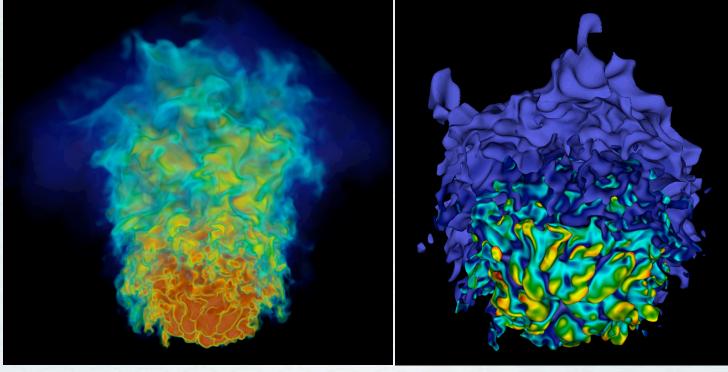


Scalar Topology in Visual Data Analysis

Theory and Motivational Applications

Isosurface Extraction and Scalar Field Visualization and Isosurfaces

- Scalar field: Assign scalar value (temperature, pressure etc.) to each location of domain
- Main visualization techniques: Direct volume rendering and isosurface extraction

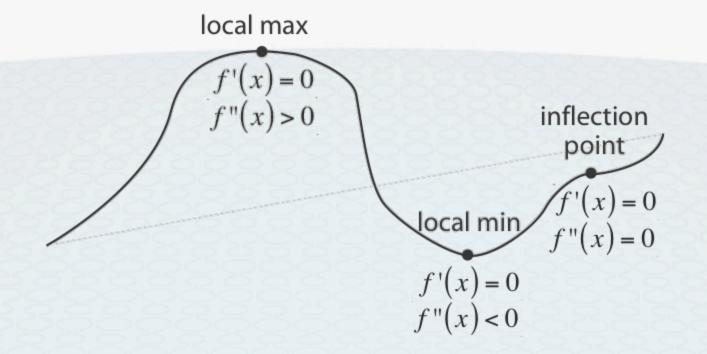


(Data courtesy of John Bell and Marc Day, LBNL CCSE)

Scalar Field Exploration with Isosurfaces

- Vary isovalue and observe isosurface changes
 - What type of "changes" can occur?
 - Which changes are relevant?
 - Can we determine where and when changes occur without extracting the actual isosurface?
- For 1D functions: Use differential calculus to identify maxima, minima, inflection points and sketch curve
- Equivalent considerations for isosurface extraction?

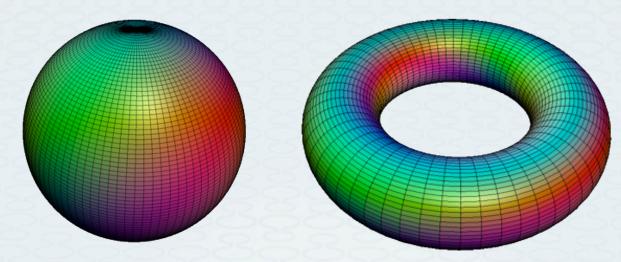
1D Refresher

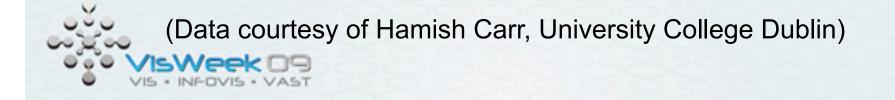


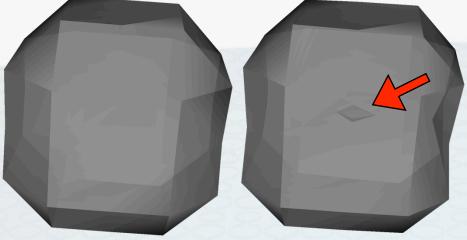
- Collectively called critical points
- Partition function into monotone segments

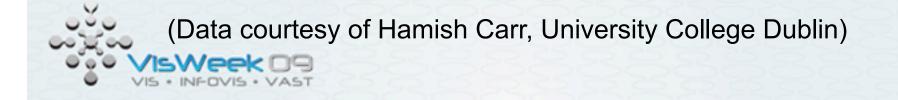
Topology of Surfaces

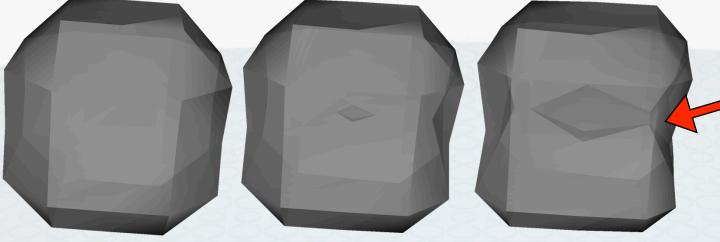
- Properties that remain *invariant under elastic deformation*
- Topology of compact surface, e.g., defined by:
 - Number of connected components
 - Number of holes → genus

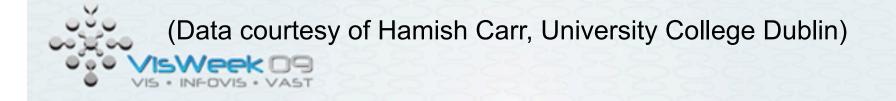


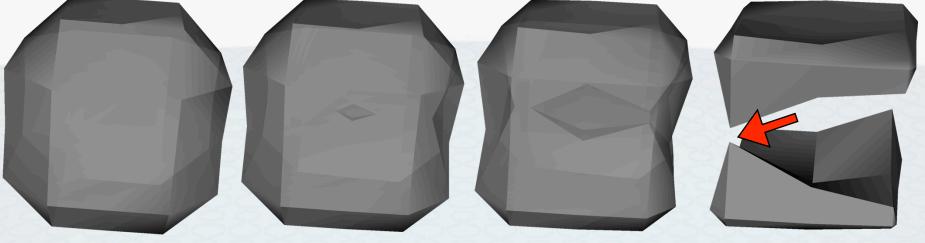


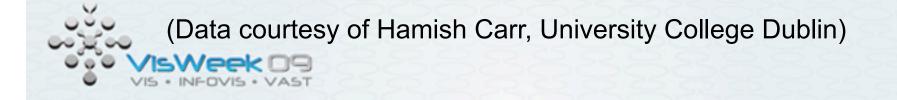


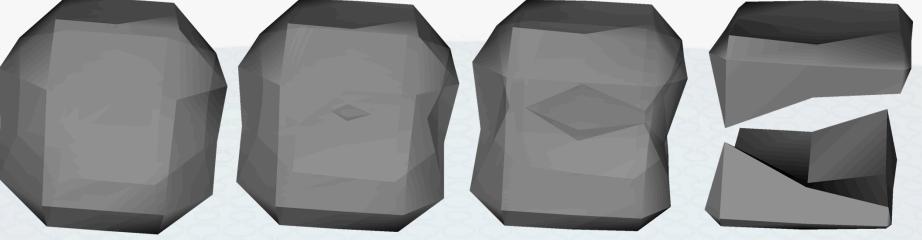


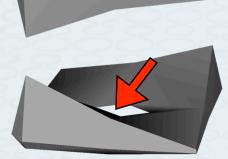




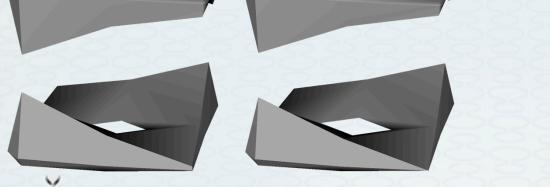






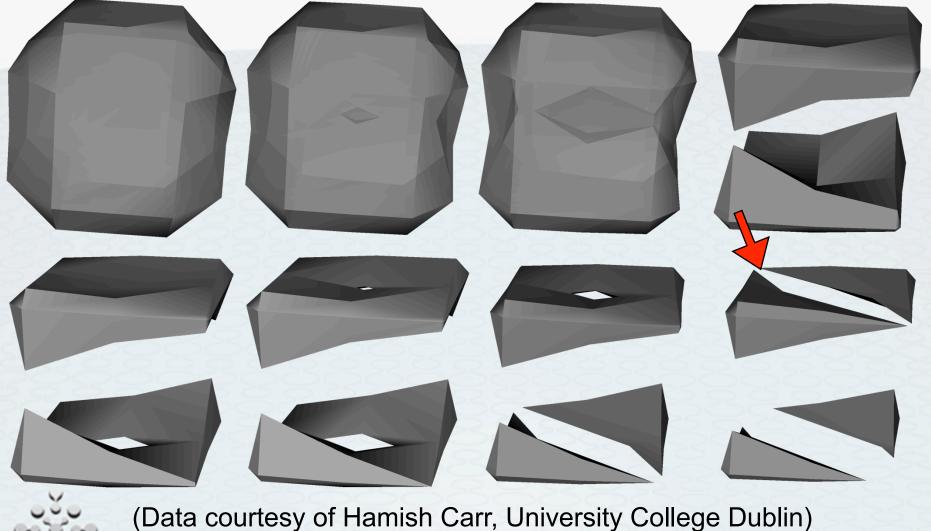


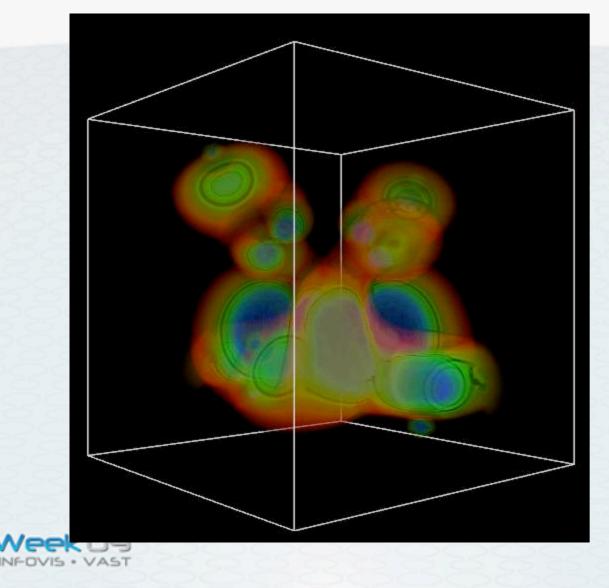
(Data courtesy of Hamish Carr, University College Dublin)

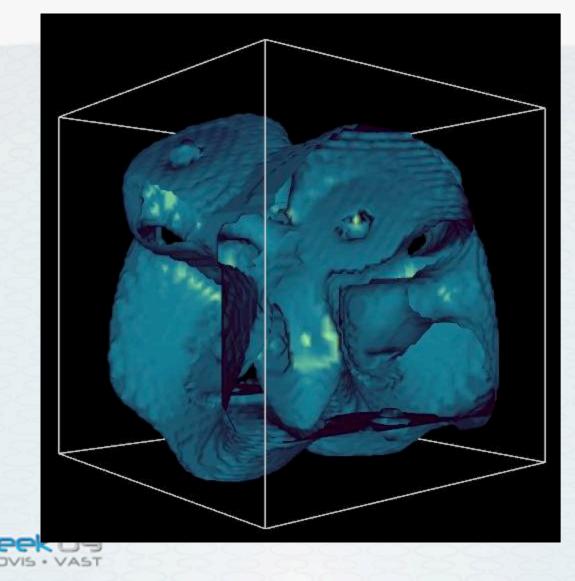


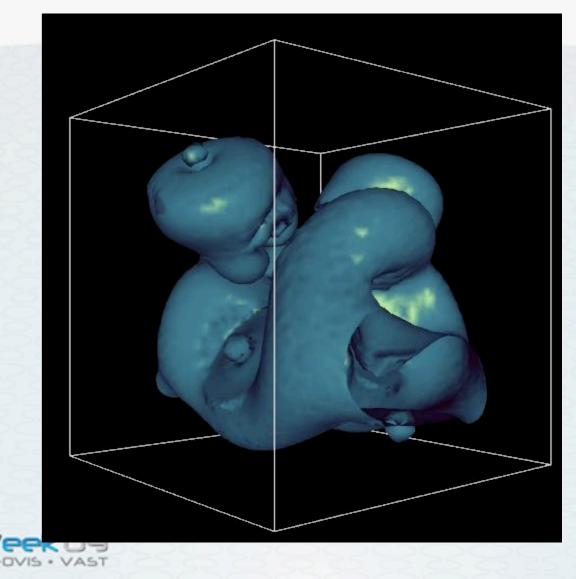
(Data courtesy of Hamish Carr, University College Dublin)

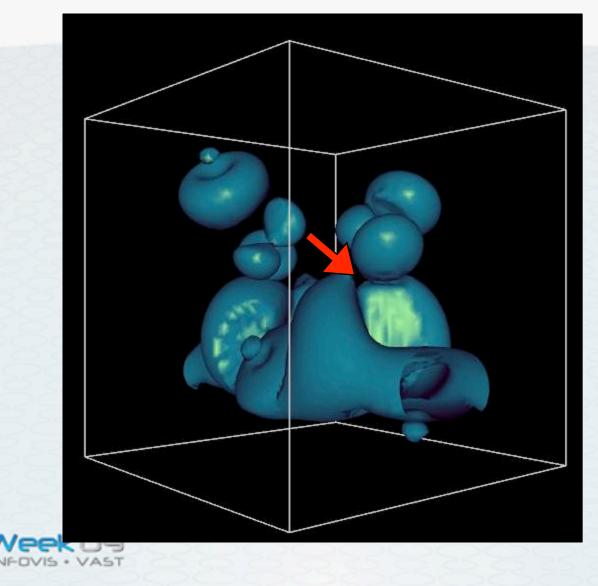
(Data courtesy of Hamish Carr, University College Dublin)

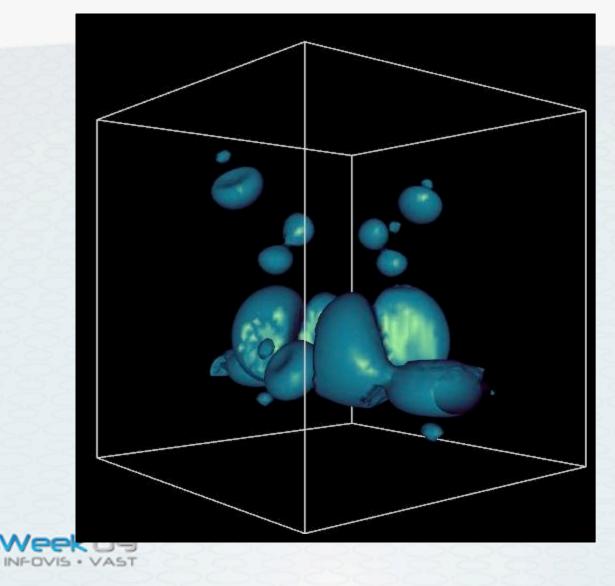


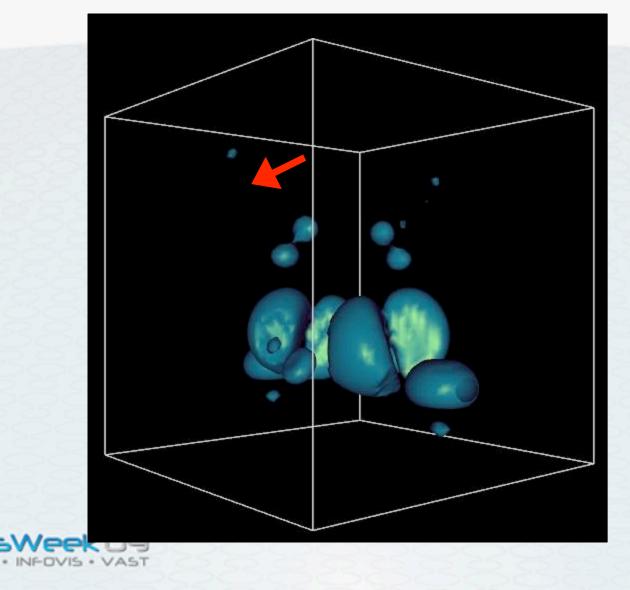


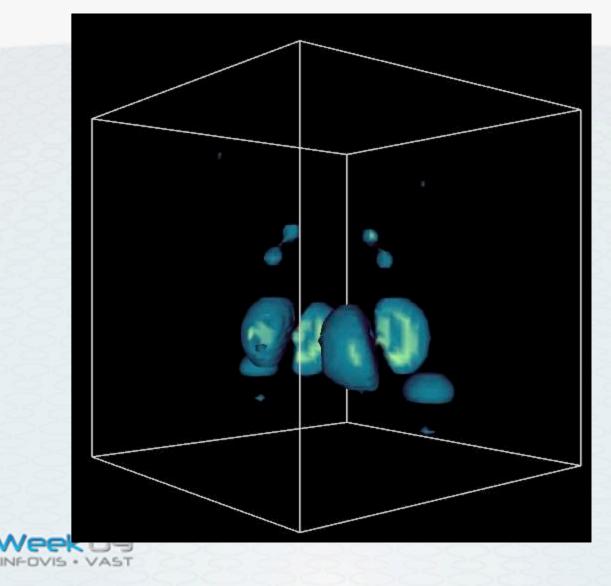




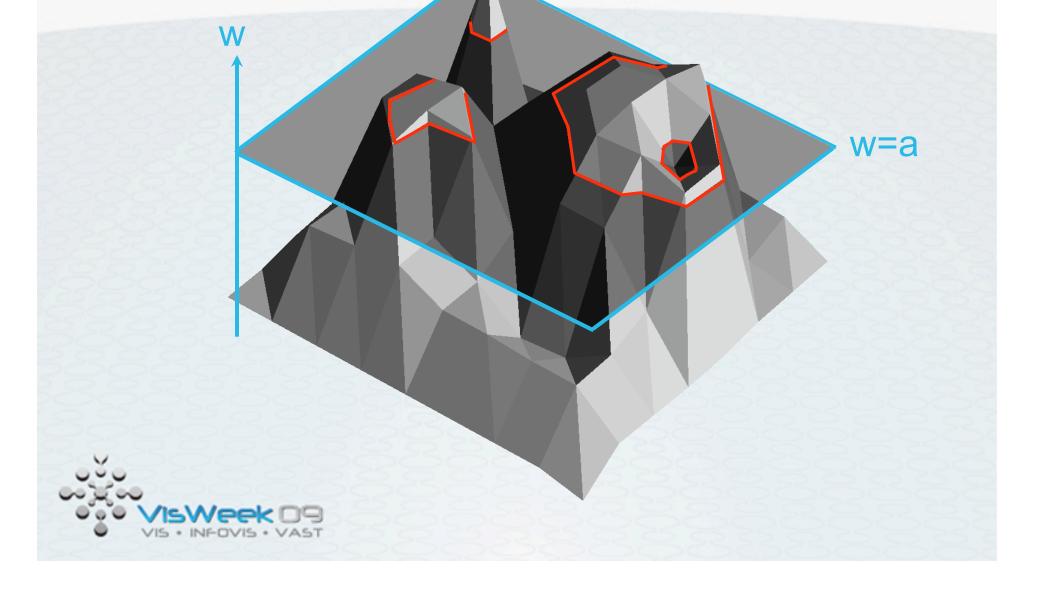








Criteria for Identifying Critical Points are based on Graph and "Isosurface"



Morse Theory Provides Analytical Criteria for Identifying Critical Points

Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a scalar valued function and $G(f) = \{p = (x, f(x)) = (p_x, p_y, p_z, p_w) \in \mathbb{R}^4\}$ its graph. An isosurface $\{f(x) = a\}$ corresponds to an intersection $G(f) \cap \{w = a\}$. $x \in \mathbb{R}^3$ is a *critical point* if the tangential space to G(f) in p is parallel to $\{w = p_w\}$, i.e., if the *gradient* $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$ is

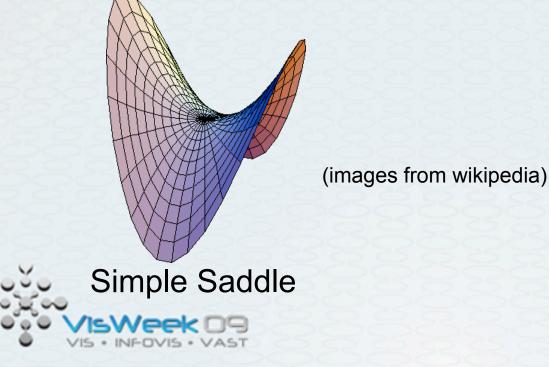
zero.

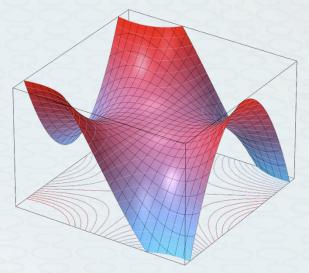
Type of critical point is determined by the signs of the Eigenvalues of the Hessian

$$H(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial z} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} & \frac{\partial^2 f}{\partial y \partial z} \\ \frac{\partial^2 f}{\partial x \partial z} & \frac{\partial^2 f}{\partial y \partial z} & \frac{\partial^2 f}{\partial z^2} \end{pmatrix}$$

The Index Determines the Type of a Critical Point

- Index = number of negative Eigenvalues
- All positive (index=0): Minimum or valley
- All negative (index=dimension): Maximum or peak
- Otherwise: Saddle or pass (ambiguous point)





Monkey Saddle

Morse Functions

- Smooth (C²-continuous) function
- Critical points are *non-degenerate*
 - Hessian non-singular (i.e., non-zero determinant)
 - No monkey saddles
- Critical points have distinct function values, i.e.,

 $p \neq q \rightarrow f(p) \neq f(q)$

Combinatorial Definitions Provide aRobust Way to Find Critical Points $f(x): D \rightarrow \Re$ $F(x): S \rightarrow \Re$

	Classical Mathematical Definitions	Simulation of Differentiability
domain	D smooth manifold	S simplicial complex
function	f Infinitely differentiable	$F(x)$ PL-extension of $f(x_i)$
critical point	$\nabla f(p) = 0$ numerical \circ	$LowerLink(p) \neq B^{d-1}$ combinatorial
	1D 2D Independent I globally consi	3D ocal computation yields stent results

Combinatorial Criteria Count Positive and Negative Regions in Neighborhood

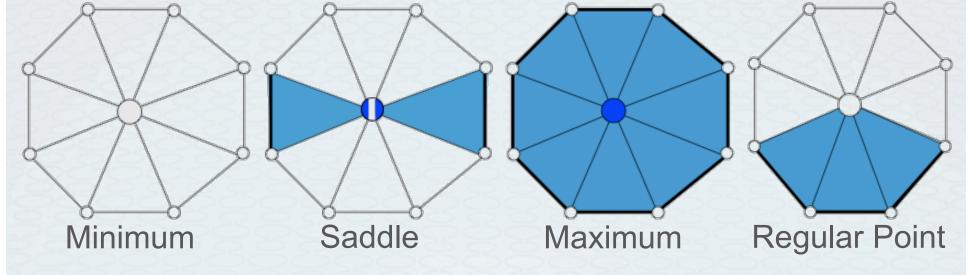
	type	index	The M	
	O Minimum	0	The	
		:	of	
	Saddle	d-1		
	Maximum	d	Minir	
	$\nabla f(p)$	Minimum		
$f(x) _{p} = f(p) + \sum_{i=1}^{d-k} x_{i}^{2} - \sum_{j=d-k+1}^{d} x_{j}^{2}$ Minimum 1				

numerical

lorse Lemma ere are d+1 types of critical points Maximum imum Saddle Maximum saddle 2-saddle Maximum combinatorial

Detecting Critical Points for Piecewise Linear Functions on a Simplicial Complex

- Example: Points in 2D Triangulation
- Classify point by considering its neighborhood [Banchoff 1970/83], [Edelsbrunner et al., 2003]

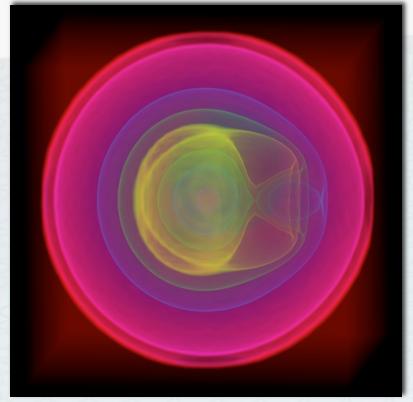


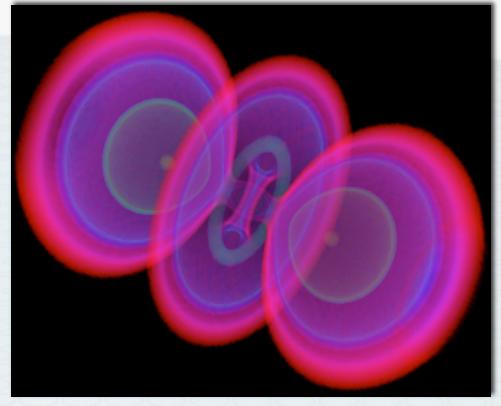
• 3D Analogous, see [Edelsbrunner et al., Proc. 19th Ann., 2003]

Critical Points Can Help in Identifying Relevant Isosurfaces

 Scalar topology reveals hidden isosurface component in the probability distribution of the location of a nucleon.
 [Fujishiro et al., IEEE CG&A 2000], [Weber et al., IEEE Visualization 2002 Conference], [Weber et al., Eurographics/IEEE ViSym 2003] (Dataset: SFB 382, DFG)

Critical Points Define Transfer Functions Emphasizing Topological Changes

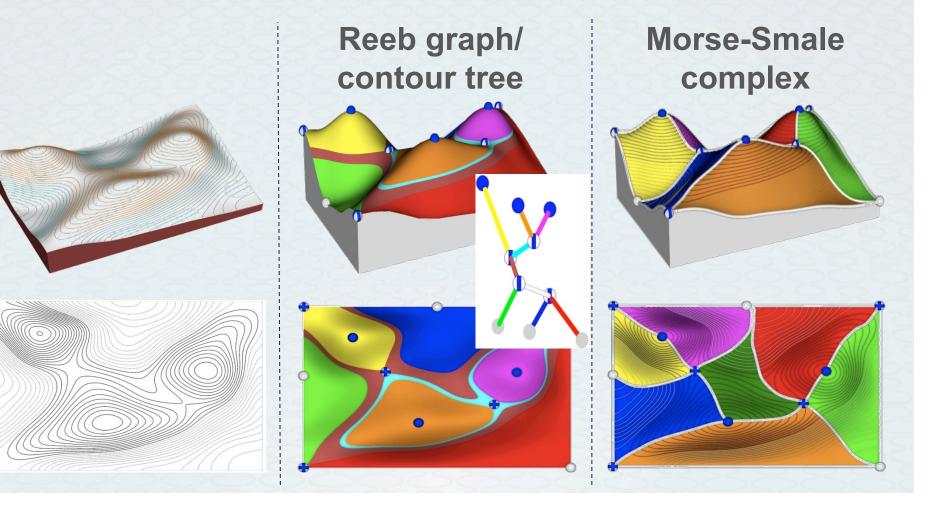




[Fujishiro et al., IEEE Vis 1999] [Fujishiro et al., IEEE CG&A 2000], [Weber et al., IEEE Vis 2002], [Weber et al., Eurographics/IEEE VisSym 2003] (Dataset: SFB 382, DFG)

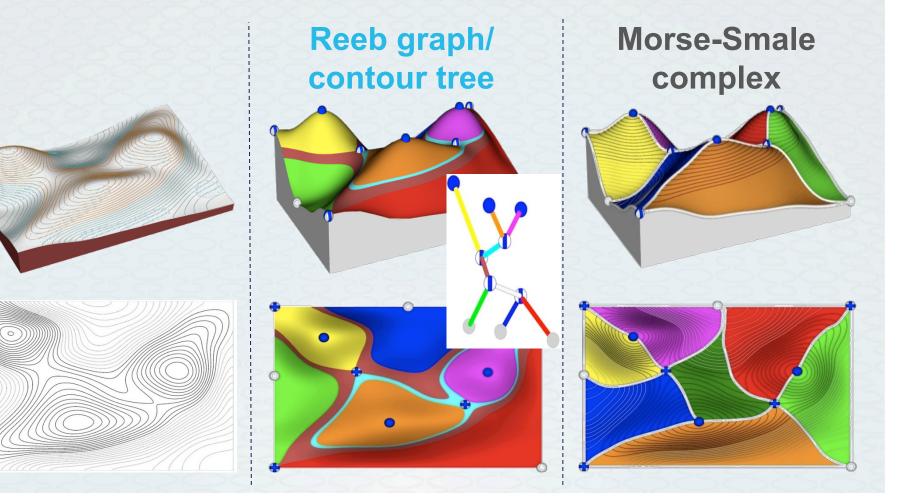
Topological Structures Define Relationship Between Critical Points

- Describe "feature space"
- Simplification and data/dimensionality reduction

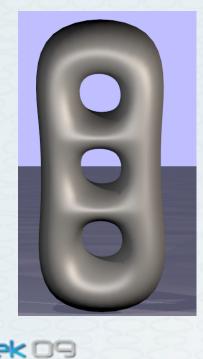


Topological Structures Define Relationship Between Critical Points

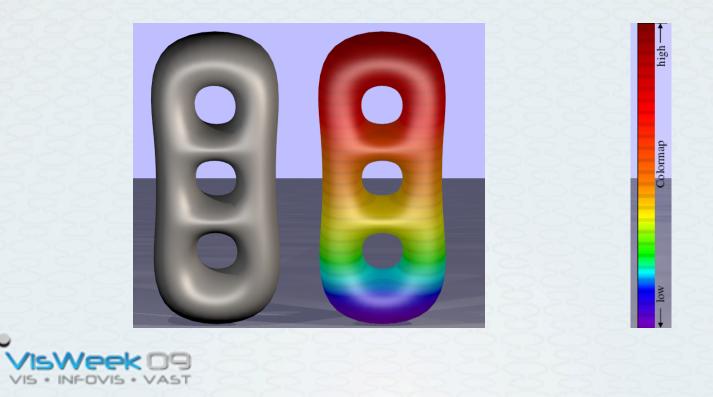
- Describe "feature space"
- Simplification and data/dimensionality reduction



• Given a mesh.

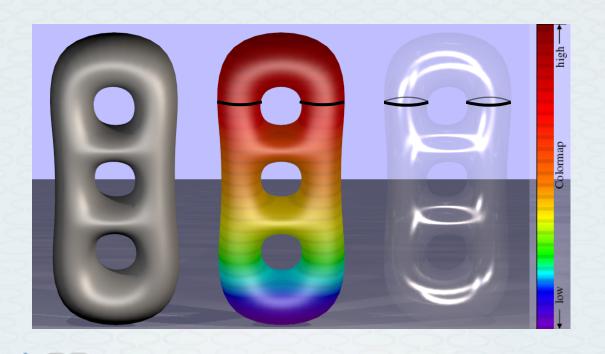


Given a mesh and a function defined on it.

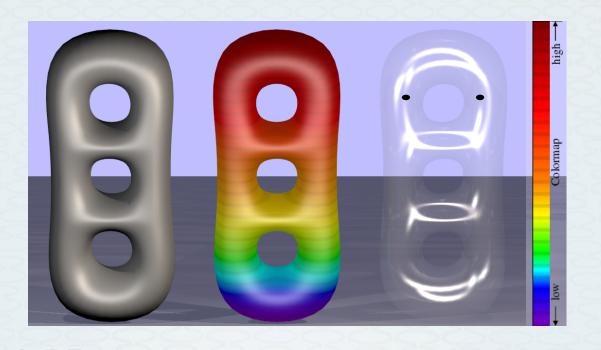


- Given a mesh and a function defined on it.
- Consider an isocontour.

- Given a mesh and a function defined on it.
- Consider an isocontour.

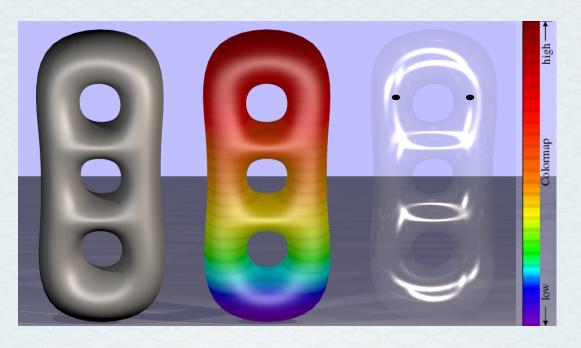


- Given a mesh and a function defined on it.
- Consider an isocontour and contract each component.

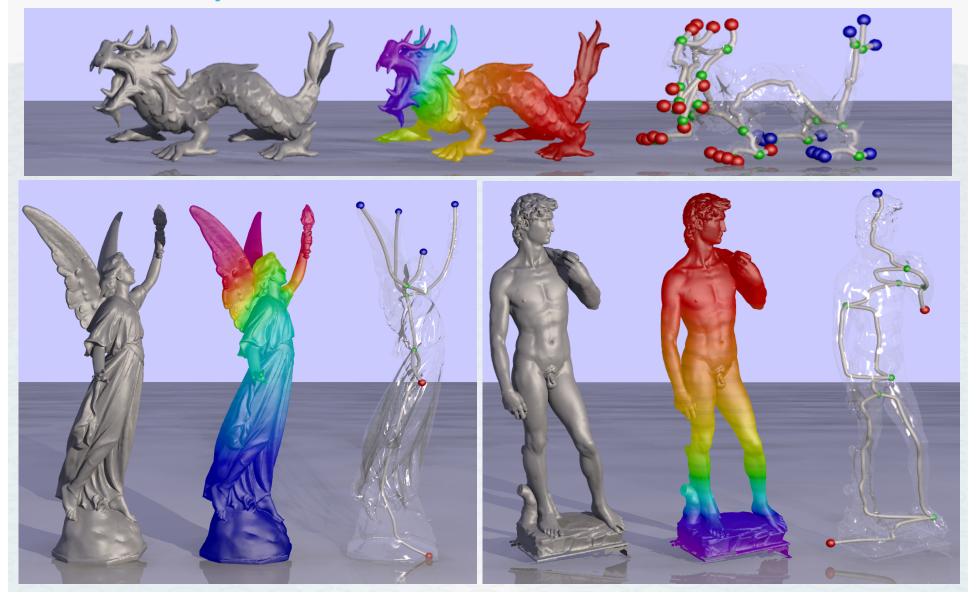


The Reeb Graph Is the Contraction of Isocontour Components to Points

- Given a mesh and a function defined on it.
- Consider an isocontour and contract each component.
- Repeat for all contours while maintaining adjacency.

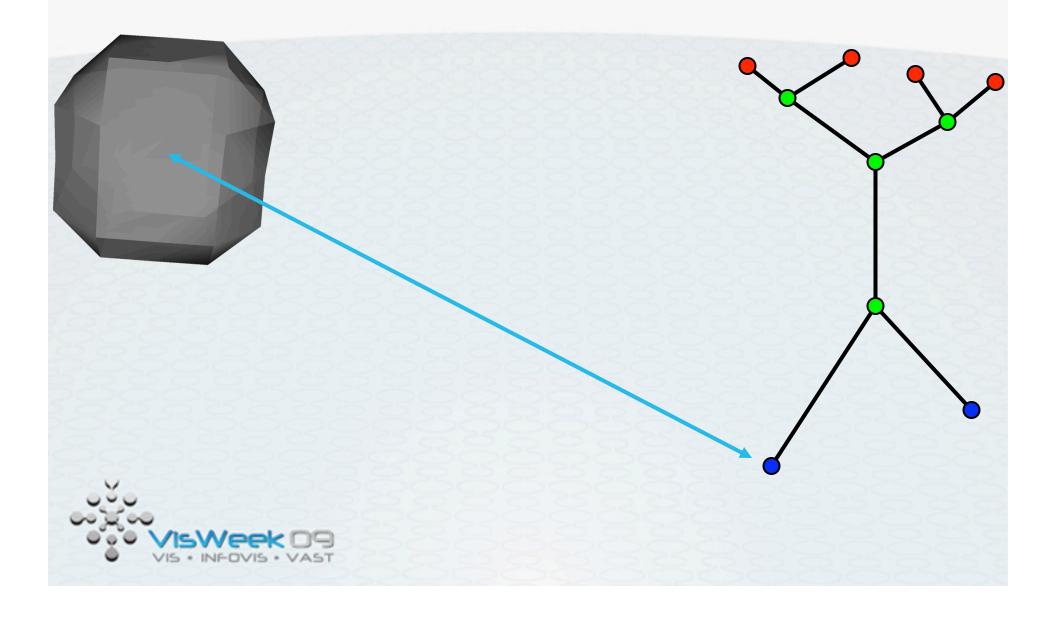


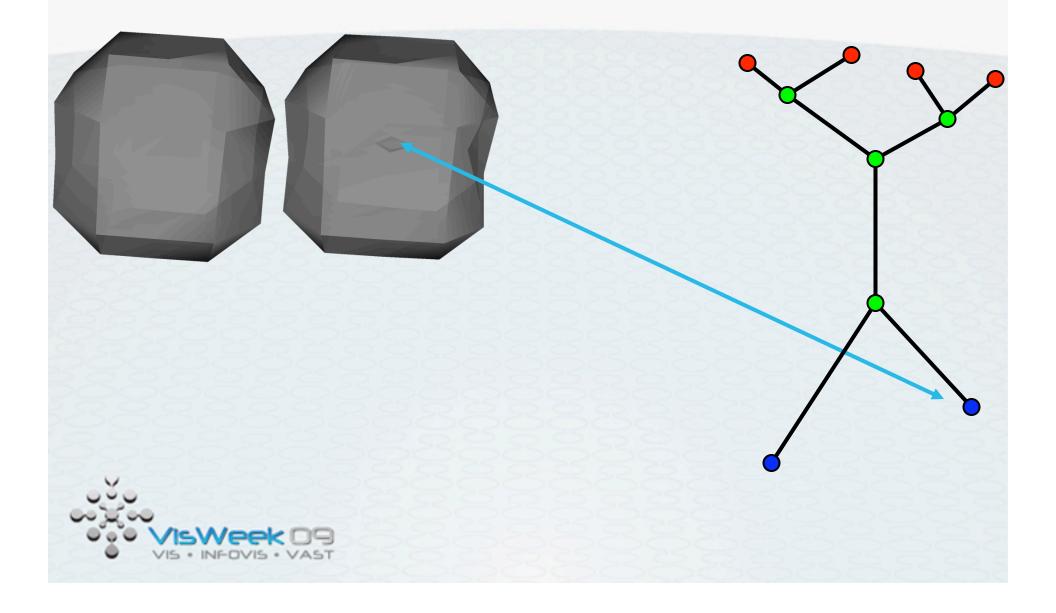
The Reeb Graph Represents the Skeleton of a Shape

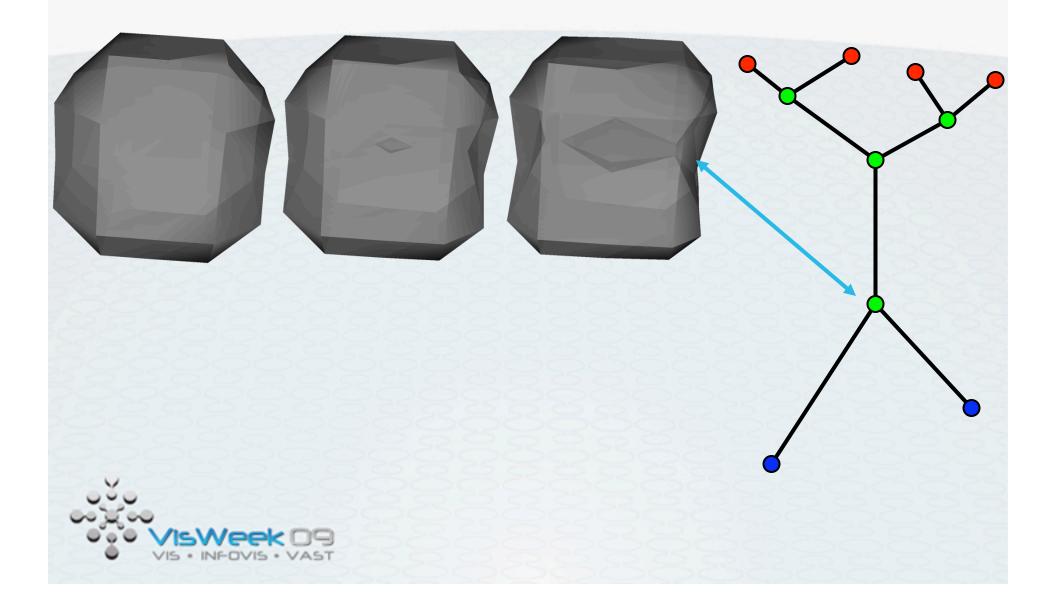


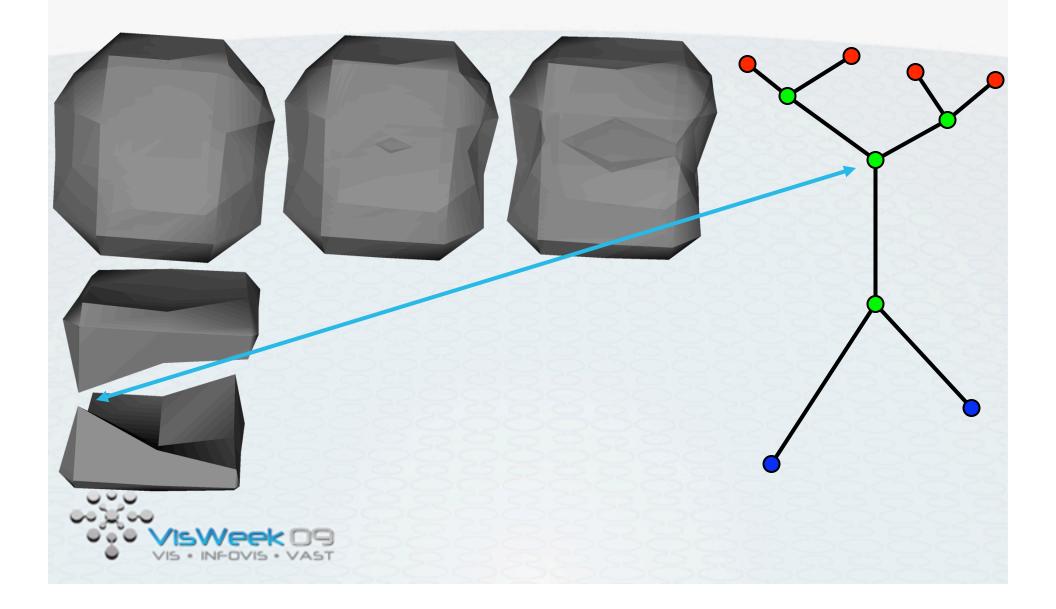
Contour Tree

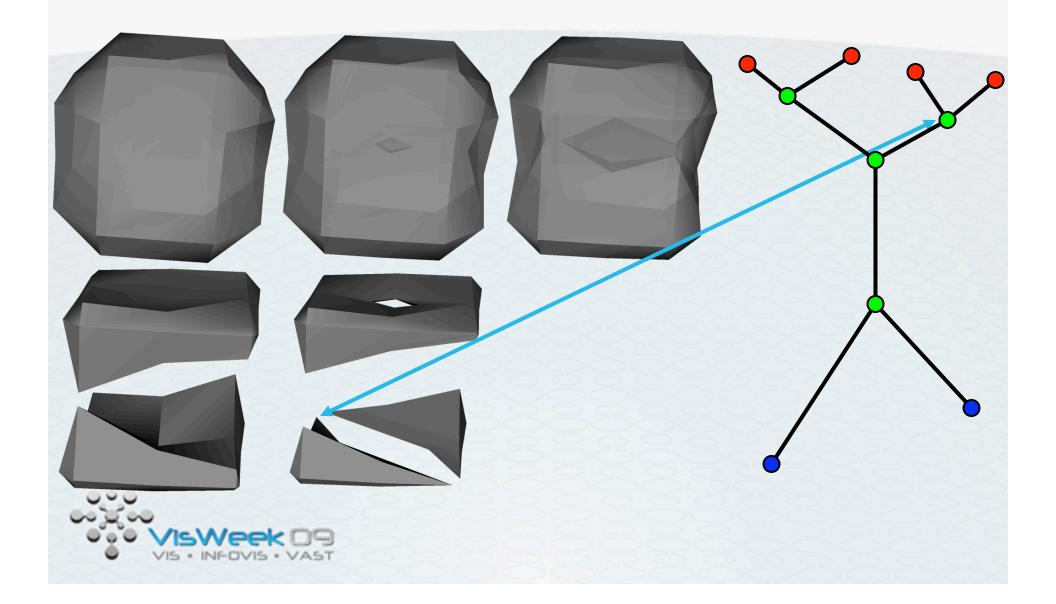
- Simply connected domain → General graph becomes tree
- Tracks contours (connected isosurface components) as they are born, merge/split and die

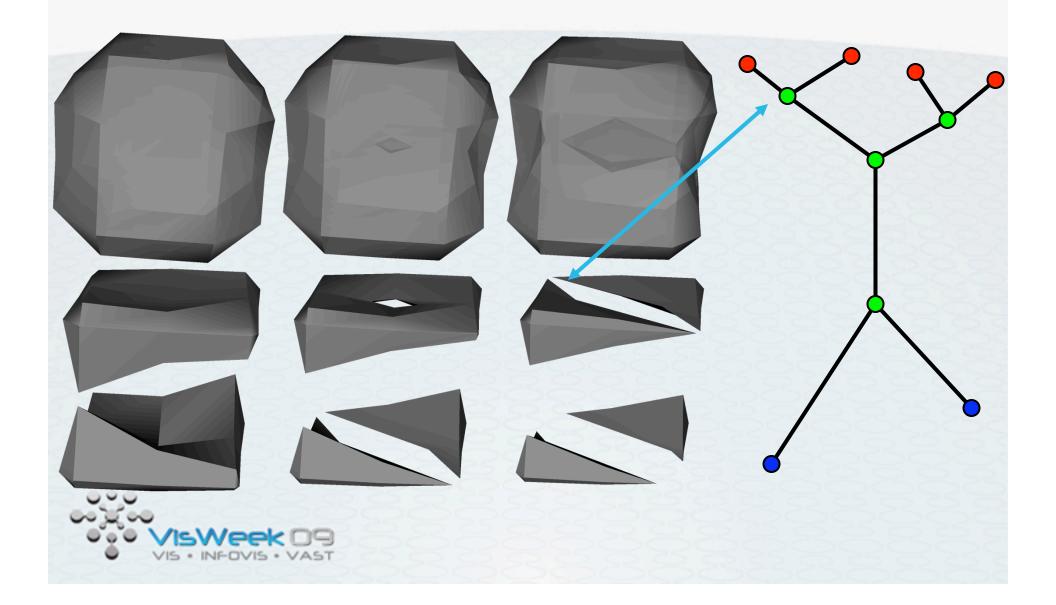




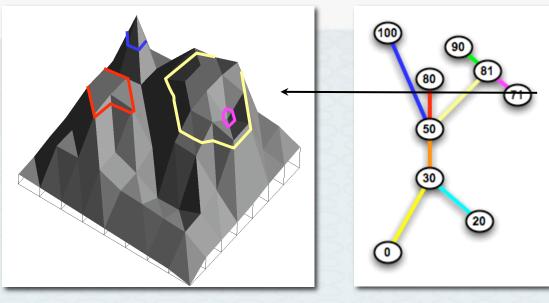




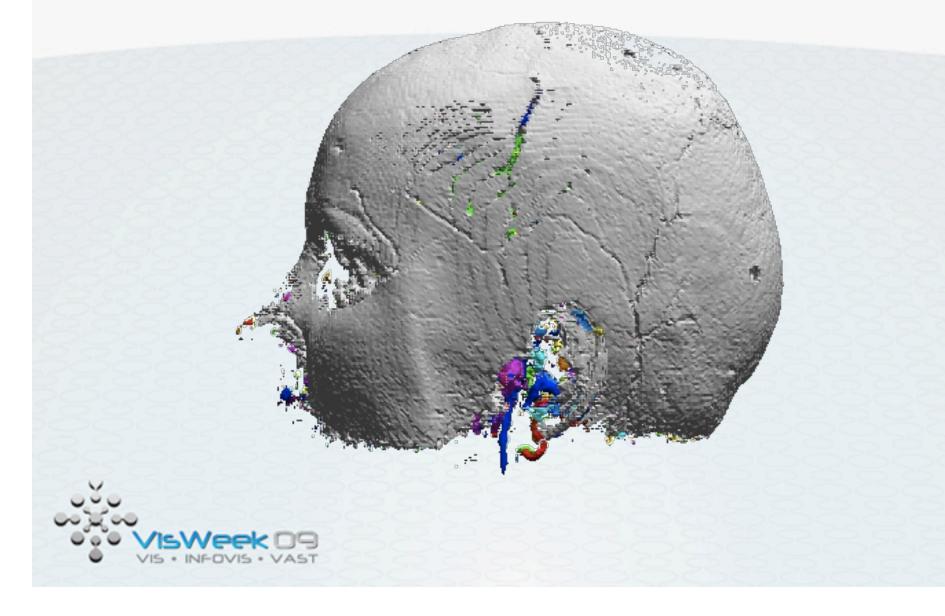




Applications of the Contour Tree – Flexible Isosurfaces

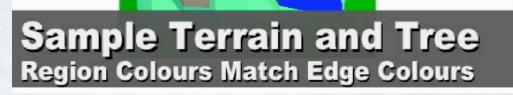


- Speed-up of isosurface extraction by finding minimal seedsets for continuation method
- "Flexible isosurfaces": Contours (connected components) as individual entities (Carr et al., 2003)



Complex Topology Necessitates Simplification Schemes

- Inherent data complexity
- Features at multiple scales
- Noise

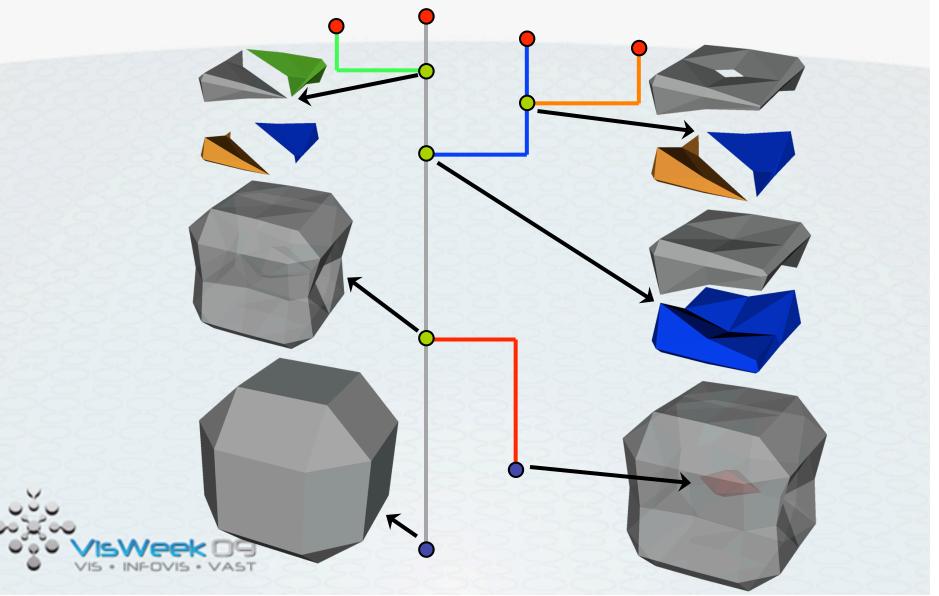


Branch Decomposition

- Hierarchical contour tree representation
- Order based on simplification measure, e.g.,
 - persistence
 - area/volume
 - hypervolume

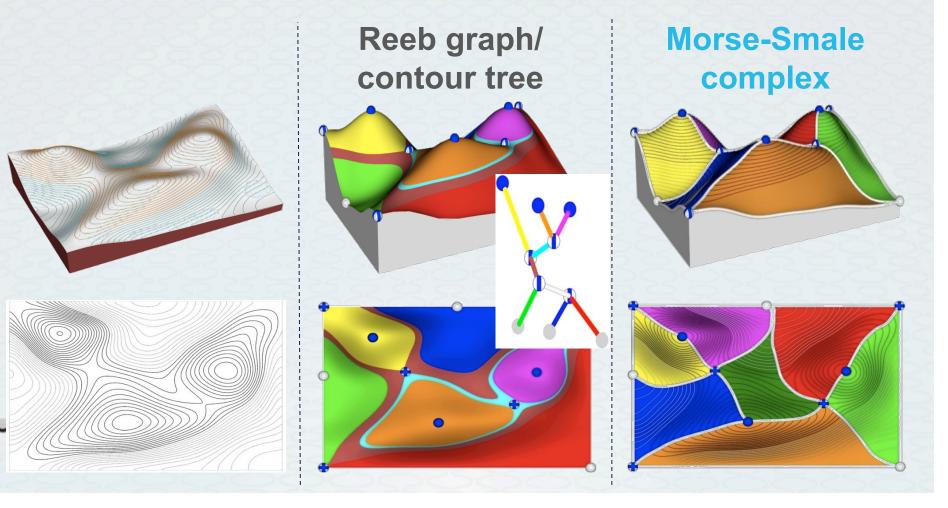
(Pascucci et al., 2004)

Branch Decomposition and Corresponding Contours



Topological Structures Define Relationship Between Critical Points

- Describe "feature space"
- Simplification and data/dimensionality reduction

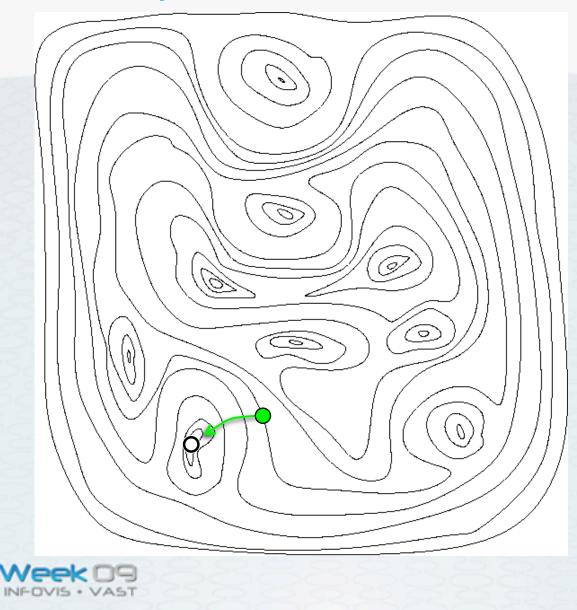


Cayley (1859) / Maxwell (1870)

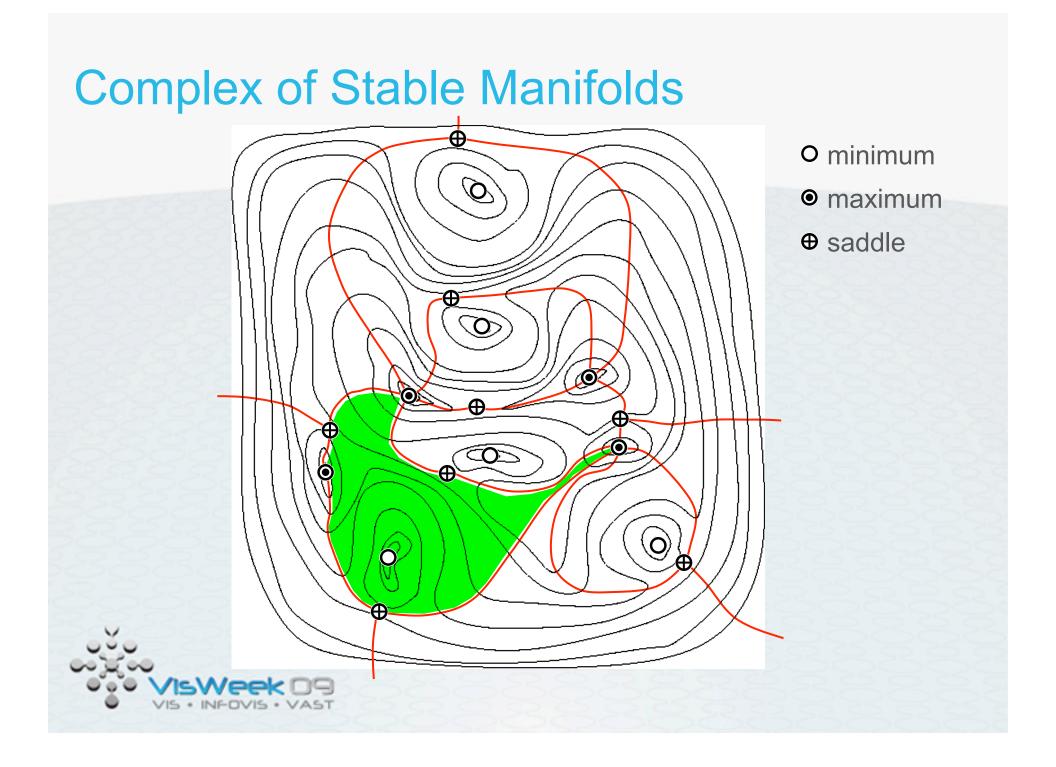
Gradient Lines

- Gradient indicates steepest ascent
- A gradient line runs from a minimum to a maximum
 - A maximal path $p : \mathbb{R} \to \mathbb{R}^n$
 - Such that $\frac{\delta}{\delta s} p(s) = \nabla f(p(s)) \forall s \in \mathbb{R}$
 - Paths are monotone between critical points
- All gradient lines
 - Start at minima or saddles
 - And lead to saddles or maxima
- Define equivalence between gradient lines based on start or end point

Lines of Steepest Descent

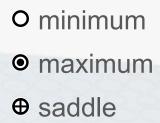


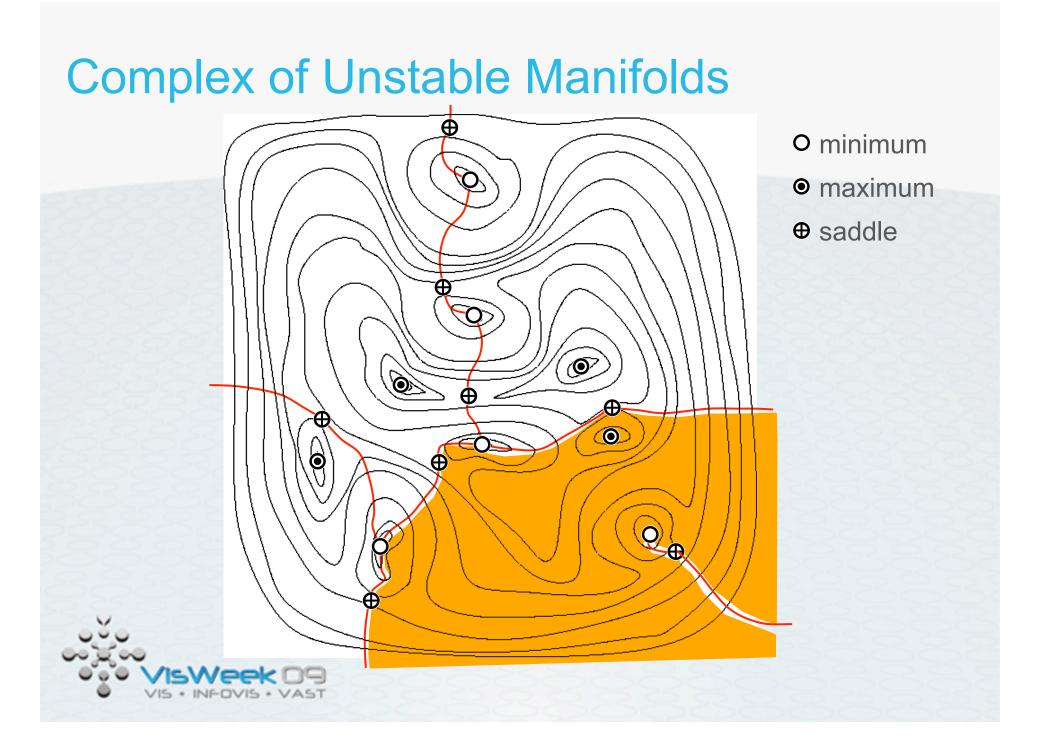
O minimum

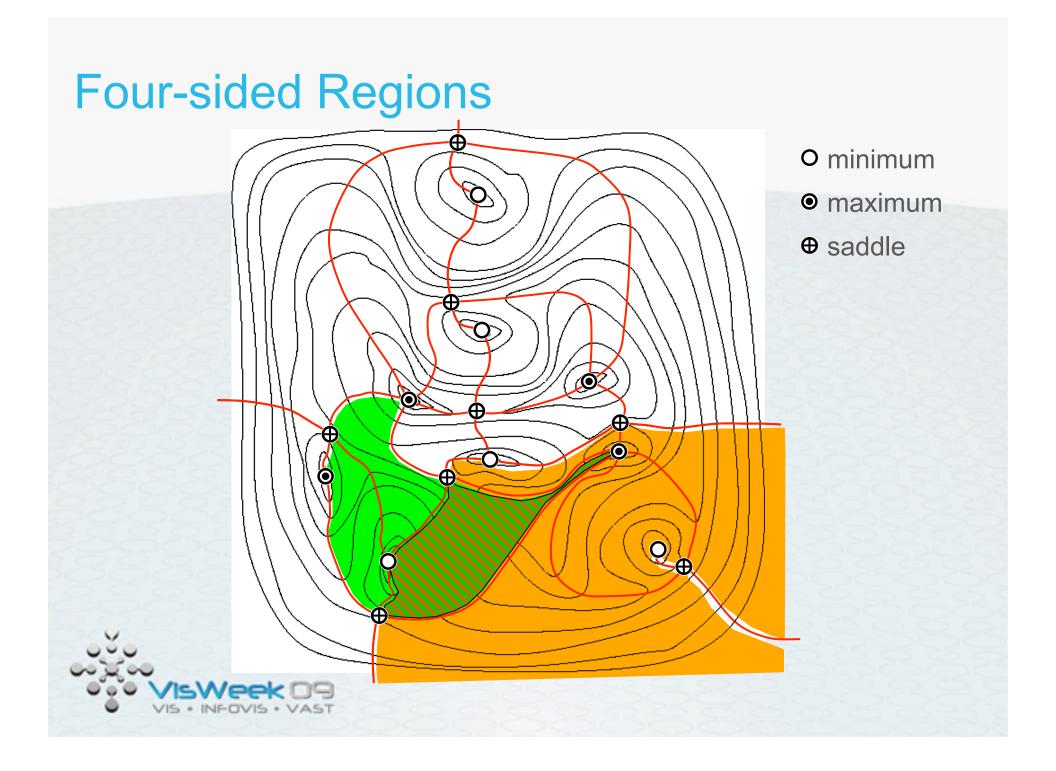


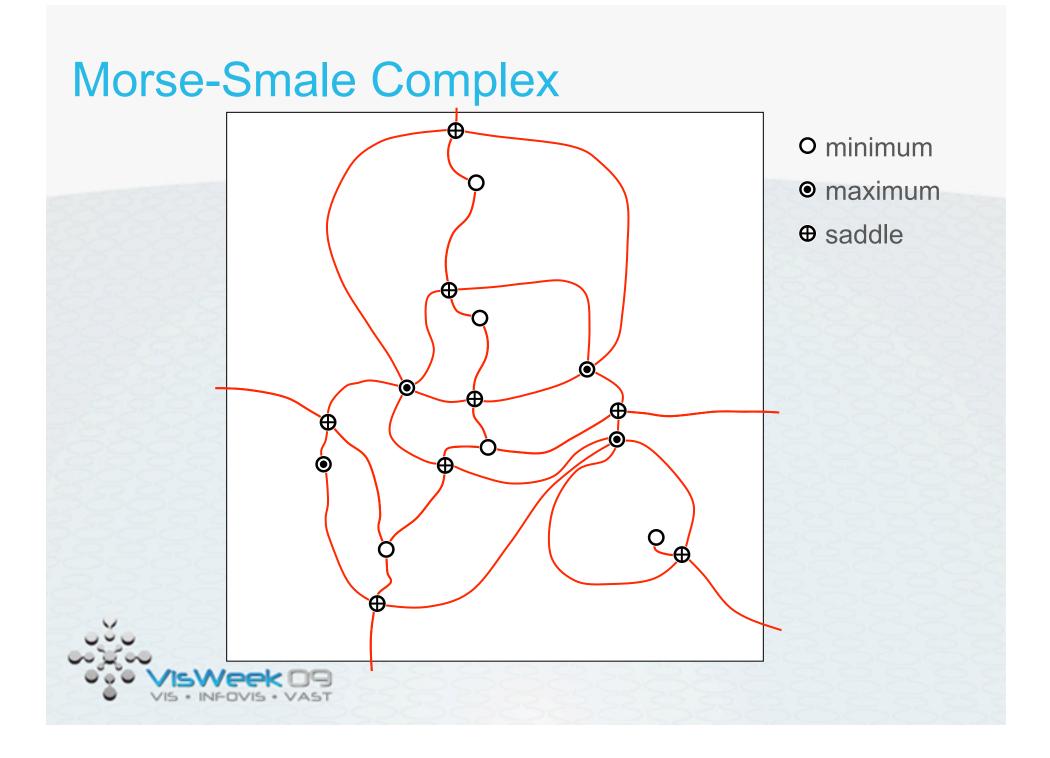
Lines of Steepest Ascent



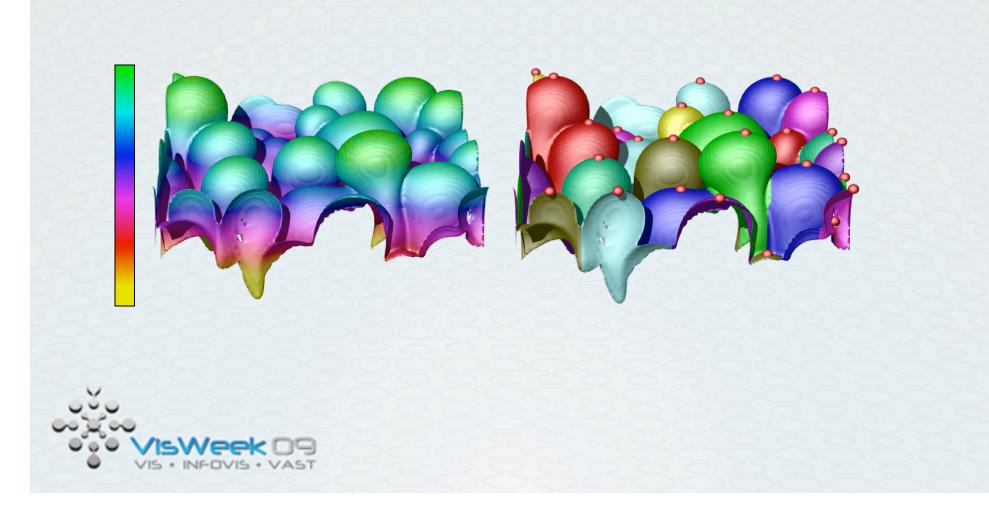








Gradient-line-based Segmentation



Further Relevant Reading/ Topics not Covered Here

- Jacobi Sets for
 - time-varying data
 - comparison of scalar functions
- Contour Spectrum

References

- Fundamentals
 - Milnor, Morse Theory, Princeton University Press.
- Computational Topology
 - Edelsbrunner's upcoming book on computational topology
 - Zomorodian, Topology for Computing, Cambridge Monographs on Applied and Computational Mathematics
- Combinatorial Criteria for Critical Points
 - T. Banchoff. Critical points and curvature for embedded polyhedral surfaces. Amer. Math. Monthly, 77 (1970), 475-485.
 - H. Edelsbrunner, J. Harer, V. Natarajan and V. Pascucci. Morse-Smale complexes for piecewise linear 3-manifolds. Proc. 19th Ann. Sympos. Comput. Geom., pp. 361-370, 2003.
 - H. Edelsbrunner, J. Harer and A. Zomorodian. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30, pp. 87-107, 2003.

References

- Data Exploration using Critical Points
 - I. Fujishiro, Y. Takeshima, T. Azuma, S. Takahashi. Volume data mining using 3D field topology analysis. IEEE CG&A, 20(5), pp. 46-51, Sept./Oct., 2000.
 - G.H. Weber, G. Scheuermann, H. Hagen, B. Hamann, Exploring Scalar Fields Using Critical Isovalues, Proc. IEEE Visualization 2002, pp. 171-178, 2002.
- Reeb graph
 - G. Reeb, Sur les points singuliers d'un forme de Pfaff complètement intégrable ou d'une fonction numérique, Comptes Rendus de l'Académie des Sciences de Paris 222; 847-849, 1946.
 - G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust On-line Computation of Reeb Graphs: Simplicity and Speed.V. Pascucci, ACM Transactions on Graphics (Proc. Of SIGGRAPH 2007), pp. 58.1-58.9, 2007.

References

- Contour Tree
 - R. Boyell and H. Ruston. Hybrid techniques for real-time radar simulation. Proc. Fall Joint Computer Conference 1963, pp. 445-458, 1963.
 - H. Carr, J. Snoeyink and U. Axen. Computing contour trees in all dimensions. Computational Geometry, 24 (2):75-94, 2003.
 - H. Carr, J. Snoeyink, M van de Panne, Flexible Isosurfaces: Simplifying and displaying scalar topology using the contour tree, Comp. Geometry: Theory and Appl., 43(1), pp.42-58, 2010.
- Morse-Smale Complex
 - Edelsbrunner references listed for critical points

