
Scalar Topology in Visual 
Data Analysis 

Theory and Motivational 
Applications 



Isosurface Extraction and Scalar Field 
Visualization and Isosurfaces 
•  Scalar field: Assign scalar value (temperature, pressure etc.) 

to each location of domain 
•  Main visualization techniques: Direct volume rendering and 

isosurface extraction 

(Data courtesy of John Bell and Marc Day, LBNL CCSE) 



Scalar Field Exploration with Isosurfaces 

•  Vary isovalue and observe isosurface changes 
•  What type of “changes” can occur? 
•  Which changes are relevant? 
•  Can we determine where and when changes occur without 

extracting the actual isosurface? 

•  For 1D functions: Use differential calculus to identify maxima, 
minima, inflection points and sketch curve 

•  Equivalent considerations for isosurface extraction? 



1D Refresher 

•  Collectively called critical points 
•  Partition function into monotone segments  



•  Properties that remain invariant under elastic deformation 
•  Topology of compact surface, e.g., defined by: 

•  Number of connected components 
•  Number of holes ➔ genus 

Topology of Surfaces 



Isosurface Topology Changes Occur at 
Critical Points 
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Topology-based Analysis Provides a 
Structural View of Scalar Functions 
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Topology-based Analysis Provides a 
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Criteria for Identifying Critical Points are 
based on Graph and “Isosurface” 

w 

w=a 



Let                      be a scalar valued function and 
                                                                                  its graph. 
An isosurface                      corresponds to an  
intersection                             . 
             is a critical point if the tangential space to          in     is 
parallel to                  ,  i.e., if the gradient                             is 
zero. 
Type of critical point is determined by the signs of the 
Eigenvalues of the Hessian  

Morse Theory Provides Analytical Criteria 
for Identifying Critical Points 



The Index Determines the Type of a 
Critical Point 
•  Index = number of negative Eigenvalues 
•  All positive (index=0): Minimum or valley 
•  All negative (index=dimension): Maximum or peak 
•  Otherwise: Saddle or pass (ambiguous point) 

(images from wikipedia) 

Simple Saddle Monkey Saddle 



Morse Functions 

•  Smooth (C2-continuous) function 
•  Critical points are non-degenerate 

•  Hessian non-singular (i.e., non-zero determinant) 

•  No monkey saddles 
•  Critical points have distinct function values, i.e., 

p ≠ q  f(p) ≠ f(q)  



Combinatorial Definitions Provide a 
Robust Way to Find Critical Points 

critical 
point


Classical Mathematical 
Definitions 
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Independent local computation yields 
globally consistent results 
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Combinatorial Criteria Count Positive and 
Negative Regions in Neighborhood 

There are d+1 types  
of critical points 

Minimum 

Maximum 

Saddle 

Maximum Minimum 

Minimum Saddle Maximum 

Minimum Maximum 1-saddle 2-saddle 

The Morse Lemma


numerical 
 combinatorial 




Detecting Critical Points for Piecewise 
Linear Functions on a Simplicial Complex 
•  Example: Points in 2D – Triangulation 
•  Classify point by considering its neighborhood [Banchoff 

1970/83], [Edelsbrunner et al., 2003] 

•  3D Analogous, see [Edelsbrunner et al., Proc. 19th Ann., 
2003] 

Minimum Saddle Maximum Regular Point 



Critical Points Can Help in Identifying 
Relevant Isosurfaces 

•  Scalar topology reveals hidden isosurface component in the 
probability distribution of the location of a nucleon. 
[Fujishiro et al., IEEE CG&A 2000], [Weber et al., IEEE Visualization 2002 Conference], 
[Weber et al., Eurographics/IEEE ViSym 2003] (Dataset: SFB 382, DFG) 



Critical Points Define Transfer Functions 
Emphasizing Topological Changes 

 [Fujishiro et al., IEEE Vis 1999] [Fujishiro et al., IEEE CG&A 2000], [Weber et al., IEEE Vis 
2002], [Weber et al., Eurographics/IEEE VisSym 2003] (Dataset: SFB 382, DFG) 



Topological Structures Define Relationship 
Between Critical Points 
•  Describe “feature space” 
•  Simplification and data/dimensionality reduction 

Reeb graph/ 
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The Reeb Graph Is the Contraction of 
Isocontour Components to Points 

•  Given a mesh. 
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The Reeb Graph Is the Contraction of 
Isocontour Components to Points 

•  Given a mesh and a function defined on it. 
•  Consider an isocontour and contract each component. 
•  Repeat for all contours while maintaining adjacency. 



The Reeb Graph Represents the Skeleton 
of a Shape 



Contour Tree  

•  Simply connected domain  General graph becomes tree 
•  Tracks contours (connected isosurface components) as they 

are born, merge/split and die 



Contour Tree – Example 
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Applications of the Contour Tree –  
Flexible Isosurfaces 

•  Speed-up of isosurface extraction by finding minimal seed-
sets for continuation method 

•  “Flexible isosurfaces”: Contours (connected components) as 
individual entities (Carr et al., 2003) 



Flexible Isosurfaces Examples – 
Remove Occluding Components 
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Flexible Isosurfaces Examples – 
Remove Occluding Components 



Complex Topology Necessitates 
Simplification Schemes 
•  Inherent data complexity 
•  Features at multiple scales 
•  Noise 



Branch Decomposition 

 Hierarchical contour tree 
representation 

•  Order based on simplification 
measure, e.g., 
•  persistence  
•  area/volume 
•  hypervolume 

(Pascucci et al., 2004) 



Branch Decomposition and Corresponding 
Contours 



Topological Structures Define Relationship 
Between Critical Points 
•  Describe “feature space” 
•  Simplification and data/dimensionality reduction 

Reeb graph/ 
contour tree 

Morse-Smale  
complex 



Cayley (1859) / Maxwell (1870) 



Gradient Lines 

•  Gradient indicates steepest ascent 
•  A gradient line runs from a minimum to a maximum 

•  A maximal path 

•  Such that   

•  Paths are monotone between critical points 
•  All gradient lines 

•  Start at minima or saddles 
•  And lead to saddles or maxima 

➜ Define equivalence between gradient lines based on start or 
end point 

 p :→ 
n

 

δ
δs

p s( ) = ∇f p s( )( )∀s ∈



Lines of Steepest Descent 
minimum 



Complex of Stable Manifolds 
minimum 
maximum 
saddle 



Lines of Steepest Ascent 
minimum 
maximum 
saddle 



Complex of Unstable Manifolds 
minimum 
maximum 
saddle 



Four-sided Regions 
minimum 
maximum 
saddle 



Morse-Smale Complex 
minimum 
maximum 
saddle 



Gradient-line-based Segmentation 



Further Relevant Reading/ 
Topics not Covered Here 
•  Jacobi Sets for 

•  time-varying data 
•  comparison of scalar functions 

•  Contour Spectrum 
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