one or more AVS modules. The most common form of application uses a

Deploying Applications

1-2 DEVELOPERS AVS OVERVIEW

pull-down menu interface, with menu button selections tied to AVS network
creation and modification. The developer can also build an application with
AVS as a network of modules whose user interface has been re-configured
with the AVS Layout Editor. Alternatively, the developer can construct an ap-
plication that drives AVS using the Command Language Interpreter (CLI), al-
lowing the use of developer-supplied or third-party user interface toolkits.

Deploying Applications

Once the application is developed with the standard version of AVS, it must
be packaged and deployed by the developer. The deployed application is
based on a version of the AVS executable created by the customer. This pro-
gram performs its own initialization and then makes a procedure call into the
AVS Runtime Library (libavs.a) to initiate AVS.

An application packaged in this way allows AVS modules to be executed and
networks to be built. It has access to all of the AVS Viewers.

In the RuntimeA version, two AVS components will not be accessible to a per-
son using the application:

• the AVS Network Editor, and
• interactive Command Line Interface (CLI) commands. (The application

may still issue CLI command strings with the AVScommand function
call.)

In the RuntimeB version, the Network Editor will be accessible to a person us-
ing the application. The interactive CLI is not.

Selection of RuntimeA or RuntimeB versions is controlled by licensing.

Product Licensing

AVS 5.5 Note: The Linux platform is NOT licensed at all so the discussion
below concerning licensing is not applicable. However, if you wish to use
the Linux platform as a Developer’s AVS customer you need to buy the
Standard AVS product for Linux separately through your AVS sales repre-
sentative.

In order to protect against uncontrolled distribution of the AVS product, a li-
censing protection scheme is required. This "licensing" involves three cases:

Licensing AVS for You, the Developer
You develop your application using the standard AVS distribution. You
obtain and install the license that enables you to run AVS as described in
the UNIX Installation and Release Notes book that accompanies the stan-
dard AVS distribution media. Standard AVS is licensed using FLEXlm .

Product Licensing

DEVELOPERS AVS OVERVIEW 1-3

The FEATURE line that enables AVS in the license.dat file that you obtain
from Advanced Visual Systems has the FEATURE name "AVS".

Licensing Your Internal Runtime Applications
When you purchased Developers AVS, you obtained at least one runtime
license.

When you make the example applications, app1, app2, etc., or when you
create test versions of your own applications, you link them against the
AVS library libavs.a. When linked against libavs.a, the application will au-
tomatically include FLEXlm.

An application linked against libavs.a requires a runtime license to run.
This runtime license is represented by a FEATURE line in the license.dat
file that you obtain from Advanced Visual Systems Customer Support.

The default FEATURE name for RuntimeA (no Network Editor) is
"AVS-Runtime".

RuntimeB (with Network Editor) developers must define a FEATURE
name that contains the suffix string "-NE" and register it with Advanced
Visual Systems Customer Support to enable the Network Editor. The sec-
tion "Defining a FLEXlm Licensing Feature String" in the "Developing
Applications" chapter explains how to do this.

Licensing Your Customers
The applications that you develop and provide to your customers require
an AVS runtime license. This runtime license will also be a FLEXlm sys-
tem license. The general procedure is:

1. When you create the application, you must specify a FLEXlm FEA-
TURE string that uniquely identifies your application in the appli-
cation program. You are renaming the application from the default
"AVS-Runtime" to your own name. The section "Defining a FLEX-
lm Licensing FEATURE String" in the "Developing Applications"
chapter describes how to do this.

2. You must register this FEATURE string with Advanced Visual Sys-
tems Customer Support. Contact Customer Support through e-
mail at support@avs.com or through your local Sales office.

3. When you link your application to the AVS binary libavs.a, it will
automatically include FLEXlm.

4. When you package your application, you must include the FLEXlm
licensing utility binaries (lmgrd license manager daemon, avs_lmd
vendor daemon, lmstat status command, etc.) on your distribution
media. These FLEXlm utilities are provided on the Developers
AVS CD in the directory license for redistribution with your appli-
cation. You must use the Developers AVS versions of these utilities,
not the versions on the regular AVS release media.
Your customers will use these FLEXlm utilities to control access to
your application.

5. Also with your application, you include instructions that your cus-
tomers will follow to install the FLEXlm licensing mechanism and
obtain a valid license.dat file.

Product Licensing

1-4 DEVELOPERS AVS OVERVIEW

The nroff/troff source and PostScript files for Advanced Visual Sys-
tems own licensing instructions (chapters 4 and 5 of theAVS5.02
AVS Installation and Release Notes) are included with the Developers
AVS release. You can adapt, edit, or rewrite this material as you
require for your customers. NOTE: These instructions were updat-
ed and reorganized for AVS5.3 and beyond - please contact sup-
port to request the newer versions if you are interested.
The nroff/troff source is in the Developers AVS directory hierarchy
under license/flexadmin.me and license/flexuser.me. Note that these
files contain Advanced Visual Systems-specific nroff/troff macros
that will not interpret on your system. You will need to edit them
to conform to your own local formatting codes and standards. If
necessary, Advanced Visual Systems will provide its nroff/troff
macros upon request.
The corresponding PostScript to these files is in the Developers
AVS directory hierarchy under license/admin.ps and license/user.ps.

6. When your customers receive the application, they go through es-
sentially the same process that you went through to install AVS li-
censing. Before they will be able to run your application they must:
1. Obtain a FLEXlm-format license.dat file.
• To obtain the license.dat file, they apply to you for the licenses, in-
cluding all of the necessary machineid information, as described in
the licensing documentation that you provided to them.
• You, in turn, relay the request to Advanced Visual Systems Inc.
Customer Support using a "Runtime End-User License Request"
form.
• Fill out the "Runtime End-User License Request" form, then e-
mail it or send it by facsimile to Advanced Visual Systems Inc. at
the address or number on the form. Prompt turnaround is provid-
ed.
• When you receive the license codes in the license.dat file, you for-
ward it, with any additional instructions, to your customers.
2. Install the FLEXlm licensing mechanism using the FLEXlm util-

ity binary files you provided in Step 4 above.

Alternative Licensing Mechanisms:

Some developer customers would prefer to use their own licensing software
in place of FLEXlm and avoid contacting Advanced Visual Systems to gener-
ate end user licenses. This option is available through special agreement with
Advanced Visual Systems and the use of replacement binary libraries. Please
contact your sales representative for more information. There are also now
some new variants on the FlexLM licensing scheme for licensed users; con-
tact AVS Customer support for more information.

Product Software Requirements

DEVELOPERS AVS OVERVIEW 1-5

Product Software Requirements

The Developers AVS product requires certain graphics products in order to
link the example applications as well as user applications. Depending on the
platforms, you may need to purchase the appropriate graphics libraries (XGL,
PHIGS, OpenGL, etc) from the product vendor. Stub libraries are provided in
some cases in the avs_developer/lib directory.

Problems fixed in AVS 5.5:

• CFS 7793/7812 "Developer’s AVS: AVS-Runtime encryption problems"

AVS 5.4 and earlier releases used a different encryption code for runtime li-
censing than what was used in the standard licenses. With the upgrade to
FlexLM 4.x in the AVS 5.3 upgrade, support for this second encryption code
was lost causing problems with existing licenses in the field and temporary
difficulty making working licenses. This has been fixed for AVS 5.5 and of-
fers the Developer customer two options:

• AVS 5.4 and earlier: AVS-Runtime features use the alternate encryp-
tion code and must be run using the old FlexLM (2.4c) AVS lmgrd
daemons provided with AVS 5.02. AVS 5.3 and AVS 5.4 use these
codes but their lmgrd daemons won’t recognize them.

• AVS 5.5 and AVS 5.4 patch: AVS-Runtimes are generated using AVS
5.5 or AVS 5.4 with a patch available from AVS Customer Support.
They use the same encryption codes as Standard AVS, and must run
using FlexLM 4.x or higher daemons. AVS 5.5 and beyond will make
this the default code. Existing AVS 5.4 or earlier runtime licenses
should be reissued by AVS Customer Support.

If you are affected by this issue, please contact AVS Customer Support (sup-
port@avs.com) for more information or new licenses.

• CFS 17869 "Developer’s AVS - liboglx.a missing"

AVS 5.4 expanded support for OpenGL based rendering and with AVS 5.5
this is now the default for all platforms. An important library needed by De-
veloper’s AVS customers was not included in the AVS 5.4 release, liboglx.a.
This has been fixed for AVS 5.5 on all platforms.

• Problem "Developer’s AVS - Makelib files incorrect"

Several platforms had slightly incorrect settings in these files. These issues
have been resolved.

Problems fixed in AVS 5.5:

1-6 DEVELOPERS AVS OVERVIEW

INSTALLATION 2-1

CHAPTER 2 INSTALLATION

Installing Developers AVS

AVS 5.5 Notes: The Linux platform is now provided for Developer’s AVS
5.5. However, if you wish to use the Linux platform as a Developer’s AVS
customer you need to buy the Standard AVS product for Linux separately
through your AVS sales representative.

The Developers AVS product consists of two components:

Standard AVS
The first component contains a copy of the standard AVS 5.5 release. This
is a multi-platform CD from which you will extract the version of AVS for
the target platform. It also includes a copy of the "Cool CD", which pro-
vides a snapshot of the content of the International AVS Centre’s AVS
module archive.

Developers AVS
The second component contains Developers AVS files for a variety of
platforms. There are two different versions of the CD: either the stan-
dard licensed version of Developers AVS, or the unlicensed version.
(Note: If you require the unlicensed version, please contact your sales
representative).

You must install both components.

To Install Standard AVS

Install the standard AVS 5.5 release according to the instructions in AVS on
UNIX Workstations: Installation/Release Notes. Linux users should read the re-
lease notes document provided with their release.

AVS 5.5 Note: The Linux platform is NOT licensed at all so any discussion
below concerning licensing is not applicable.

When you contact Customer Support for licenses as described in the docu-
mentation, be sure to mention that you need both standard AVS licenses and
AVS-Runtime licenses. Verify that the license.dat file that you receive has
FEATURE lines for both AVS and AVS-Runtime (no Network Editor).

License Requirements

2-2 INSTALLATION

 If you have the RuntimeB option (Network Editor enabled in applications),
then you must give Customer Support a FEATURE name that includes the
suffix "-NE" and define it in your application as described in "Defining a
FLEXlm Licensing FEATURE String" in the "Developing Applications" chap-
ter before the Network Editor will be enabled in your application.

To Install Developers AVS

Use the standard instructions provided for installing standard AVS using the
Developers AVS CD.

1. Mount the CD, select a destination directory, run the install.avs
script to select and install the desired version(s) of Developers AVS.

2. To verify the installation, you should build the example applica-
tions. See the "Developing Applications" chapter for instructions.

3. In order to run the example applications or an application that you
build yourself, you must have obtained an "AVS-Runtime" license
from Advanced Visual Systems Inc. Customer Support as noted at
the beginning of this section.

AVS 5.5 Note: Linux is provided as a standard product archive that is in-
stalled using install.avs. The RPM format is not used for Developer’s AVS
but is supported for Standard AVS.

To Install Module Source

You install the Module Source in exactly the same way as you install the rest
of Developers AVS. For historical reasons there are two versions of the mod-
ule source:

• AVS_MOD_SRC9 - 64 bit platforms (Compaq Tru64 UNIX, SGI 64 bit)
• AVS_MOD_SRC8 - all other platforms.

Follow the instructions in the previous section, but specify AVS_MOD_SRC8
or AVS_MOD_SRC9 when presented with the menu of products. See Chapter
4, "Module Source" for more information.

License Requirements

AVS and the applications that you build with Developers AVS are licensed us-
ing the FLEXlm Flexible License Manager system (UNIX platforms only, not
including Linux). You obtain the licenses from AVS Customer Support or
your local AVS distributor. AVS and any applications that you build will not
run until you have obtained a license. You will need these licenses before you
can run AVS or your applications:

Distribution Contents

INSTALLATION 2-3

Standard AVS License
You develop applications using the standard AVS distribution. Follow
the licensing instructions in AVS on UNIX Workstations: Installation and
Release Notes to obtain and install this license. Its FEATURE string is
"AVS".

AVS-Runtime License
The applications that you build also require a FLEXlm license. The de-
fault FEATURE string for the RuntimeA (no Network Editor) version is
"AVS-Runtime" by default; you may select an alternate FEATURE string
and register it with Customer Support to make unique licenses that will
only work with your application.

There is no default FEATURE string for the RuntimeB (Network Editor)
version. You should tell Customer Support what your FEATURE string
will be. It must include the suffix "-NE".

You should obtain these runtime licenses at the same time you get the
standard AVS license. You install them in the same way as the standard
AVS license.

Note: Those few developers who have special arrangements with Ad-
vanced Visual Systems for unlicensed Developers AVS do not need these
runtime licenses.

Distribution Contents

All files for this distribution are kept in the directory in which you installed
Developers AVS.

The following is a detailed listing of the contents of this release.

Installation Script

install.avs
Script to select product to install - Developers AVS or module source.

avs_developer
The Developers AVS directory.

avs_developer/examples
Several example applications along with a sample Makefile.

avs_developer/include
Makelib.$(PORT) files that provide platform-specific linking information.

avs_developer/lib
The developer libraries needed to link applications.

avs_developer/license
FLEXlm licensing binaries and documentation (licensed versions only).

Distribution Contents

2-4 INSTALLATION

avs_developer/tools
Installation tools to facilitate deploying an application.

Module Source

module_source
The AVS Module Source.

module_source/Makefile
Makefile for making the entire module source, or just links for making in-
dividual modules.

module_source/README.mod_src
ASCII text file that explains how to make the modules.

module_source/avs_library
Target for making the entire module source.

module_source/kernel
Include files not in the standard AVS necessary to make the modules.

module_source/lib
Library files not in the standard AVS necessary to make the modules.

module_source/modules
Source code to the supported AVS modules.

module_source/mod_map
Contains a table that shows which modules are in which module source
files.

module_source/mod_map2
Contains a table that shows which modules are in which module files.

module_source/opt
Source and include files not in the standard AVS distribution necessary to
make some modules.

module_source/rflib
Various files necessary to make the read field module.

module_source/unsupp_mods
Source code to some of the unsupported AVS modules.

Source Code

Source code provided with this release consists of example applications that
illustrate several ways in which to create an AVS application and the Module
Source. These are described in detail in the next chapte

DEVELOPING APPLICATIONS 3-1

CHAPTER 3 DEVELOPING
APPLICATIONS

Introduction

Once you have installed the Developers AVS CD, you should build the exam-
ple applications. These serve both to verify the installation, and to provide a
working example of how to build and deploy an application. This chapter de-
scribes how to build the examples and make your own application.

AVS 5.5 Notes: No changes have been made in this chapter. As noted else-
where any licensing issues do not apply to the Linux platform which is un-
licensed.

Building the Examples

The examples are found in the examples subdirectory of the install area. They
can be made in place.

You need to define where the developer area is using an environment vari-
able, DEV_DIR. For example, if the developer area was in /users/me/myarea
then the following (C shell) should build the examples:

setenv DEV_DIR /users/me/myarea/avs_developer
make -e

By default, the examples assume that AVS is installed in /usr/avs, or that /usr/
avs is a link to the directory in which AVS is installed. If this is not the case,
then the AVS_PATH environment variable should be set to specify where
AVS is. For example, if AVS is installed in /users/me/avs then the examples
would be built as follows using the C shell (csh):

setenv AVS_PATH /users/me/avs
make -e

Example Applications

There are six examples provided in this release. Each shows a different ap-
proach to building an application on top of AVS.

Example Applications

3-2 DEVELOPING APPLICATIONS

app1
This application is a simple example of starting AVS by running a CLI
script to start an AVS network using standard AVS modules, and then en-
ter the Geometry Viewer.

app2
This is a more sophisticated example. It shows how command line op-
tions can be processed to add support referencing where the application
is installed, and how to embed a series of CLI startup commands within
the application without the need for an external script.

In this example, the CLI commands are used to set an application path
variable and then load a driver module app2_mod. This custom built
coroutine module creates pulldown menus that select other scripts to run.
These simple scripts present different module control panels or exit from
the application. This application is also featured in an example of how to
deploy an application.

app3
This extended example is similar to app2 but presents a Motif-based user
interface to AVS. It will only build on systems that provide Motif librar-
ies. app3 is done in the style of existing AVS applications—there is a con-
trol panel and a separate, free-floating Geometry Viewer window.

app4
app5
app6

These three examples are similar to one another. Like app3, they show a
Motif-based user interface. However, where app3 places the controls and
Geometry Viewer window in separate windows, app4, app5, and app6 cre-
ates controls and a viewer area in a single panel. This user interface style
is closer to that of most Motif applications.

app4’s drawing area is a reparented Geometry Viewer window. app5
shows a reparented Graph Viewer window. app6 shows a reparented Im-
age Viewer window. They will only build on systems that provide Motif
libraries.

Once the examples have been built, you should run them to see how they
work. Start each by giving its name with no arguments.

app1: Basic Application Program

As can be seen from examining one of the application examples, the basic ap-
plication is just a small main function that calls the avs function to initiate
AVS. For example, this is the contents of the app1.c example:

main()
{
 int argc;
 char *argv[3];
 extern char *strdup();

Example Applications

DEVELOPING APPLICATIONS 3-3

 argc = 3;
 argv[0] = strdup("avs");
 argv[1] = strdup("-cli");
 argv[2] = strdup("script -play app1.scr");
 avs(argc, argv);
}

The program creates a number of command line arguments and then feeds
these into the avs function as if it were a direct call by the user. This allows the
application to start AVS and present a particular network or module. All com-
mand line options are recognized with the exception that the -cli option will
not enable the interactive CLI interpreter; and the Network Editor is not
available. (The "Suppressing the AVS Menu" section below describes how to
prevent the main AVS menu from appearing, even transiently.)

app2: Sending Command Line Arguments and CLI Commands to AVS

The application’s main function can also accept command line options from
the user and pass them on to avs(), either filtering out options or adding some
of its own. This would permit the end user some additional control over the
behavior of AVS. This is illustrated in the app2 application:

#include <string.h>

main(argc,argv)
int argc;
char **argv;
{
 int i;
 char temp[512], default_path[128];
 int local_argc = 1;
 char *local_argv[5];

 extern char *CLIinitial_commands;
 extern int CLIinitial_output;

 /***/
 /* Assume that if -path is given that the application has been installed.*/

 local_argc = 1;
 local_argv[0] = strdup("app2");
 strcpy(default_path,".");

 for (i = 0; i < argc; i++)
 if (!strcmp(argv[i],"-app_path")) {
 local_argv[local_argc++] = strdup("-path");
 local_argv[local_argc++] = strdup(argv[++i]); /* pathname */
 strcpy(default_path, argv[i]);
 }

 /***/

Example Applications

3-4 DEVELOPING APPLICATIONS

 /* Set up initial conditions
 1) Create a CLI variable called AppPath that other scripts and networks
 can reference. Default is the current directory but an environment
 variable named APP_PATH will override this value.
 2) Make an instance of the control module.

 Store these commands into CLIinitial_commands to be executed during
 initialization.
 */

 sprintf(temp,"var_set AppPath -env APP_PATH %s \n\
 module \"App2_Mod\" -alias app2 -tag app2 -xy 268,102 -ex $AppPath/app2_mod",
 default_path);

 CLIinitial_commands = temp;

 /* Control normal output messages when executing CLIinitial_commands */
 /* 0 if no output desired, 1 for stdout */
 CLIinitial_output = 0;

 /***/
 /* Pass on startup arguments and startup avs */
 avs(local_argc, local_argv);
}

Note how, in this example, the application prepares a block of CLI commands
in a string buffer and then stores this buffer into an AVS global variable
named CLIinitial_commands. This avoids the need for a startup script and al-
lows for application-specific CLI variables to be preset for later reference. It
also illustrates one way in which the application can learn where its "home"
directory is, handling both the situation where it is relying on $AVS_PATH
and when it is has been "deployed" with its own local subset of AVS compo-
nents.

app3: Motif-Based Interface

The AVS interface mechanism uses its own widget set. This widget set is de-
fined largely in the liblui library.

Current windowing applications will typically want to use a Motif-based user
interface. app3 demonstrates how to create an application that has a Motif-
based interface. The interface has three parts:

• A control menu that reads files, exits the application, and selects the
viewing techniques (downsize, orthogonal slice, field to mesh, etc.)

• A Geometry Viewer output window.
• New control panels that appear for each menu bar choice selected. For

example, if you select "File", a file browser panel appears. Selecting
"downsize" causes a downsizing panel to appear.

The control panels, pulldown menus, and module control widgets (sliders,
etc.) are all Motif widgets.

Example Applications

DEVELOPING APPLICATIONS 3-5

Several files make up app3:

app3.c
The application main routine that calls AVS.

app3.scr
The script file that reads in the application module, app3_mod.

app3.net
The network file containing AVS modules that make up the saved appli-
cation.

app3_mod.c
The app3_mod module’s main routine. Besides containing the module
description function, it opens the display, initializes the toolkit, establish-
es the main control panels, reads in the network file, and contains the
main event loop.

app3_menu.c
Contains the X Toolkit and Motif calls that create the main control menu.
It also associates the menu’s selections with callback routines that create
pop-up controls.

app3_popups.c
Contains the callback routines that create the popup panels. It also asso-
ciates the controls on each panel with a callback routine that will be in-
voked if the widget (slider, toggle, etc.) that represents a module
parameter is changed.

app3_callb.c
Contains the "parameter has changed" callback routines. These routines
send CLI commands to the actual AVS modules.

app4, app5, and app6: Motif-Based Interface with Reparented Drawing Area

app4, app5, and app6 demonstrate how to create a single Motif interface panel
that contains the menu bar, a drawing area reparented from an AVS viewing
window (app4: Geometry Viewer; app5: Graph Viewer; app6: Image Viewer),
and all of the Motif widgets for its associated module control widgets. (app3’s
menu bar and its module control popups are all on different Motif panels and
the viewing area is not a Motif widget at all.)

The file structure of these applications’ components are similar to app3’s. The
main functional difference is reparenting the viewer window.

Example Applications

3-6 DEVELOPING APPLICATIONS

The following procedure is used to reparent an AVS viewer window to a Mo-
tif drawing area.

1. Create the network file that is the application.
2. Edit the application network file. Find the line that says:

panel "geometry viewer.user ... OR
panel "graph viewer.user ... OR
panel "image viewer.user
Just prior to that line, insert a line that says:
panel app_win -w panel -p ui -hide -xy 780,10 -wh 500,500
This creates a hidden parent window that will be used in the appli-
cation to find the X window of the appropriate viewer. The "-wh"
specifies the size of the application viewer window. This size
should be consistent with the size of the Motif drawing area created
in the application.
Edit the original panel line for the Geometry Viewer or Graph
Viewer, adding "-p app_win". This will make the viewer's parent
the hidden panel that was just created. If this isn't done, you will
not be able to find the viewer window in the application.

3. Use the utility getXWindow in the application to find the X win-
dow of the viewer. The input to the routine is the name of the hid-
den panel created in the network file (e.g., app_win). The output of
this routine is the window to reparent to the Motif drawing area.
The operation of this routine is not the same for all of the viewers.
For the Image Viewer, the getXWindow utility returns the child of
the hidden panel window. For the Graph Viewer or Geometry
Viewer, the getXWindow utility descends the window hierarchy
until the bottom is reached. This window is returned. Consult the
appropriate source code example for the code of the getXWindow
routine.
In either case, the window returned by the utility is the window to
reparent to the Motif drawing area.

4. After creating the Motif drawing area in the application, add resize
and expose callbacks. These callbacks will reparent the window re-
turned from getXWindow to the Motif drawing area the first time
they are called. These callbacks can go on to do other application
specific work but must perform the job of reparenting for the AVS
viewer window to show up in a Motif drawing area.

General Notes

The routine getXWindow is found in each of the application modules (i.e.,
app4_mod.c, app5_mod.c and app6_mod.6). As mentioned previously, this rou-
tine is different for the Image Viewer.

The resize and expose callbacks to be added to the Motif drawing area are
found in each of the application modules under the names resizeIt and ex-
poseIt.

Common Application Features

DEVELOPING APPLICATIONS 3-7

The creation of the Motif drawing area for each application is found in the file
app*_menu.c in the routine build_app*().

Switching Between Hardware and Software Renderers

As coded, app4 does not support switching between the hardware and soft-
ware renderers. Such a switch destroys the viewer window that has been re-
parented to the drawing area. It is possible to support hardware/software
renderer switching. The general approach is:

• To see if the renderer window has been destroyed, put a conditional
into the exposeIt callback routine that checks to see if the number of
children of the drawing area is 0 (reparented window has been de-
stroyed).

• Then, find the window id of the new viewer window using getXWin-
dow, and reparent it to the drawing area as before.

Common Application Features

This section describes how to perform common functions within applications.

Suppressing the AVS Menu

In the example code as provided, the main AVS menu will appear on the ap-
plication user’s screen. While the application could issue a CLI command to
take down the menu so that it would appear only briefly, another mechanism
exists that will prevent it from appearing at all.

To prevent the main AVS menu from appearing, you modify the application
to include two additional lines. For example, app1 would appear as:

main()
{
 int argc;
 char *argv[3];
 extern char *strdup();
 extern int AVSno_main_menu; <----
 new lines
 AVSno_main_menu = 1; <----
 argc = 3;
 argv[0] = strdup("avs");
 argv[1] = strdup("-cli");
 argv[2] = strdup("script -play app1.scr");
 avs(argc, argv);
}

The AVSno_main_menu symbol is defined in libavs.a.

Common Application Features

3-8 DEVELOPING APPLICATIONS

Licensed Applications: Defining a FLEXlm Licensing FEATURE String

By default, an application linked to libavs.a has the FLEXlm licensing FEA-
TURE name "AVS-Runtime".

You should give your application its own unique FEATURE name:

• before you deploy the application, OR
• in order to enable the Network Editor in RuntimeB versions of Develop-

ers AVS.

The limits on the feature name are:

• No length limit, within reason.
• Any ASCII character except blanks and various kinds of quote marks.
• Case is significant.
• If you have the RuntimeB Developers AVS product that enables the Net-

work Editor, then the FEATURE string must contain the suffix "-NE".

To define the FEATURE name, you declare the external character string vari-
able avs_runtime_feature, and assign it a string. The avs_runtime_feature
variable is defined in libavs.a.

For example:

extern char *avs_runtime_feature; <----New line

main()
{
 int argc;
 char *argv[3];
 extern char *strdup();
 extern int AVSno_main_menu;

 AVSno_main_menu = 1;
 avs_runtime_feature = "AVS-Myapp"; <---New line
 argc = 3;
 argv[0] = strdup("avs");
 argv[1] = strdup("-cli");
 argv[2] = strdup("script -play app1.scr");
 avs(argc, argv);
}

Once the application contains a FEATURE line assignment other than the de-
fault "AVS-Runtime", then you must have a license.dat file that contains that
FEATURE line and a valid license code from Advanced Visual Systems be-
fore you will be able to run the application.

Common Application Features

DEVELOPING APPLICATIONS 3-9

Unlicensed Applications (OEM-Supplied Licensing)

If you have negotiated a special agreement with Advanced Visual Systems,
then you may have the version of Developers AVS that permits you to install
your own licensing mechanism. This version does not contain FLEXlm li-
censing.

Hook for License Validation

The following sample program shows how you would integrate your own li-
censing mechanism into an AVS application. avs_periodic_check_func is an
AVS-provided function pointer (libavs.a) that lets you periodically check to
see if a license is available. Initially set to NULL, if you reassign this to your
own licensing-checking mechanism, AVS will call it every second.

Note that, although your license-checking mechanism is being called every
second, you do not have to perform a complete license validation at every
call. For example, AVS’s own internal licensing mechanism is called frequent-
ly. However, it keeps track of a system clock and only performs a complete
validation after a much longer interval has elapsed.extern int
(*avs_periodic_check_func)(); <---the AVS-supplied function

static <---your own licensing function
check()
{
 printf("periodically checking...\n");
}

main()

{
 int argc;
 char *argv[3];
 extern char *strdup();

 argc = 3;
 argv[0] = strdup("avs");
 argv[1] = strdup("-cli");
 argv[2] = strdup("script -play test.scr");

 avs_periodic_check_func= check; <---set AVS called function to your
 function
 avs(argc, argv);
}

Unlicensed AVS: Enabling the Network Editor

If you have purchased both:

• The RuntimeB (with Network Editor) version of Developers AVS, and
• An unlicensed version of Developers AVS,

Application Makefiles

3-10 DEVELOPING APPLICATIONS

then you can enable the Network Editor in your applications using the
avs_network_editor_enabled variable as shown in the example below. (In
RuntimeB, the Network Editor is still disabled by default.) This symbol is de-
fined in libavs.a.

extern int avs_network_editor_enabled;

main()

{
 int argc;
 char *argv[3];
 extern char *strdup();

 argc = 3;
 argv[0] = strdup("avs");
 argv[1] = strdup("-cli");
 argv[2] = strdup("script -play test.scr");

 avs_network_editor_enabled= 1;

 avs(argc, argv);
}

Application Makefiles

The file examples/Makefile is a good example of how your makefile should
look. It defines a number of macros that in turn define what include directo-
ries should be used and what libraries are needed to link an application. It is
useful to examine which parts of the Makefile are important when making
your own Makefile.

This include file is found in the standard AVS release and contains
platform specific flags and options needed in compiling ordinary
AVS modules and programs.

If AVS is not installed in /usr/avs, then set the AVS_PATH environment
variable and override it during the make as in:
setenv AVS_PATH /my_dir/avs
make -e

AVS_PATH=$(ROOT)/usr/avs
INC_FILE=$(AVS_PATH)/include/Makeinclude
include $(INC_FILE)

AVS_LIBS = $(AVS_PATH)/lib

List of buildable examples:
EX_APPS may be reduced by some platforms which don’t support Motif or X11R4

EX_APPS= app1 app2 app2_mod app3 app3_mod app4 app4_mod app5 app5_mod \
 app6 app6_mod

Port includes are an optional list of directories in which to find
Motif and X11 include files if they are not in the standard locations

Application Makefiles

DEVELOPING APPLICATIONS 3-11

PORT_INC=

Developer definitions are located in a platform specific include file
overriding libraries or include directories

DEV_DIR=$(AVS_PATH)/developer
include $(DEV_DIR)/include/Makelib.$(PORT)

##
Generic library definitions and compiler flags

AVS_INC = -I. -I$(AVS_PATH)/include
CFLAGS=$(G) -D_MEM_DEFS_defined $(AVS_INC) $(PORT_INC)

DEV_LIBS=-L$(DEV_DIR)/lib -lavs -lobj -lren -lapp -lpic \
-lrf -lren -lflow_c -llui -lgeom -lutil -lspaceball

##
Module libraries: needed for AVS modules (similar to /usr/avs/examples)
BASELIBS=-lgeom -lutil -lm
FLOWLIBS=-L$(DEV_DIR)/lib -lflow_c $(BASELIBS) $(LASTLIBS)
CSIMLIBS=-L$(DEV_DIR)/lib -lsim_c $(BASELIBS) $(LASTLIBS)

##
Example applications

all: $(EX_APPS)

app1: app1.o
 cc $(CFLAGS) -o app1 app1.o $(DEV_LIBS) $(GEOMLIBS) $(XLIBS)

app2: app2.o
 cc $(CFLAGS) -o app2 app2.o $(DEV_LIBS) $(GEOMLIBS) $(XLIBS)

app2_mod: app2_mod.c
 $(CC) $(CFLAGS) -o app2_mod app2_mod.c $(CSIMLIBS)

app3_mod: app3_mod.o app3_menu.o app3_popups.o app3_callb.o
 $(CC) $(CFLAGS) -o app3_mod app3_mod.o app3_menu.o app3_popups.o \
 app3_callb.o $(MLIBS) $(CSIMLIBS)

app3: app3.o
 cc $(CFLAGS) -o app3 app3.o $(DEV_LIBS) $(GEOMLIBS) $(XLIBS)

app4_mod: app4_mod.o app4_menu.o app4_callb.o
 $(CC) $(CFLAGS) -o app4_mod app4_mod.o app4_menu.o \
 app4_callb.o $(MLIBS) $(CSIMLIBS)

app4: app4.o
 cc $(CFLAGS) -o app4 app4.o $(DEV_LIBS) $(GEOMLIBS) $(XLIBS)

app5_mod: app5_mod.o app5_menu.o app5_callb.o
 $(CC) $(CFLAGS) -o app5_mod app5_mod.o app5_menu.o \
 app5_callb.o $(MLIBS) $(CSIMLIBS)

app5: app5.o

Deploying an Application

3-12 DEVELOPING APPLICATIONS

 cc $(CFLAGS) -o app5 app5.o $(DEV_LIBS) $(GEOMLIBS) $(XLIBS)

app6_mod: app6_mod.o app6_menu.o app6_callb.o
 $(CC) $(CFLAGS) -o app6_mod app6_mod.o app6_menu.o \
 app6_callb.o $(MLIBS) $(CSIMLIBS)

app6: app6.o
 cc $(CFLAGS) -o app6 app6.o $(DEV_LIBS) $(GEOMLIBS) $(XLIBS)

.c.o:
 cc $(CFLAGS) $).c -c

clean:
 rm -f $(EX_APPS) *.o

The initial Makefile macros are similar to those found in $AVS_PATH/exam-
ples/Makefile and should be used in most AVS related Makefiles. INC_FILE,
AVS_LIBS and AVS_INC all provide a way to reference the standard AVS
product area whether it is in /usr/avs or some other location defined by
$AVS_PATH. The Makeinclude file is included to pick up platform-specific
definitions provided to all AVS users. It defines PORT which selects which de-
veloper Makelib file is required.

Some of the Makefile features are specific to the examples provided in this re-
lease, in particular the EX_APPS macro which allows particular platforms to
avoid building app3, app4, app5, and app6 if they do not suport Motif.

As mentioned above, the DEV_DIR macro provides a way to specify where
the developer product is installed. This is important since any developer ap-
plication must link with the libavs.a library, any other libraries (liblui, libgeom,
etc. in the avs_developer/lib directory, and the platform specific libraries de-
fined in the Makelib.$(PORT) file found in the avs_developer/include directory.
The Makelib file defines two sets of libraries—GEOMLIBS and XLIBS—which
an application needs in addition to DEV_LIBS, which is defined above.

To develop your own application, it would be easiest to make a copy of this
Makefile and insert your own application make lines in place of app1 and then
customize the makefile as required. This will provide the greatest portability
when moving your application to another platform.

Deploying an Application

Once the application is built and ready to deliver, the developer combines the
application and a subset of the standard AVS product into a deliverable prod-
uct. The Developers AVS product permits the developer to copy a select por-
tion of the standard AVS release and distribute it along with the application
program. The recommended approach is to create a product "installation im-
age" into which required AVS files are copied along with the Developers ap-
plication. This installation image is then copied onto a CD in order to deliver
the product. How the product CD is made may vary from one platform to an-

Deploying an Application

DEVELOPING APPLICATIONS 3-13

other and one developer to another. The tar archive utility is the most com-
mon facility used for this purpose.

The Developers AVS product provides some assistance in building up the
staging area. In the tools directory there is shell script, install_files, that will
transport files from the /usr/avs or $AVS_PATH area to the staging area, mak-
ing sure that the same relative pathnames are preserved. This script can also
be used to transport developer files to the same area. To use it, go to the tools
directory and find the install_files shell script. Its usage message provides ba-
sic instructions:

install_files [-S src_dir] [-D dest_dir] [-F files] [-R]

install_files copies all of the necessary files from the source area to an
installed directory. It will create any necessary intermediate directories,
set file group and ownership to root unless otherwise specified,
and set file protection to 644 for non-executable files, 755 for executable
files. It uses a transport list file specifying the relative source
pathname of files to be transported. It can be used to copying out
selected sections of the AVS distribution area or to copy file from
a user’s development area.

Flags:
 -S dir | specify the directory that the source resides in.
 | By default this is /usr/avs.
 -D dir | specify the destination directory. This is
 | the prefix to the partial filename. There is no default.
 -F files | specify the file containing the transport file list
 | By default, this is STD_AVS_FILES.
 | You can subset the file STD_AVS_FILES
 | or provide a list of your own non-AVS files.
 -R | Ordinarily files are copied as root group and owner
 | This flag will turn this off.

Example:

 install_files -S /mypath/usr/avs -D /usr/mydev_area -R

The STD_AVS_FILES file is a list of files that may be transported from the
/usr/avs or $AVS_PATH area to the developers product CD. Files that are not
on this list may not be transported without express written permission from
Advanced Visual Systems Inc. The developer may wish to edit down a copy
of this list to reduce how much is delivered; the reduced list can be specified
using the -F option.

The developer can also set up a transport list file to transport the application
program and any other required files. Each line in the file is a partial path-
name of the file being transported, for example, "app1". During transport the
full pathname is made up as $(SOURCE)/filename and transported to
$(DEST)/filename.

Deploying an Application

3-14 DEVELOPING APPLICATIONS

The avs_developer/tools directory has sample transport lists for each of the ex-
ample applications. Installing the app2 example into a staging area is a good
example of how to use the install_files script. Instead of using the full
STD_AVS_FILES list, only the AVS_FILES.ex subset is used since these are the
only files required. To get app2 set up in /tmp as a standalone application, type
the following:

mkdir /tmp/app2_dir
install_files -S ../examples -F app2_files -D /tmp/app2_dir -R
install_files -S /usr/avs -F AVS_FILES.ex -D /tmp/app2_dir -R

This has installed both the app2 application and its required files, as well as
the subset of the standard AVS release that it requires. The -S option specified
where the source files were coming from, the -F option specified the transport
list, and -D gave the destination directory. The -R option is used to override
the need to be the superuser. To verify that app2 is truly standalone, do the fol-
lowing:

mv $AVS_PATH $AVS_PATH.save

and then try the application, first relying on $AVS_PATH being present and
then providing the -app_path option to app2 to get it to set its paths properly.
Make sure to set $AVS_PATH.save back after you are done.

/tmp/app2_dir/app2

/tmp/app2_dir/app2 -app_path /tmp/app2_dir

Optimizing Geometry Modules: Linking Modules with the Kernel

DEVELOPING APPLICATIONS 3-15

Optimizing Geometry Modules: Linking Modules with the Kernel

AVS data flow is diagrammed in Figure 3-1. (For a complete description of
this diagram, see p. 1-8 of the AVS Developer’s Guide.)

 Figure 3-1 Data Flow Between Kernel and Modules

M1
D

D

K

M2

M1

D

K

D

M2

M1

K

D

M2

M1

K

D

M2

D

M1

K

M2

D

AVS 5 Coroutine Modules
(no direct module communication)

- noshm - shm

M1 & M2 in single process

AVS 5 Subroutine Modules
(with direct module communication)

same as above

M1 & M2 in different processes

control
communication

data attach or
access

data copy

M1, M2 modules

D data allocated in memory

K AVS kernel

Optimizing Geometry Modules: Linking Modules with the Kernel

3-16 DEVELOPING APPLICATIONS

AVS uses shared memory to pass field and UCD data between modules in dif-
ferent processes (center column of figure). It does not use shared memory for
geometry and chemistry data. Geometry and chemistry data is passed be-
tween modules in different processes by copying the data through a Unix
socket (left column of figure).

Thirteen AVS modules are "builtin" to the AVS kernel. These modules are:
generate colormap, display image, geometry camera, geometry viewer,
graph viewer, image viewer (supported); and colormap manager, image
manager, volume manager, display pixmap, render geometry, render man-
ager, transform pixmap (unsupported). Note that these modules include the
various viewers, notably the Geometry Viewer.

The data flow/memory utilization situation with geometry data that is being
sent to the Geometry Viewer for display is the case diagrammed in the lower
left corner of the figure, where M1 is the module producing the geometry and
M2 is effectively inside K, the AVS kernel.

This data flow configuration cannot be altered with the primary AVS product.
However, it can be altered with the Developers AVS product. In Developers
AVS, the AVS kernel exists as the lib/libavs.a library. It is possible to link a
mapper module that creates geometry data in with the AVS kernel producing
a single process. This creates the data flow/memory utilization situation sim-
ilar to that portrayed in the right column of the chart: M1 is the module pro-
ducing the geometry, and M2 has become K, the AVS kernel. One copy of the
data exists rather than two, and there is no time delay caused by copying the
data through the Unix socket.

The actual, practical performance improvement realized by this procedure
will vary from system to system. In general, it is only useful for very large ge-
ometries. For example, in tests on a system with 32 megabytes of main mem-
ory, the improvement became subjectively noticeable when the geometry
contained in excess of 30,000 triangles.

You should experiment to see if the mechanism is worthwhile for the datasets
and platforms used with your application.

Procedure Summary

The basic procedure is to link the geometry-producing module in with the ap-
plication’s main routine, rather than by itself or with the suite of modules that
make up the rest of your application’s network. Since the application’s main
routine is linked with the AVS kernel, the geometry-producing module is also
linked with the AVS kernel. All execute as one process.

Next, have the application’s main routine initialize the module with
AVSmodule_from_desc. This differs from the usual procedure in which the
kernel initializes the module by calling the initialization function in the mod-
ule.

Optimizing Geometry Modules: Linking Modules with the Kernel

DEVELOPING APPLICATIONS 3-17

Some other file housekeeping modifications may also need to be made.Each
step is described in greater detail in the sections below.

Changes to the Module’s Source Code

Comment out, delete, or "ifdef" the module’s initialization function.

For example, the ucd to geom module’s description and initialization func-
tions occur at the end of the module. They would be modified as follows:

/*---*
 * **** ucd_to_geom_desc **** *
 ---/

ucd_to_geom_desc()
{

 int ucd_to_geom(), param;

 AVSset_module_name ("ucd to geom", MODULE_MAPPER);

 AVScreate_input_port ("Input", "ucd", REQUIRED);
 AVScreate_input_port ("Input Contour", "field 1D 3-vector real", OPTIONAL);
 AVScreate_input_port ("Cell Colors", "field 1D 3-vector real", OPTIONAL);
 AVScreate_output_port ("Output", "geom");
 .
 .
 .
/*#ifndef sep_exe */
/* AVSset_module_flags (COOPERATIVE); */
/*#endif */
}

/*---*
 * **** initialization function **** *
 ---/

#ifdef sep_exe <---initialization made conditional
AVSinit_modules() on a "separate executable"
{ preprocessor directive
 int ucd_to_geom_desc();

 AVSmodule_from_desc(ucd_to_geom_desc);
}
#endif <---close conditional

In truth, this step is not strictly necessary since the kernel will never actually
call the module’s initialization function if the application’s main is correct.
However, it is better to make the difference explicit than to rely upon a coinci-
dence in the kernel code.

Optimizing Geometry Modules: Linking Modules with the Kernel

3-18 DEVELOPING APPLICATIONS

A module without an initialization function cannot be linked against the AVS
libraries by itself. For this reason, you may prefer to surround the initializa-
tion function with an ifdef as shown in the example, rather than comment it
out or delete it. This will allow you to compile and link the module by itself
for testing purposes, as well as bundled in with the kernel.

Note that the AVSset_module_flags(COOPERATIVE) call has been com-
mented out. A module that is linked with the kernel must be coded to be CO-
OPERATIVE. If there will be more than one instance of the module in
existance during an AVS session, then it must also be coded to be REEN-
TRANT. (The meaning of these terms is discussed in the AVS Developer’s
Guide in the "Advanced Topics" chapter under "Multiple Modules in a Single
Process.") It does not matter which, if any, parameters are given to an
AVSset_module_flags routine because the portion of the AVS kernel that
pays attention to these flags is the part that starts external processes.

No other changes are necessary to the module’s source code.

Changes to the Application Main Routine

Modify the application’s main routine that calls AVS to initialize the module
by calling its description function. This is the key to the procedure. For ex-
ample, if app1.c were attempting to include ucd_to_geom.c, it would read as
follows:

main()
{
 int argc;
 char *argv[3];
 extern char *strdup();
 int ucd_to_geom_desc(); <-----the module’s description function

 AVSmodule_from_desc(ucd_to_geom_desc); <--initialize the module
 argc = 3;
 argv[0] = strdup("avs");
 argv[1] = strdup("-cli");
 argv[2] = strdup("script -play myapp.scr");
 avs(argc, argv);
}

Changes to the Module Library File

If the geometry-producing module is part of a module library file, its descrip-
tion should be changed from "external" to "builtin" and the remaining de-
scription information should be deleted.

For example, the line describing ucd to geom:

Optimizing Geometry Modules: Linking Modules with the Kernel

DEVELOPING APPLICATIONS 3-19

external "ucd to geom" 2 "ucd_multm" 3 2 "Input" 1 "ucd" "Input Contour" 0 \
 "field 1D 3-vector real" 1 "Output" 0 "geom" 7 "Shrink" "boolean" \
 "Shrink Factor" "integer" "Geometry Display Mode" "string" "mode" \
 "choice" "Explode Materials" "boolean" "Explode Factor" "integer" \
 "Save Geometry" "boolean"

becomes just:

builtin "ucd to geom"

Changes to the Network File

The CLI module command in the application’s network file that loads the
module may have -ex filename clauses directing AVS to load the module’s bi-
nary from a file. The -ex clauses should be deleted. The rest of the line
should remain.

Changes to Makefiles

The line(s) in the module’s Makefile that define how to make the geometry-
producing module should be changed so that the module is compiled only,
not linked. (Without an initialization function, the module will not link
against libflow_c.a.)

The application’s Makefile should be changed to link the module’s object file
in with the application. For example:

app1: app1.o
 cc $(CFLAGS) -o app1 app1.o $(DEV_LIBS) $(GEOMLIBS) $(XLIBS)

becomes:

app1: app1.o
 cc $(CFLAGS) -o app1 app1.o ucd_to_geom.o $(DEV_LIBS) $(GEOMLIBS) $(XLIBS)

Special Case: Duplicate Module Names

If you give one of your modules the same name as an existing module (as
specified by the AVSset_module_name routine), ambiguities can result as to
which version of the module, the builtin or the external, is actually initialized
during the course of an application session. (See the "Documentation Clarifi-
cations/Corrections" chapter in the AVS 5 Update manual, in the section
"Loading Modules with the CLI module Command: the -ex Option" for an
explanation of how AVS chooses which module to use.

The simple solution is to be sure your modules have unique names. If you
must use a duplicate name, then:

Optimizing Geometry Modules: Linking Modules with the Kernel

3-20 DEVELOPING APPLICATIONS

1. Create a separate module library to hold your module(s). Its mod-
ule description should be "builtin" as described in the previous
"Module Library File" section.

2. If you never want the existing module invoked, edit its module li-
brary file to read "builtin" as described.

3. Load the new module library file as part of the arguments sent to
AVS by the application’s main routine:
main()
{
 int argc;
 char *argv[5];
 extern char *strdup();
 int MODarbitrary_slicer();
 int MODprobe();

 AVSmodule_from_desc(MODarbitrary_slicer);
 AVSmodule_from_desc(MODprobe);
 argc=5;
 argv[0] = strdup("avs");
 argv[1] = strdup("-library");
 argv[2] = strdup("upstr_lib");
 argv[3] = strdup("-cli");
 argv[4] = strdup("script -play upstream.scr");
 avs(argc,argv);
}

4. Make sure that your module library is the current module library
when your module is initialized.

MODULE SOURCE 4-1

MODULE
SOURCE

Developers AVS includes source to most non-builtin AVS modules. Docu-
mentation is provided through online files in the module_source directory.

Two Module Source Products

The AVS 5.5 Developers product contains two versions of the module source
product AVS_MOD_SRC8 and AVS_MOD_SRC9. The AVS_MOD_SRC9
product is the version of files that were used to build the AVS modules for the
64 bit platforms (Compaq Tru64 UNIX and SGI 64 bit). The MOD_SRC prod-
uct contains module source for all of the other platforms.

Compiling Modules

The file module_source/README.mod_src in the MOD_SRC installation direc-
tory explains how to make the AVS modules, both individually and as a sin-
gle binary.

Module to Module Source Mapping

The file module_source/mod_map contains a table that shows which modules
are in which module source files. For example, it shows that the source to the
compute gradient module is actually in modules/filters/generic/vex_filters.c.

Module to Module Binary Mapping

The file module_source/mod_map2 contains a table that shows which modules
are in which module binary files. For example, it shows that the module
draw grid is compiled and linked into the module binary file sv_multm.

Module to Module Binary Mapping

4-2 MODULE SOURCE

	Table of Contents
	Chapter 1 (Developers AVS Overview)
	Introduction
	Developing Applications
	Deploying Applications
	Product Licensing
	Product Software Requirements
	Problems Fixed in AVS 5.5

	Chapter 2 (Installation)
	Installing Developers AVS
	License Requirements
	Distribution Contents

	Chapter 3 (Developing Applications)
	Introduction
	Building the Examples
	Example Applications
	Common Application Features
	Application Makefiles
	Deploying an Application
	Optimizing Geometry Modules: Linking Modules with the Kernel

	Chapter 4 (Module Source)
	Two Module Source Products
	Compiling Modules
	Module to Module Source Mapping
	Module to Module Binary Mapping

