
Remote and Distributed Visualization Frameworks Workshop
Findings Document
April 14-15, 2003
Emeryville, CA

Executive Summary
This report presents the findings and recommendations that emerged from a two-day
workshop held in Emeryville, CA on April 14-15, 2003. The motivation for the workshop
was to identify objectives and goals related to future activities in visualization software
design and development. The workshop participants included visualization researchers
from a number of DOE and government laboratories, as well as academic institutions.

Visualization, which is the transformation of abstract information into images, plays an
integral role in the scientific process by facilitating insight into observed or simulated
phenomena. The evolution of visualization software over the years has shown that
component-based tools executing within a well-defined framework offer the greatest
potential in several key areas. The combination is extensible, as developers can add new
components that extend the capabilities of the system. It is flexible, since general purpose
components can be combined into applications that address domain specific needs. It
provides a common development environment so that components of one institution can
interoperate with components from another. The boundaries of such component-based
frameworks are encountered when attempting to perform visualization of large datasets,
when attempting to use components that span multiple locations, when attempting to
perform collaborative visual analysis and when attempting to use components and
finished tools from different sources. Unfortunately, there does not exist a common
framework or component definition that is suitable for use in a remote and distributed
visualization (RDV) context. Such a component architecture, which should be freely
accessible and community-developed, is sorely needed to better support science
programs, and to promote unity within the community of visualization researchers,
developers and users.

The workshop findings indicate that such a framework is technically feasible, and will be
of great use for visualization researchers, developers and users. A key objective is the
ability to integrate a diverse range of existing technology, including commercial
visualization applications and prototypes of new techniques from the research
community. Another objective is the ability to use, within a single framework, diverse
resources ranging from large parallel machines to small desktop workstations, where such
resources span multiple sites. The framework should support display device
independence so that it can be used in a modular fashion as the back-end for diverse
presentation modalitities, ranging from PDAs through desktop platforms, and immersive
display environments. It should also support single or multiple user operation. To be
successful, the framework and components should be made available to all through an
Open Source license at no cost to promote widespread adoption and use, and to ensure a
stable environment for scientific and visualization research and development in the years
ahead.

Problem Statement
Scientific visualization - the transformation of abstract information into readily
comprehensible images - plays an integral role in the scientific process. Over the years,
scientific visualization has evolved to keep pace with advances in computer science,
software engineering, data modeling and data management. The earliest scientific
visualization "systems" were subroutine APIs, and each new visualization application
required writing software to read data and perform subroutine calls to perform
visualization and rendering. Later, applications that implemented procedural data
processing (and visualization) languages emerged, such as IDL, Matlab and the like.
During the 1990s, a class of visualization systems emerged that were highly successful.
These systems were composed of visualization software components, an interface for
rapidly constructing an application using the provided components, or possibly new
components created by a developer. An internal "flow executive" scheduled execution of
these components and moved data through the network of software components. These
systems were unexpectedly successful because they were extensible, since developers
could extend the functionality of the base system through the addition of custom software
components. Communities of users and developers coalesced around each of these
systems, for a common framework and data model fostered a stable environment for
sharing components, data and ideas.

The language-based systems as well as the dataflow systems, while immensely
successful, have inherent design limitations that prevent their use, or adaptation for use,
in a class of contemporary and near-term environments. Remote and distributed
visualization environments pose new challenges not anticipated by the designers of
earlier visual data analysis technologies. The challenges include the need to use
distributed heterogeneous resources, the resource demands large and distributed scientific
data, the ability to include capabilities that are fundamental for science (e.g., statistical
analysis), the need for communities of developers and users to share visualization tools
and resources, and the need for a technology base of “raw materials” that can be quickly
adapted to domain-specific use.

Definitions
The following list of definitions were borrowed from www.cca-forum.org/glossary.html,
and adapted for use in the context of RDV components and frameworks.

A component is a software object, meant to interact with other components,
encapsulating well-defined functionality or a set of functionalities. A component has a
clearly defined interface and conforms to a prescribed behavior common to all
components within an architecture. Multiple components may be composed to build other
components. In the context of a visualization system, a component encapsulates one or
more visualization algorithms, presentation modalities, or data representations.

The component interface is a set of methods supported by a component, and type
definitions for the data used for arguments to those methods. An interface itself is a type
and can be an argument for a component method.

A component architecture is a system defining the rules of linking components
together. The CCA model of a component architecture is composed of the following
elements An Interface Definition Language understandable to all components. Interface
definitions expressed in this language allow components to find out about each other
either through introspection or through consulting a repository, and give a component
architecture the potential to dynamically add and delete components in multi-component
applications (whether this potential is actually realized or not depends on a specific
implementation of the architecture).

A Domain Interface is a set of programming interfaces that standardize interactions with
a particular application domain. The Visualization community should:

1. Utilize domain interfaces that presently exist when possible or practical, and work
with those communities to ensure that those interfaces are appropriate for use in the
visualization community.

2. Develop new visualization-specific interfaces for visualization-specific tasks.

A reference component is a component that provides a commonly used functionality for
a specific domain interface. In the context of visualization, examples of these may
include colormap editors, resource management facilities, and so forth.

A Binding exists between the interface definition syntax and a language or framework of
actual component implementation.

A Composition API allows the programmer to link components into multi-component
applications and save those compositions. Such a mechanism could be provided for
example by a GUI or a scripting language, and need not be standardized in a CCA.

A framework is a specific implementation of a component architecture.

A Common Component Architecture (CCA) is a component architecture defining
standards necessary for the interoperation of components developed in the context of
different frameworks. To date the need for three such standards has been identified: the
Interface Definition Language, an interaction model and a set of services based on this
model which can be expected by every component, and should be provided by every
framework, and a standardized way of retrieving information from the repository.

Visualization Framework and Component Requirements

In this section, we present a number of requirements and objectives of visualization
components and frameworks. In some cases, a given requirement applies to both
components and frameworks, while in other cases, the requirement applies to just
components or just frameworks.

1. Framework. The framework is a high-level, adaptive system that is capable of

executing visualization components in dynamic environments on heterogeneous

resources, including resources that span multiple sites. Some components may be
parallel, while others may be serial. The framework should also be resilient and
responsive to error conditions, such as when a component unexpectedly dies.

2. The Audience. We view the community of visualization developers and researchers

as being the primary audience, or adopters, of a visualization framework and
component-based tools. Visualization developers can use the framework and
component-based tools to create finished applications specially tailored for a given
domain area. Similarly, visualization researchers can leverage the framework and
services used to build components to create new components to test out new
visualization research ideas.

3. Interoperability. Visualization developers should be able to share components, and

expect that a component produced by one developer will interoperate with
components produced by a different developer. Visualization developers can create
domain-specific applications from collections of components that execute within the
framework. Discipline scientists want finished applications that meet their particular
needs, as opposed to a completely general-purpose tool.

4. Technology Recyling. A general objective for the framework and components is the

ability to reuse software when creating new components. Such reuse occurs at many
levels. An existing visualization application may be “wrapped” with a component
interface, allowing to server as a single component in a larger application. Pre-
existing applications like VTK can act as “components,” as well as small, lightweight
single-purpose tools, like stream multiplexers. During specification, design and
implementation of the framework and components, those involved with such
activities should incorporate, where feasible, as much existing technology as is
practical.

5. Open Source Distribution. The framework, components and toolkit elements should

be distributed using an Open Source license. The ultimate objective is to foster an
environment that promotes widespread use and encourages contributions and
involvement of visualization developers and users.

6. Common Data Structures, Formats and Models. Components, which are the

fundamental building blocks of applications, have, by definition, well-defined
interfaces. The scope of “data” that flows through visualization component interfaces
needs to be defined. Classes of data include things like scientific data (structured and
unstructured grid), graphics and visualization data (images, geometry) and control
data (related to the execution of a component). For practical purposes, we as a
community must develop a limited set of commonly agreed-upon data structures that
implement a range of domain-specific models. Because this is not a fully generalized
data model, it will not initially be sufficient to cover all possible scientific application
requirements, but will fully cover a large proportion of them. These data structures
can be expanded over time to provide more general coverage.

7. Presentation Independence. The framework and components should be flexible
enough to support display and interaction on a wide range of output devices. These
range from handheld devices, desktop displays and segmented/immersive
environments. Each of these different display devices exhibits vastly different
characteristics in terms of amount of bandwidth required to drive the device, the
amount of compute or render resources required to drive the device, and so forth.
There is an implicit need for the ability to detect and respond to varying levels of
resource requirements and levels to impedance-match required with available
resources.

8. Security. Communications activities, both between components and between the

framework and the components it manages, should be capable of occurring in a
secure fashion. This means that connections can be authenticated and encrypted.
Development of tools that implement control and data transport between components
and between frameworks and components should leverage existing work in the field
of secure communications.

9. Resource Management. Components should participate in dynamic resource

allocation by exposing instrumentation and methods to allow an executive to extend
execution to newly allocated resources. Such instrumentation can provide an estimate
of resources a component requires to perform a given task. The framework should be
capable of using such estimates to predict performance. Furthermore, the framework
should be capable of selecting a different set of resources if the performance estimate
exceeds a performance budget, or if the selected resources fail to deliver required
performance; a situation referred to as “contract violation.” This task will become
more complex as a runtime analysis problem as variables in the visualization
application change in response to user events, changing input data, changing
performance constraints or changing environmental conditions. Performance
estimates, modeling and runtime monitoring play an important role in “impedance-
matching.”

10. Interactive Application Construction. There exists a need for one or more user

applications that permit run-time construction and execution of component-based
applications that use the framework for component launching and execution control.
Over time, domain-specific applications that realize similar objectives can be tailored
for use in specific display and interaction environments.

11. The Brooks 80/20 Rule. When specifying, designing and implementing component

interfaces, those involved with such activities should chart a path of graduated steps
in interface development that is conducive to rapid development and implementation
of early prototypes. The design, specification and implementation of component
interfaces is expected to evolve over time to gradually encompass increasing levels of
generality. We wish to avoid a common pitfall that requires a specification and design
that is all-inclusive at the expense of demonstrable and rapid development and
deployment.

12. Location Independence. The framework must provide abstractions that support

location independence. This includes transparent mechanisms that serialize data for
invocation of remote methods while still providing direct low-overhead connections
for components that are co-located. Placement and launching of components in the
distributed environment should be simple, not complex (effortless). There exist
several frameworks in the CCA community that provide this abstraction.

13. Transport Independence. The framework should have modular components that

provide abstract transport mechanisms for distributed objects (data or code). The
abstract methods for data transport will support pluggable/modular replacement of
transport methods depending on the transport medium (Myranet vs. TCP), security
layers (encrypted or authenticated data channels), and serializations (XDR, XML or
raw binary).

14. Group Communication. In addition to point-to-point communications and data

transport, the framework should support multicast/multiplexed communications
streams to support collaborative interfaces and deployment, possibly through
interposing components.

The RDV Component-Based Framework Vision

The vision for an RDV component-based framework is to realize an interoperable set of
visual data analysis capabilities. The building blocks of the framework are components,
which perform operations on data objects. Data is communicated between components
using framework libraries that move, encode, and decode data objects. Synchronous
execution of components can be moderated by a central authority, or “executive.”
Alternately, the components might execute in a peer-to-peer fashion, depending upon a
particular application’s requirements. In the “centrally managed” configuration, the
“executive” schedules execution of components, which might reside on resources at
different sites. In the peer-to-peer configuration, the data connections and execution
model might be procedural, thereby avoiding the need for a central “executive.” The
framework should be capable of supporting both types of execution architectures using
the same fundamental building blocks. The figure below is a rough “first draft” that
shows the framework and component elements, along with relationships in terms of
control and payload data movement through the system.

Figure 1. Component-Based Framework Architecture Overview

Barriers
Some barriers to adoption, use and contribution to a component-based visualization
framework are social in nature. For example, some are reluctant to use technology that
was not created in-house, or the “not invented here” (NIH) syndrome. In some cases,
NIH stems from concerns about not having in-house expertise in a particular piece of key
technology. In other cases, intellectual creativity and productivity are the currency of
domain expertise. A community-supported project helps to allay both sets of concerns.
With strong community support, a critical mass of developers, users and advocates
ensures the project will remain vigorous and promote longevity. The Open Source
phenomenon bears out many examples: Linux, X11/Xfree86, Apache, and so forth. A
stable framework actually makes possible the likelihood of increased intellectual
productivity in specialized research areas, as key, fundamental technologies need not be
implemented again and again at each different location. Furthermore, a framework that
exhibits the characteristics we have discussed makes possible advances in new directions
that might not have been possible without such a framework.

With a project such as we have described, one significant challenge is to define project
scope. The scope of the project should balance between being all-encompassing and
having sufficient breadth and depth to be useful. All-encompassing scope means that the
framework and components have capabilities to all imaginable applications. Such
expectations are not realistic, and adherence to such dogma will prevent forward progress
on the project. On the other hand, a narrowly defined scope will satisfy only a few
application needs, and not be useful to a broader audience. An appropriate project scope,
which remains elusive at this time, must strike a balance between these two objectives.

A robust data model and common data structures are prerequisites for interoperable
components. The notion of a completely general data model and interface has been the
subject of much research activity over the years. To date, there is no completely general
data model. The reasons are numerous, and to some extent, parallel the two barriers
discussed above. Past efforts to develop fully general purpose data models have led to
many implementations that exhibited poor performance characteristics or extremely
complex APIs. Therefore, we will work on defining data structures that support a diverse
set of applications in order to provide a domain-neutral substrate for components to
exchange information. Failure to develop any commonly agreed upon data structures
leads us, inevitably, towards a “Tower of Babel” where components developed by
different groups will still be unable to interoperate. Development of a higher level, fully
general purpose data model would be helpful, but not a prerequisite to guiding
fundamental component and framework development. Further work on RDV frameworks
and components must balance the objectives of working software, which is needed by
researchers, with the desire to create completely general purpose tools and methods.

Next Actions/Recommendations

1. More effort is needed to further refine the scope of a component-based framework for

RDV, and to identify the core technology components.
2. A first step towards realizing working components is the need to define data

interfaces for visualization components. The scope of this task requires careful
balance between generality and specificity, with an eye towards reusing as much
existing technology as possible. Examples of data objects and access methods that
need to be defined include, but are not limited to: geometry primitives (triangles,
vectors, spheres, etc.), images, colormaps, fundamental grid/mesh objects,
multiresolution representation and transmission, progressive (meta)-data
interfaces/models, and so forth. The scope of the initial activities should be targeted
towards a “minimum set” of capabilities so that work can proceed.

3. Closer collaboration is needed between those interested in component-based
visualization tools and frameworks, and other groups working on data
interfaces/models. These groups include but are not limited to: Field Model (NASA-
Ames), TTST, GGF-ACE, Web3D Consortium, Earth Systems Grid, etc. Such
collaboration should produce benefit to all groups.

4. While initial activities will be performed without formal funding, the long-term
success of an RDV framework requires formal funding.

5. A small set of working components applied to an important science project would
help to prove the efficacy of the design to stakeholders.

6. Given the high level of community interest and the sizeable project scope, additional
workshops and meetings are required. We agreed to hold a meeting in conjunction
with the CCA workshop to be held on July 10-11, 2003 in Eugene Oregon. We also
plan to hold a smaller meeting sometime in June in the Washington DC area to
further elaborate upon the scenarios described in these findings.

7. The issue of how we organize ourselves needs to be further refined. In the near term,
subsequent meetings will be open by invitation only to others with similar goals. The
goals are specification and implementation of interoperable visualization components
within a common framework.

8. Create project website and email list at LBL.

Case Study 1 – Parallel Visualization of Large and Complex Simulation
Results
To help define the scope of a visualization framework, one can walk through a specific
application and enumerate the issues and expectations a developer may encounter in the
realization of that case. An example visualization problem is a post-processing
application that computes a custom derived quantity and displays the results in a custom
GUI interface. Specifically, the result of the simulation is a set of 1024 HDF5 files
containing a distributed set of particles with position and energy and a “boxlib” AMR
mesh with a boundary field. The particle data is assumed to exist in the physical domain
of the AMR mesh.

We wish to run a parallel visualization application on a distributed Linux cluster that uses
a maximum likelihood classifier to cluster the particles into energy bins. The output
should be a plot of the classification and an interactive display on the local user’s desktop
of an isosurface of the boundaries between the clustered particles. It is assumed that all
the data files that make up the dataset are accessible by at least one of the nodes of the
cluster. The example application goes through a number of concrete steps in
accomplishing this task. We will walk though these various steps and call out the use and
expectations of the application on the visualization framework throughout the execution
of the application.

Initialization/Startup
The application needs to bring itself up in parallel on the cluster. To make this happen,
the application relies on the framework’s “Environmental Services”. These services
include resource management, job scheduling and initiation. Once the application is
running, the framework will be relied on to manage secure communications and data
transport between the nodes.

Data Selection
Once the application is running, it needs to identify the datasets to load. This is done
through a set of “Data Manager/Registry Services”. These services identify the available
datasets, provide for data staging (e.g. from tertiary storage) and metadata queries. The
framework must, at this level, be aware of data entities and the general nature of
underlying data (e.g. variables, sequences, interpolators, etc). The application then uses
the framework “Data Access Services” to attach to the selected data and instantiate all the
necessary data access adaptor components, making it possible for the application to read
selected portions of the data.

Data Access
At this point, that application needs to read the actual particle data for the cluster
analysis. The specific access patterns could very substantially based on the target
algorithm. Applications intend to leverage various iteration mechanisms to access the
data (e.g. block access, streaming, random, etc). The framework is expected to provide a
number of interfaces to various distributed data access patterns. The application is free to

use these components or provide their own iteration interfaces. In this application, the
application will use a statistical mechanism to compute the fit, so a random access pattern
will be user.

Computation
The example application provides the core fitting algorithm. It walks through a sample of
the particles and computes a fit and classifies each individual particle. While no new
framework features are used for this, it is expected that the framework will provide a
number of componentized transform mechanisms and operators packaged as utilities and
extensions. The result of the classification operation takes the form of a new variable.
The framework is expected to provide a mechanism for creating a new distributed
variable (or tagging an existing variable) within the context of this application.

The “Plot”
The application is now ready to provide its first output, a 2D plot. It is expected that the
framework would provide a “Plotting Interface” as a set of utility components. The plot is
expected to be displayed into a GUI perhaps developed outside of the framework itself,
using common graphics rendering APIs. Additionally, the application will expect that the
plotting interface would be capable of providing high quality (e.g. PostScript) output as
well.

Boundary Contour
The final operation our application needs to perform is the generation of a boundary
surface between the particle clusters. This is done in two steps. The first is to create a
new field on the same domain as the AMR mesh whose values are a composite of the
classification of the particles. Then, the new mesh is contoured to generate a polygon
mesh. The application relies on two features of the framework to make this happen. The
first is the “Data Operator”. This is used to “deposit” the particles on a new mesh. The
framework is used to extract the mesh domain from the AMR grid and realize a new,
distributed mesh. The application can use the mesh localization data operators to compute
the location of each particle in the new mesh and then update the mesh data values
according to the particle classification. Ideally, common operations (e.g. the “deposit”
operation) would be available directly in the framework, however, the lower level data
access operators would enable the application to write such a function.

The second framework feature is the collection of “Data Filters/Transforms”. These
components are used to generate new data objects from existing ones. In the example, a
contouring object is used to compute a polygon mesh from the particle classification
mesh, perhaps sampling the fields from the original AMR mesh field in the process as
vertex data. It is assumed that the framework implementation of distributed mesh data
includes intrinsic support for “ghost zone” padding in the context of known interpolant
footprints.

Interactive Display
The application now relies on the framework to provide a number of basic interfaces to
render and manipulate the generated polygon mesh. The “Rendering Interface” is part of
the framework core and provides the basic mapping to rendering APIs for target objects
(e.g. a polygon mesh). It allows for display of the surface interactively via OpenGL or to
a PostScript file. The “Interaction Interface” is part of the framework core and provides a
means for interacting with and manipulating the attributes of a rendering via a (possibly
internal) abstract event stream. As in the plot example, the “Presentation Interface”,
which is a collection of utility components is utilized to present the user with an
interactive GUI through which they can manipulate the resulting display on their desktop.

In this specific example, the application makes use of a declarative execution model.
Ideally, the framework would provide an alternative ”pipeline” execution model, but it is
important for many applications that this not be the only method for execution control
available to an application.

Case Study 2: Response to a Hurricane Threat

[NB: While the value of real-time collaboration should be obvious in the following
scenario, we ask for an a priori acceptance of a rationale for the use of 3D visualization
techniques for storm volume and terrain, rather than a simplified 2D GIS view, and
further, that collaboration services are sufficiently reliable for civil disaster response
management]

A tropical storm off the Yucatan Peninsula has intensified under the influence from
another tropical depression in the western Gulf, changed track, and is moving rapidly
toward the Gulf coast of Louisiana. Quickly reaching hurricane status, it poses a severe
threat to the Mississippi Delta, Gulfport and New Orleans, which are already threatened
by flooding from the heavy rain of an Atlantic storm that crossed northern Louisiana
during the previous week.

The NOAA National Hurricane Center, in conjunction with the National Severe Storms
Laboratory have contacted the LA State Office of Emergency Management, and initiated
the Severe Storm Threat Analysis and Response (SSTAR) protocol.

For this situation, a team of simulation scientists, meteorologists and emergency
management personnel are quickly assembled in an Access Grid Virtual Venue. The team
will use current observational data from satellites, ocean sensors and overflights as input
for atmospheric storm simulation and deep and shallow ocean circulation simulations
running at NCAR and NERSC. These simulations will provide prediction of storm
severity and track, wave action and energy and tidal flow. Continued monitoring of
observational data will provide simulation correction steering and allow error analysis.

 In addition, emergency management personnel identify areas of high vulnerability due to
current population and infrastructure status – a bridge has been damaged by a barge
collision with one of its piers, and, in another area, there is construction work on a major
highway, and the only detour passes through low coastal elevation. Both the highway and
bridge are on principal evacuation routes, and early storm damage prediction will permit
logistical decisions in evacuation and response management. By identifying these areas
of high vulnerability (simulation interest), the team is able to make decisions to narrow a
parameter search space for quantifying early predictors of local storm conditions (tidal
surge, wave energy and wind conditions). Using this information, the emergency
management officials will be able to make decisions to focus response efforts in areas of
highest risk.

Assembled in an Access Grid Virtual Venue, the team comprises scientists located at
NCAR, NERSC and NOAA, and state emergency management officials in Louisiana.
NCAR, NERSC and NOAA have large-format Access Grid spaces, with high-resolution,
tiled panels at NERSC and NOAA. The LA state emergency management office has a
workstation-based Access Grid node.

The team begins the simulation process by defining the model components, input and
scope of the simulation. This process is supported by 2D weather map and observational
visualization. The visualization application executes at NCAR, with user interface and
rendered output multicast to participant locations via framework transport services. U/I
control is multiplexed (without explicit locking or arbitration) from input events received
from NCAR, NERSC and NOAA. All event transmission is handled by framework
services. Data format, processing, visualization, rendering and viewer are the
responsibility of the application; however, application components have been developed
to the component interface specification, and are reusable within the constraints imposed
by the domain data models. The initial visualization application is invoked through an
executive dataflow network configuration tool and UI provided by the framework
(provided as part of the basis framework execution toolkit), using resource descriptions
provided by the domain grid (virtual organization). The resource management and access
functions of the executive are built on available facilities and extensions of existing grid
frameworks for resource discovery, scheduling and access. Provisions for authentication
and security are assumed to be provided by the underlying grid framework.

When the simulation scope is identified, parameter characterization is provided to
application component-specific resource estimation plugin objects (developed under the
framework interface specification) executing in the executive. The executive then
determines best network paths and identifies candidate computational and rendering
resources. Given that this is a civil emergency, the simulation scientists can use the
framework to select resources for pre-emptive scheduling, rather than the more typical
advance-reservation scheduling or best-effort immediate scheduling also support
supported by the framework.

Software components include:

• Atmospheric (storm) simulation
• Ocean simulation, coupled with Atmospheric simulation (using surface wind

velocity as input) – uses shore data as boundary for shallow water model
• Software direct volume rendering of atmospheric data (a la Visapult, providing

six-axis base plane images of blocked volume for each time step). This renderer
supports input of the data format used by the storm simulation, which is assumed
to be a domain standard format specified by the Earth Sciences Grid.

• Viewer/visualization modules instantiated at each display site, providing view-
transformed display of composited volume, and “embedded” geometry (not truly
embedded, as only block base planes are available, but as the geometry forms an
approximate boundary for the storm volume it will arguably provide an
acceptable effect) describing land topography and strategic shoreline and
infrastructure features (bridges, buildings, jetties, dikes, levees, etc.), with
visualization of water level superimposed on geometry, and wave energy and flow
velocity displayed at shoreline and infrastructure features. These modules
comprise components constructed with substantially borrowed code (e.g.,
OpenRM) with interfaces conforming to framework specification, integrating
framework performance instrumentation and connected through transport
abstractions to underlying transport components. The workstation node

instantiates a more lightweight viewer module that may eliminate the storm
volume data from the scene graph, and uses more conservative progressive
resolution facilities to meet performance constraints in rendering the geometry
data.

• Interposing stream multicast and event multiplexing modules. These modules
provide minimal framework support for distributing 2D user interface display,
streaming of image data produced by 3D render tasks (in this case, the image data
produced by the software volume renderer, but this component is more
generalized, containing an H.261 encoder for straight readback/encode/stream of
successive images) and collection and multiplexing of events for the rendering
task (e.g., mouse, keyboard)

In this system realization, dedicating a final render engine to each display permits
local control of the visualization, allowing independent cameras, data selection (e.g.,
removal of storm volume from draw list, playback of selected observation data,
quantitative comparison of selected observation and simulation data, etc.). The
multiplexed input event stream (multiplexed by the receiver with events from the
local hardware in order received, as events are multicast by all participants) permits
viewers to switch to a shared control mode. This switch is a U/I control exposed to
the viewer application by the multiplexing component. This change in control state
also requires a synchronization of the scene graph view and draw state in order to
correctly set shared view. The master’s state is multicast in messages through the
event transport interface.

This scenario presents a plausible use for collaboration facilities provided by the
framework and associated facilities, and The Access Grid or its equivalent is a
necessary adjunct of the visualization system in supplying the audio and video
teleconferencing facilities that provide much of the intellectual bandwidth for the
problem.

With minor changes, this scenario could describe an effort to analyze and plan a
response to threat of radiological, biological or chemical terrorism. Weather and local
flow simulations (the latter in the case of complicated boundary geometry, as could
be used to model dispersion patterns, and could be coupled with epidemiological
models for predicting casualty patterns.

Workshop Participants

John van Rosendale, DOE-HQ
Wes Bethel, LBL
John Shalf, LBL
Randy Frank, LLNL
Dean Williams, LLNL
John Clyne, NCAR
Jim Kohl, ORNL
Steve Parker, Utah
Joel Welling, PSC
Pat Moran, NASA-Ames
Ron Kriz, Virginia Tech
Ken Joy, UC Davis
Sam Fulcomer, Brown

Further Reading
Zoltan: (Adaptive runtime load-balancing toolkit for distributed applications) K. Devine, B.
Hendrickson, E. Boman, M. St.John, and C. Vaughan. “Design of Dynamic Load-Balancing
Tools for Parallel Applications.” Proceedings of the International Conference on
Supercomputing, Santa Fe, May, 2000. http://www.cs.sandia.gov/~kddevin/Zoltan_html/

CCA: R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, B.
Smolinski. “Toward a Common Component Architecture for High-Performance Scientific
Computing,” Proceedings of the Eigth IEEE International Symposium on High Performance
Distributed Computing Conference, Redondo Beach, California, August 3-6 1999.

CCA Forum homepage: http://www.cca-forum.org

BABEL: (A tool for generating multi-language wrappers from CCA specifications. This goes
with location independence but also covers the issue of “language independence” of the
components, something we alluded to in the meeting but didn’t address directly in this findings
document). http://www.llnl.gov/CASC/components/babel.html

Alexandria component Repository: (A central repository for community developed CCA
components. A good reference for the section about “community sharing, etc.”
http://www.llnl.gov/CASC/components/alexandria.html

CAFFEINE: (A CCA framework for SPMD/data-parallel applications) B. Allan, R. Armstrong,
A. Wolfe, J. Ray, D. Bernholdt, J. Kohl, “The CCA core specifications in a distributed memory
SPMD Framework,” Concurrency and Computation, Practice and Experience, vol. 14, 2002, pp
1-23. http://www.cca-forum.org/ccafe/

XCAT: A CCA framework for distributed applications http://www.extreme.indiana.edu

XCAT Science Portal: (An example of a web interface to distributed vis software - display
modalities.) S. Krishnan, R. Bramley, M. Govindaraju, R. Indurkar, A. Slominski, D. Gannon, J.
Alameda, D. Alkaire, “The XCAT Science Portal,” Proceedings of SC 2001, Denver Colorado,
November 10-16, 2001.

GrADS (Example of a software framework that implements runtime monitoring/performance-
predition/deployment of distributed applications.) F. Berman, A. Chien, K. Cooper, J. Dongarra,
I. Foster, D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L.
Torczon, R. Wolski, “The GrADS Project: Software Support for High-Level Grid Application
Development,” International Journal of High Performance Computing Applications, Winter
2001(Volume 15, Number 4), pp 327-344. http://www.hipersoft.rice.edu/grads/publications/ .

AutoPilot: (More applications adapting to runtime/environmental conditions.) R. Ribler, D
Reed, “The Autopilot Performance-Directed Adaptive Control System,” Proceedings of 11th
ACM International Conference on Supercomputing, Vienna, Austria, July 1997.

AppLeS: (Distributed visualization tool launching and resource management.) A. Su, F.
Berman, R Wolski, “Using AppLeS to Schedule a Distributed Visualization Tool on the
Computational Grid,” Proceedings of the 1998 Clusters and Computational Grids Workshop,
1998.

http://www.cs.sandia.gov/%7Ekddevin/Zoltan_html/
http://www.cca-forum.org/
http://www.llnl.gov/CASC/components/babel.html
http://www.llnl.gov/CASC/components/alexandria.html
http://www.cca-forum.org/ccafe/
http://www.extreme.indiana.edu/
http://www.hipersoft.rice.edu/grads/publications/

More Resource Management (the MDS) S. Fitzgerald, I. Foster, C. Kesselman, G.
VonLaszewski, W. Smith, S. Teuke, “A Directory Service for Configuring High-Performance
Distributed Computations,” Proceedings of HPDC 6, August 1997, pp 365-375.

CUMULVS: (A fault-tolerant/distributed visualization framework.) G. Geist, J. Kohl, P
Papadopoulos, “CUMULVS: Proving Fault Tolerance, Visualization and Steering of Parallel
Applications,” The International Journal of Supercomputer Applications and High Performance
Computing, vol. 11 #3, Fall 1997, pp 224-235.

Collaborative Software/CaVERNSoft: An abstraction layer for “group communication.” Park,
K., Cho, Y., Krishnaprasad, N., Scharver, C., Lewis, M., Leigh, J., Johnson, A., “CAVERNsoft
G2: A Toolkit for High Performance Tele-Immersive Collaboration,” Proceedings of the ACM
Symposium on Virtual Reality Software and Technology 2000, Oct 22-25, 2000, Seoul, Korea,
pp. 8-15.

TSTT:(data models) http://www.tstt-scidac.org/

FEL: Field Encapsulation Library (data structures) http://www.nas.nasa.gov/Software/FEL/

Field Model: (More data structures/data formats.) http://sourceforge.net/projects/field-model/

IBM DX Data Model: http://www.research.ibm.com/people/l/lloydt/dm/dx/dx_dm.htm

IBM Function Based Data Models
http://www.research.ibm.com/people/l/lloydt/dm/function/dm_fn.htm

Archive of Fiber/vector-bundle data models
http://pueblo.lbl.gov/~olken/fiberbundle.html.

Advanced Collaborative Environments – Global Grid Forum (ACE-GGF):
http://calder.ncsa.uiuc.edu/ACE-grid/.

ACE-GGF (Security document): Jason Leigh, Brian Corrie “Application Security
Requirements of Tele-immersive Environments,” GGF Draft Document, May 31, 2002.

http://www.tstt-scidac.org/
http://www.nas.nasa.gov/Software/FEL/
http://sourceforge.net/projects/field-model/
http://www.research.ibm.com/people/l/lloydt/dm/dx/dx_dm.htm
http://www.research.ibm.com/people/l/lloydt/dm/function/dm_fn.htm
http://pueblo.lbl.gov/%7Eolken/fiberbundle.html
http://calder.ncsa.uiuc.edu/ACE-grid/

	Remote and Distributed Visualization Frameworks Workshop
	
	
	Findings Document

	Executive Summary
	Problem Statement
	Definitions
	Visualization Framework and Component Requirements
	The RDV Component-Based Framework Vision
	Barriers
	Next Actions/Recommendations
	Case Study 1 – Parallel Visualization of Large an
	Initialization/Startup
	Data Selection
	Data Access
	Computation
	The “Plot”
	Boundary Contour
	Interactive Display

	Case Study 2: Response to a Hurricane Threat
	Workshop Participants
	Further Reading

