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Executive Summary 
This report presents the findings and recommendations that emerged from a two-day 
workshop held in Emeryville, CA on April 14-15, 2003. The motivation for the workshop 
was to identify objectives and goals related to future activities in visualization software 
design and development. The workshop participants included visualization researchers 
from a number of DOE and government laboratories, as well as academic institutions. 
 
Visualization, which is the transformation of abstract information into images, plays an 
integral role in the scientific process by facilitating insight into observed or simulated 
phenomena. The evolution of visualization software over the years has shown that 
component-based tools executing within a well-defined framework offer the greatest 
potential in several key areas. The combination is extensible, as developers can add new 
components that extend the capabilities of the system. It is flexible, since general purpose 
components can be combined into applications that address domain specific needs. It 
provides a common development environment so that components of one institution can 
interoperate with components from another. The boundaries of such component-based 
frameworks are encountered when attempting to perform visualization of large datasets, 
when attempting to use components that span multiple locations, when attempting to 
perform collaborative visual analysis and when attempting to use components and 
finished tools from different sources. Unfortunately, there does not exist a common 
framework or component definition that is suitable for use in a remote and distributed 
visualization (RDV) context. Such a component architecture, which should be freely 
accessible and community-developed, is sorely needed to better support science 
programs, and to promote unity within the community of visualization researchers, 
developers and users. 
 
The workshop findings indicate that such a framework is technically feasible, and will be 
of great use for visualization researchers, developers and users. A key objective is the 
ability to integrate a diverse range of existing technology, including commercial 
visualization applications and prototypes of new techniques from the research 
community. Another objective is the ability to use, within a single framework, diverse 
resources ranging from large parallel machines to small desktop workstations, where such 
resources span multiple sites. The framework should support display device 
independence so that it can be used in a modular fashion as the back-end for diverse 
presentation modalitities, ranging from PDAs through desktop platforms, and immersive 
display environments. It should also support single or multiple user operation. To be 
successful, the framework and components should be made available to all through an 
Open Source license at no cost to promote widespread adoption and use, and to ensure a 
stable environment for scientific and visualization research and development in the years 
ahead. 
 



Problem Statement 
Scientific visualization - the transformation of abstract information into readily 
comprehensible images - plays an integral role in the scientific process. Over the years, 
scientific visualization has evolved to keep pace with advances in computer science, 
software engineering, data modeling and data management. The earliest scientific 
visualization "systems" were subroutine APIs, and each new visualization application 
required writing software to read data and perform subroutine calls to perform 
visualization and rendering. Later, applications that implemented procedural data 
processing (and visualization) languages emerged, such as IDL, Matlab and the like. 
During the 1990s, a class of visualization systems emerged that were highly successful. 
These systems were composed of visualization software components, an interface for 
rapidly constructing an application using the provided components, or possibly new 
components created by a developer. An internal "flow executive" scheduled execution of 
these components and moved data through the network of software components. These 
systems were unexpectedly successful because they were extensible, since developers 
could extend the functionality of the base system through the addition of custom software 
components. Communities of users and developers coalesced around each of these 
systems, for a common framework and data model fostered a stable environment for 
sharing components, data and ideas.  
 
The language-based systems as well as the dataflow systems, while immensely 
successful, have inherent design limitations that prevent their use, or adaptation for use, 
in a class of contemporary and near-term environments. Remote and distributed 
visualization environments pose new challenges not anticipated by the designers of 
earlier visual data analysis technologies. The challenges include the need to use 
distributed heterogeneous resources, the resource demands large and distributed scientific 
data, the ability to include capabilities that are fundamental for science (e.g., statistical 
analysis), the need for communities of developers and users to share visualization tools 
and resources, and the need for a technology base of “raw materials” that can be quickly 
adapted to domain-specific use. 
 
Definitions 
The following list of definitions were borrowed from www.cca-forum.org/glossary.html, 
and adapted for use in the context of RDV components and frameworks. 

A component is a software object, meant to interact with other components, 
encapsulating well-defined functionality or a set of functionalities. A component has a 
clearly defined interface and conforms to a prescribed behavior common to all 
components within an architecture. Multiple components may be composed to build other 
components. In the context of a visualization system, a component encapsulates one or 
more visualization algorithms, presentation modalities, or data representations. 

The component interface is a set of methods supported by a component, and type 
definitions for the data used for arguments to those methods. An interface itself is a type 
and can be an argument for a component method.  



A component architecture is a system defining the rules of linking components 
together. The CCA model of a component architecture is composed of the following 
elements An Interface Definition Language understandable to all components. Interface 
definitions expressed in this language allow components to find out about each other 
either through introspection or through consulting a repository, and give a component 
architecture the potential to dynamically add and delete components in multi-component 
applications (whether this potential is actually realized or not depends on a specific 
implementation of the architecture).  

A Domain Interface is a set of programming interfaces that standardize interactions with 
a particular application domain. The Visualization community should: 

1. Utilize domain interfaces that presently exist when possible or practical, and work 
with those communities to ensure that those interfaces are appropriate for use in the 
visualization community. 

2. Develop new visualization-specific interfaces for visualization-specific tasks. 

A reference component is a component that provides a commonly used functionality for 
a specific domain interface. In the context of visualization, examples of these may 
include colormap editors, resource management facilities, and so forth.  

A Binding exists between the interface definition syntax and a language or framework of 
actual component implementation.  

A Composition API allows the programmer to link components into multi-component 
applications and save those compositions. Such a mechanism could be provided for 
example by a GUI or a scripting language, and need not be standardized in a CCA.  

A framework is a specific implementation of a component architecture.  

A Common Component Architecture (CCA) is a component architecture defining 
standards necessary for the interoperation of components developed in the context of 
different frameworks. To date the need for three such standards has been identified: the 
Interface Definition Language, an interaction model and a set of services based on this 
model which can be expected by every component, and should be provided by every 
framework, and a standardized way of retrieving information from the repository.  

Visualization Framework and Component Requirements 
 
In this section, we present a number of requirements and objectives of visualization 
components and frameworks. In some cases, a given requirement applies to both 
components and frameworks, while in other cases, the requirement applies to just 
components or just frameworks.  
 
1. Framework. The framework is a high-level, adaptive system that is capable of 

executing visualization components in dynamic environments on heterogeneous 



resources, including resources that span multiple sites. Some components may be 
parallel, while others may be serial. The framework should also be resilient and 
responsive to error conditions, such as when a component unexpectedly dies. 

 
2. The Audience. We view the community of visualization developers and researchers 

as being the primary audience, or adopters, of a visualization framework and 
component-based tools. Visualization developers can use the framework and 
component-based tools to create finished applications specially tailored for a given 
domain area. Similarly, visualization researchers can leverage the framework and 
services used to build components to create new components to test out new 
visualization research ideas. 

 
3. Interoperability. Visualization developers should be able to share components, and 

expect that a component produced by one developer will interoperate with 
components produced by a different developer. Visualization developers can create 
domain-specific applications from collections of components that execute within the 
framework. Discipline scientists want finished applications that meet their particular 
needs, as opposed to a completely general-purpose tool.  

 
4. Technology Recyling. A general objective for the framework and components is the 

ability to reuse software when creating new components. Such reuse occurs at many 
levels. An existing visualization application may be “wrapped” with a component 
interface, allowing to server as a single component in a larger application.  Pre-
existing applications like VTK can act as “components,” as well as small, lightweight 
single-purpose tools, like stream multiplexers. During specification, design and 
implementation of the framework and components, those involved with such 
activities should incorporate, where feasible, as much existing technology as is 
practical. 

 
5. Open Source Distribution. The framework, components and toolkit elements should 

be distributed using an Open Source license. The ultimate objective is to foster an 
environment that promotes widespread use and encourages contributions and 
involvement of visualization developers and users. 

 
6. Common Data Structures, Formats and Models. Components, which are the 

fundamental building blocks of applications, have, by definition, well-defined 
interfaces. The scope of “data” that flows through visualization component interfaces 
needs to be defined. Classes of data include things like scientific data (structured and 
unstructured grid), graphics and visualization data (images, geometry) and control 
data (related to the execution of a component). For practical purposes, we as a 
community must develop a limited set of commonly agreed-upon data structures that 
implement a range of domain-specific models.  Because this is not a fully generalized 
data model, it will not initially be sufficient to cover all possible scientific application 
requirements, but will fully cover a large proportion of them. These data structures 
can be expanded over time to provide more general coverage. 

 



7. Presentation Independence. The framework and components should be flexible 
enough to support display and interaction on a wide range of output devices. These 
range from handheld devices, desktop displays and segmented/immersive 
environments. Each of these different display devices exhibits vastly different 
characteristics in terms of amount of bandwidth required to drive the device, the 
amount of compute or render resources required to drive the device, and so forth. 
There is an implicit need for the ability to detect and respond to varying levels of 
resource requirements and levels to impedance-match required with available 
resources.  

 
8. Security. Communications activities, both between components and between the 

framework and the components it manages, should be capable of occurring in a 
secure fashion. This means that connections can be authenticated and encrypted. 
Development of tools that implement control and data transport between components 
and between frameworks and components should leverage existing work in the field 
of secure communications. 

 
9. Resource Management. Components should participate in dynamic resource 

allocation by exposing instrumentation and methods to allow an executive to extend 
execution to newly allocated resources. Such instrumentation can provide an estimate 
of resources a component requires to perform a given task. The framework should be 
capable of using such estimates to predict performance. Furthermore, the framework 
should be capable of selecting a different set of resources if the performance estimate 
exceeds a performance budget, or if the selected resources fail to deliver required 
performance; a situation referred to as “contract violation.” This task will become 
more complex as a runtime analysis problem as variables in the visualization 
application change in response to user events, changing input data, changing 
performance constraints or changing environmental conditions. Performance 
estimates, modeling and runtime monitoring play an important role in “impedance-
matching.” 

 
10. Interactive Application Construction. There exists a need for one or more user 

applications that permit run-time construction and execution of component-based 
applications that use the framework for component launching and execution control. 
Over time, domain-specific applications that realize similar objectives can be tailored 
for use in specific display and interaction environments. 

 
11. The Brooks 80/20 Rule. When specifying, designing and implementing component 

interfaces, those involved with such activities should chart a path of graduated steps 
in interface development that is conducive to rapid development and implementation 
of early prototypes. The design, specification and implementation of component 
interfaces is expected to evolve over time to gradually encompass increasing levels of 
generality. We wish to avoid a common pitfall that requires a specification and design 
that is all-inclusive at the expense of demonstrable and rapid development and 
deployment.  

 



 
12.  Location Independence. The framework must provide abstractions that support 

location independence. This includes transparent mechanisms that serialize data for 
invocation of remote methods while still providing direct low-overhead connections 
for components that are co-located. Placement and launching of components in the 
distributed environment should be simple, not complex (effortless).  There exist 
several frameworks in the CCA community that provide this abstraction. 

 
13. Transport Independence. The framework should have modular components that 

provide abstract transport mechanisms for distributed objects (data or code). The 
abstract methods for data transport will support pluggable/modular replacement of 
transport methods depending on the transport medium (Myranet vs. TCP), security 
layers (encrypted or authenticated data channels), and serializations (XDR, XML or 
raw binary). 

 
14. Group Communication. In addition to point-to-point communications and data 

transport, the framework should support multicast/multiplexed communications 
streams to support collaborative interfaces and deployment, possibly through 
interposing components. 

 
 



The RDV Component-Based Framework Vision 
 
The vision for an RDV component-based framework is to realize an interoperable set of 
visual data analysis capabilities. The building blocks of the framework are components, 
which perform operations on data objects. Data is communicated between components 
using framework libraries that move, encode, and decode data objects. Synchronous 
execution of components can be moderated by a central authority, or “executive.” 
Alternately, the components might execute in a peer-to-peer fashion, depending upon a 
particular application’s requirements. In the “centrally managed” configuration, the 
“executive” schedules execution of components, which might reside on resources at 
different sites. In the peer-to-peer configuration, the data connections and execution 
model might be procedural, thereby avoiding the need for a central “executive.” The 
framework should be capable of supporting both types of execution architectures using 
the same fundamental building blocks. The figure below is a rough “first draft” that 
shows the framework and component elements, along with relationships in terms of 
control and payload data movement through the system. 

 

Figure 1. Component-Based Framework Architecture Overview 

 

 



Barriers 
Some barriers to adoption, use and contribution to a component-based visualization 
framework are social in nature. For example, some are reluctant to use technology that 
was not created in-house, or the “not invented here” (NIH) syndrome. In some cases, 
NIH stems from concerns about not having in-house expertise in a particular piece of key 
technology. In other cases, intellectual creativity and productivity are the currency of 
domain expertise. A community-supported project helps to allay both sets of concerns. 
With strong community support, a critical mass of developers, users and advocates 
ensures the project will remain vigorous and promote longevity. The Open Source 
phenomenon bears out many examples: Linux, X11/Xfree86, Apache, and so forth. A 
stable framework actually makes possible the likelihood of increased intellectual 
productivity in specialized research areas, as key, fundamental technologies need not be 
implemented again and again at each different location. Furthermore, a framework that 
exhibits the characteristics we have discussed makes possible advances in new directions 
that might not have been possible without such a framework. 
 
With a project such as we have described, one significant challenge is to define project 
scope. The scope of the project should balance between being all-encompassing and 
having sufficient breadth and depth to be useful. All-encompassing scope means that the 
framework and components have capabilities to all imaginable applications. Such 
expectations are not realistic, and adherence to such dogma will prevent forward progress 
on the project. On the other hand, a narrowly defined scope will satisfy only a few 
application needs, and not be useful to a broader audience. An appropriate project scope, 
which remains elusive at this time, must strike a balance between these two objectives. 
 
A robust data model and common data structures are prerequisites for interoperable 
components. The notion of a completely general data model and interface has been the 
subject of much research activity over the years. To date, there is no completely general 
data model. The reasons are numerous, and to some extent, parallel the two barriers 
discussed above. Past efforts to develop fully general purpose data models have led to 
many implementations that exhibited poor performance characteristics or extremely 
complex APIs. Therefore, we will work on defining data structures that support a diverse 
set of applications in order to provide a domain-neutral substrate for components to 
exchange information. Failure to develop any commonly agreed upon data structures 
leads us, inevitably, towards a “Tower of Babel” where components developed by 
different groups will still be unable to interoperate. Development of a higher level, fully 
general purpose data model would be helpful, but not a prerequisite to guiding 
fundamental component and framework development. Further work on RDV frameworks 
and components must balance the objectives of working software, which is needed by 
researchers, with the desire to create completely general purpose tools and methods.    
 



Next Actions/Recommendations 
 
1. More effort is needed to further refine the scope of a component-based framework for 

RDV, and to identify the core technology components. 
2. A first step towards realizing working components is the need to define data 

interfaces for visualization components. The scope of this task requires careful 
balance between generality and specificity, with an eye towards reusing as much 
existing technology as possible. Examples of data objects and access methods that 
need to be defined include, but are not limited to: geometry primitives (triangles, 
vectors, spheres, etc.), images, colormaps, fundamental grid/mesh objects, 
multiresolution representation and transmission, progressive (meta)-data 
interfaces/models, and so forth. The scope of the initial activities should be targeted 
towards a “minimum set” of capabilities so that work can proceed. 

3. Closer collaboration is needed between those interested in component-based 
visualization tools and frameworks, and other groups working on data 
interfaces/models. These groups include but are not limited to: Field Model (NASA-
Ames), TTST, GGF-ACE, Web3D Consortium, Earth Systems Grid, etc. Such 
collaboration should produce benefit to all groups. 

4. While initial activities will be performed without formal funding, the long-term 
success of an RDV framework requires formal funding. 

5. A small set of working components applied to an important science project would 
help to prove the efficacy of the design to stakeholders. 

6. Given the high level of community interest and the sizeable project scope, additional 
workshops and meetings are required. We agreed to hold a meeting in conjunction 
with the CCA workshop to be held on July 10-11, 2003 in Eugene Oregon. We also 
plan to hold a smaller meeting sometime in June in the Washington DC area to 
further elaborate upon the scenarios described in these findings. 

7. The issue of how we organize ourselves needs to be further refined. In the near term, 
subsequent meetings will be open by invitation only to others with similar goals. The 
goals are specification and implementation of interoperable visualization components 
within a common framework. 

8. Create project website and email list at LBL. 



Case Study 1 – Parallel Visualization of Large and Complex Simulation 
Results 
To help define the scope of a visualization framework, one can walk through a specific 
application and enumerate the issues and expectations a developer may encounter in the 
realization of that case.  An example visualization problem is a post-processing 
application that computes a custom derived quantity and displays the results in a custom 
GUI interface.  Specifically, the result of the simulation is a set of 1024 HDF5 files 
containing a distributed set of particles with position and energy and a “boxlib” AMR 
mesh with a boundary field. The particle data is assumed to exist in the physical domain 
of the AMR mesh.  
 
We wish to run a parallel visualization application on a distributed Linux cluster that uses 
a maximum likelihood classifier to cluster the particles into energy bins.  The output 
should be a plot of the classification and an interactive display on the local user’s desktop 
of an isosurface of the boundaries between the clustered particles. It is assumed that all 
the data files that make up the dataset are accessible by at least one of the nodes of the 
cluster. The example application goes through a number of concrete steps in 
accomplishing this task.  We will walk though these various steps and call out the use and 
expectations  of the application on the visualization framework throughout the execution 
of the application. 
 

Initialization/Startup 
The application needs to bring itself up in parallel on the cluster. To make this happen, 
the application relies on the framework’s “Environmental Services”. These services 
include resource management, job scheduling and initiation. Once the application is 
running, the framework will be relied on to manage secure communications and data 
transport between the nodes. 

Data Selection 
Once the application is running, it needs to identify the datasets to load.  This is done 
through a set of “Data Manager/Registry Services”.  These services identify the available 
datasets, provide for data staging (e.g. from tertiary storage) and metadata queries. The 
framework must, at this level, be aware of data entities and the general nature of 
underlying data (e.g. variables, sequences, interpolators, etc). The application then uses 
the framework “Data Access Services” to attach to the selected data and instantiate all the 
necessary data access adaptor components, making it possible for the application to read 
selected portions of the data. 
 

Data Access 
At this point, that application needs to read the actual particle data for the cluster 
analysis. The specific access patterns could very substantially based on the target 
algorithm. Applications intend to leverage various iteration mechanisms to access the 
data (e.g. block access, streaming, random, etc). The framework is expected to provide a 
number of interfaces to various distributed data access patterns.  The application is free to 



use these components or provide their own iteration interfaces. In this application, the 
application will use a statistical mechanism to compute the fit, so a random access pattern 
will be user. 
 

Computation 
The example application provides the core fitting algorithm. It walks through a sample of 
the particles and computes a fit and classifies each individual particle. While no new 
framework features are used for this, it is expected that the framework will provide a 
number of componentized transform mechanisms and operators packaged as utilities and 
extensions. The result of the classification operation takes the form of a new variable.  
The framework is expected to provide a mechanism for creating a new distributed 
variable (or tagging an existing variable) within the context of this application. 
 

The “Plot” 
The application is now ready to provide its first output, a 2D plot. It is expected that the 
framework would provide a “Plotting Interface” as a set of utility components. The plot is 
expected to be displayed into a GUI perhaps developed outside of the framework itself, 
using common graphics rendering APIs. Additionally, the application will expect that the 
plotting interface would be capable of providing high quality (e.g. PostScript) output as 
well. 

Boundary Contour 
The final operation our application needs to perform is the generation of a boundary 
surface between the particle clusters. This is done in two steps. The first is to create a 
new field on the same domain as the AMR mesh whose values are a composite of the 
classification of the particles.  Then, the new mesh is contoured to generate a polygon 
mesh.  The application relies on two features of the framework to make this happen. The 
first is the “Data Operator”.  This is used to “deposit” the particles on a new mesh. The 
framework is used to extract the mesh domain from the AMR grid and realize a new, 
distributed mesh. The application can use the mesh localization data operators to compute 
the location of each particle in the new mesh and then update the mesh data values 
according to the particle classification. Ideally, common operations (e.g. the “deposit” 
operation) would be available directly in the framework, however, the lower level data 
access operators would enable the application to write such a function. 
 
The second framework feature is the collection of “Data Filters/Transforms”.  These 
components are used to generate new data objects from existing ones. In the example, a 
contouring object is used to compute a polygon mesh from the particle classification 
mesh, perhaps sampling the fields from the original AMR mesh field in the process as 
vertex data. It is assumed that the framework implementation of distributed mesh data 
includes intrinsic support for “ghost zone” padding in the context of known interpolant 
footprints. 
 



Interactive Display 
The application now relies on the framework to provide a number of basic interfaces to 
render and manipulate the generated polygon mesh.  The “Rendering Interface” is part of 
the framework core and provides the basic mapping to rendering APIs for target objects 
(e.g. a polygon mesh).  It allows for display of the surface interactively via OpenGL or to 
a PostScript file.  The “Interaction Interface” is part of the framework core and provides a 
means for interacting with and manipulating the attributes of a rendering via a (possibly 
internal) abstract event stream. As in the plot example, the “Presentation Interface”, 
which is a collection of utility components is utilized to present the user with an 
interactive GUI through which they can manipulate the resulting display on their desktop. 
 
In this specific example, the application makes use of a declarative execution model. 
Ideally, the framework would provide an alternative ”pipeline” execution model, but it is 
important for many applications that this not be the only method for execution control 
available to an application. 
 



Case Study 2: Response to a Hurricane Threat 
 
[NB: While the value of real-time collaboration should be obvious in the following 
scenario, we ask for an a priori acceptance of a rationale for the use of 3D visualization 
techniques for storm volume and terrain, rather than a simplified 2D GIS view, and 
further, that collaboration services are sufficiently reliable for civil disaster response 
management] 
 
A tropical storm off the Yucatan Peninsula has intensified under the influence from 
another tropical depression in the western Gulf, changed track, and is moving rapidly 
toward the Gulf coast of Louisiana. Quickly reaching hurricane status, it poses a severe 
threat to the Mississippi Delta, Gulfport and New Orleans, which are already threatened 
by flooding from the heavy rain of an Atlantic storm that crossed northern Louisiana 
during the previous week. 
 
The NOAA National Hurricane Center, in conjunction with the National Severe Storms 
Laboratory have contacted the LA State Office of Emergency Management, and initiated 
the Severe Storm Threat Analysis and Response (SSTAR) protocol.  
 
For this situation, a team of simulation scientists, meteorologists and emergency 
management personnel are quickly assembled in an Access Grid Virtual Venue. The team 
will use current observational data from satellites, ocean sensors and overflights as input 
for atmospheric storm simulation and deep and shallow ocean circulation simulations 
running at NCAR and NERSC. These simulations will provide prediction of storm 
severity and track, wave action and energy and tidal flow. Continued monitoring of 
observational data will provide simulation correction steering and allow error analysis. 
 
 In addition, emergency management personnel identify areas of high vulnerability due to 
current population and infrastructure status – a bridge has been damaged by a barge 
collision with one of its piers, and, in another area, there is construction work on a major 
highway, and the only detour passes through low coastal elevation. Both the highway and 
bridge are on principal evacuation routes, and early storm damage prediction will permit 
logistical decisions in evacuation and response management. By identifying these areas 
of high vulnerability (simulation interest), the team is able to make decisions to narrow a 
parameter search space for quantifying early predictors of local storm conditions (tidal 
surge, wave energy and wind conditions). Using this information, the emergency 
management officials will be able to make decisions to focus response efforts in areas of 
highest risk. 
 
Assembled in an Access Grid Virtual Venue, the team comprises scientists located at 
NCAR, NERSC and NOAA, and state emergency management officials in Louisiana. 
NCAR, NERSC and NOAA have large-format Access Grid spaces, with high-resolution, 
tiled panels at NERSC and NOAA. The LA state emergency management office has a 
workstation-based Access Grid node.  
 



The team begins the simulation process by defining the model components, input and 
scope of the simulation. This process is supported by 2D weather map and observational 
visualization. The visualization application executes at NCAR, with user interface and 
rendered output multicast to participant locations via framework transport services. U/I 
control is multiplexed (without explicit locking or arbitration) from input events received 
from NCAR, NERSC and NOAA. All event transmission is handled by framework 
services. Data format, processing, visualization, rendering and viewer are the 
responsibility of the application; however, application components have been developed 
to the component interface specification, and are reusable within the constraints imposed 
by the domain data models. The initial visualization application is invoked through an 
executive dataflow network configuration tool and UI provided by the framework 
(provided as part of the basis framework execution toolkit), using resource descriptions 
provided by the domain grid (virtual organization). The resource management and access 
functions of the executive are built on available facilities and extensions of existing grid 
frameworks for resource discovery, scheduling and access. Provisions for authentication 
and security are assumed to be provided by the underlying grid framework. 
 
When the simulation scope is identified, parameter characterization is provided to 
application component-specific resource estimation plugin objects (developed under the 
framework interface specification) executing in the executive. The executive then 
determines best network paths and identifies candidate computational and rendering 
resources. Given that this is a civil emergency, the simulation scientists can use the 
framework to select resources for pre-emptive scheduling, rather than the more typical 
advance-reservation scheduling or best-effort immediate scheduling also support 
supported by the framework. 
 
Software components include: 

• Atmospheric (storm) simulation  
• Ocean simulation, coupled with Atmospheric simulation (using surface wind 

velocity as input) – uses shore data as boundary for shallow water model 
• Software direct volume rendering of atmospheric data (a la Visapult, providing 

six-axis base plane images of blocked volume for each time step). This renderer 
supports input of the data format used by the storm simulation, which is assumed 
to be a domain standard format specified by the Earth Sciences Grid. 

• Viewer/visualization modules instantiated at each display site, providing view-
transformed display of composited volume, and “embedded” geometry (not truly 
embedded, as only block base planes are available, but as the geometry forms an 
approximate boundary for the storm volume it will arguably provide an 
acceptable effect) describing land topography and strategic shoreline and 
infrastructure features (bridges, buildings, jetties, dikes, levees, etc.), with 
visualization of water level superimposed on geometry, and wave energy and flow 
velocity displayed at shoreline and infrastructure features. These modules 
comprise components constructed with substantially borrowed code (e.g., 
OpenRM) with interfaces conforming to framework specification, integrating 
framework performance instrumentation and connected through transport 
abstractions to underlying transport components. The workstation node 



instantiates a more lightweight viewer module that may eliminate the storm 
volume data from the scene graph, and uses more conservative progressive 
resolution facilities to meet performance constraints in rendering the geometry 
data. 

• Interposing stream multicast and event multiplexing modules. These modules 
provide minimal framework support for distributing 2D user interface display,  
streaming of image data produced by 3D render tasks (in this case, the image data 
produced by the software volume renderer, but this component is more 
generalized, containing an H.261 encoder for straight readback/encode/stream of 
successive images) and collection and multiplexing of events for the rendering 
task (e.g., mouse, keyboard) 

 
In this system realization, dedicating a final render engine to each display permits 
local control of the visualization, allowing independent cameras, data selection (e.g., 
removal of storm volume from draw list, playback of selected observation data, 
quantitative comparison of selected observation and simulation data, etc.). The 
multiplexed input event stream (multiplexed by the receiver with events from the 
local hardware in order received, as events are multicast by all participants) permits 
viewers to switch to a shared control mode. This switch is a U/I control exposed to 
the viewer application by the multiplexing component. This change in control state 
also requires a synchronization of the scene graph view and draw state in order to 
correctly set shared view. The master’s state is multicast in messages through the 
event transport interface. 
 
This scenario presents a plausible use for collaboration facilities provided by the 
framework and associated facilities, and The Access Grid or its equivalent is a 
necessary adjunct of the visualization system in supplying the audio and video 
teleconferencing facilities that provide much of the intellectual bandwidth for the 
problem. 
 
With minor changes, this scenario could describe an effort to analyze and plan a 
response to threat of radiological, biological or chemical terrorism. Weather and local 
flow simulations (the latter in the case of complicated boundary geometry, as could 
be used to model dispersion patterns, and could be coupled with epidemiological 
models for predicting casualty patterns. 
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