
 The TSTT Data Model and Interfaces
Version 0.5

(DRAFT DOCUMENT)

The TSTT data model consists of four distinct parts: the three core data types mesh,
geometry, and field, and a data model manager that allows the core pieces to be used in
concert. To ensure that TSTT-compliance is easy to achieve, we have attempted to
define a minimal set of required core interfaces. These core interfaces provide only
limited functionality, but should be easy for most tools to provide. More advanced
interfaces and functionalities are also defined and may be provided by the interface
implementor or may be accessed through the TSTT reference implementations on
www.tstt-scidac.org/software.

At a high level, the four components of the TSTT data model are defined as follows:

� mesh data: provides the geometric and topological information associated with the
discrete representation of the computational domain

� geometric data: provides a high level description of the boundaries of the
computational domain; this can be done through CAD, image, or mesh data.
Geometric data can be dynamic and change through the course of a simulation.

� field data: the time-dependent physics variables associated with application solution.
These can be scalars, vectors, or tensors and associated with any mesh entity. (This
definition is preliminary and serves only as a placeholder until something more
rigorous is defined)

� data relation managers: provides control of the relationships among two or more of
the components of the TSTT data model. It resolves cross references between entities
in different groups (for example, the classification of a mesh entity against an entity in
the geometric model) and potentially provides additional functionality that depends on
multiple core data types

We now describe each of these categories in some detail and give the common interfaces
defined by TSTT to support each one; note that the mesh data model interfaces are much
more complete than the others. In each case we provide semi-formal definitions and list
the capabilities each is expected to provide.

3.1 Nomenclature and Definitions

In this document, we use application to indicate a code that will use the TSTT mesh
interface, and implementation to indicate a code that provides the TSTT mesh.

1

3.1.1Interface Definition Conventions

In the interfaces presented in this document we use the Scientific Interface Definition
Language (SIDL) to define the functions. Each argument in the SIDL interface
specification has both a type and a mode associated with it. We make heavy use of
SIDL's fundamental types including bool, int, double, string, opaque, and enumerations.
We do not use objects due to the perceived cost of object creation and access at a fine
grained level such as mesh entity by entity access. To validate this design choice,
experiments are underway between the TSTT team and the Babel team to quantify the
performance differences among language specific binding, SIDL bindings with opaques
and SIDL bindings with objects.

Argument modes can be one of in, inout, or out. In general, SIDL defines in to be a
parameter that is passed into the implementation (but is not necessarily a const), out to be
parameters that are passed out of the implementation, and inout to be parameters that do
both. For TSTT purposes, we expect the following, more restrictive behavior to be
associated with implementations

� in: the parameter is passed into the implementation and treated as though it were a
const. It is expected to contain meaningful information upon entering the function and
its value cannot be changed by the underlying implementation.

� inout: the parameter is passed into the implementation and may or may not contain
useful information upon entering the function. Its value can be changed by the
underlying implementation.

� out: the parameter is passed out of the implementation and is not expected to contain
meaningful data upon entering. The underlying implementation is free to operate as
needed to allocate the necessary space and assign a meaninful value.

We use SIDL arrays and have the following general expectations of the interactions of
the application and the implementation for their use as inout arguments.

� The application will create the SIDL array and optionally gives it a size by explicitly
allocating space or by borrowing from an existing pointer

� The application passes in the array to the underlying implementation
� If the array has size zero, the implementation may allocate the space
� If the array size is greater than zero, but is not large enough for the outgoing data, the

underlying implementation cannot reallocate the space but is expected to throw an
error

� When the array is no longer being used, the application destroys it.

Arrays of fundamental type (such as those containing vertex coordinate information) may
also be returned in blocked or interleaved order. The application may request either order
and the implementation is expected to be able to provide both. It is recognized that the
implementation may have a preferred, native storage order and this preferred ordering

2

may be queried by the application.

3.2 The TSTT Mesh Database Model

The TSTT mesh data model is composed of several different types of entities; in
particular mesh entities, meshes, entity sets, tags and handles. (I suspect that we will add
a MeshCollection entity in the future to handle the case in which many meshes are
defined on a particular geometric domain.)

We first describe components of the infrastructure used throughout the TSTT interface
definition, in particular, opaque handles and tags.

3.2.1 Handles

Definition: an opaque object that represents TSTT entities, entity_sets, and tags to the
application. This allows the interface to be data structure neutral. (Note that feedback
from the CCA meeting suggests that our purposes would be better served with longs as
they are of fixed size, do not preclude distributed computing, and are set to 64bits (rather
than limited to 32 bits) which may allow us to use them more effectively.)

Capabilities: Uniquely associated with entities, entity sets, and tags. Handles may or
may not be invariant through different calls to the interface in the lifetime of the TSTT
mesh which is denoted with the tag convention Invariant_Handles.

Methods: No methods are defined specifically for handles at this time

3.2.2 Tags

Definition: tags are used as containers for user-defined opaque data that can be attached
to TSTT entities, meshes, and entity_sets. Tags can be multivalued which implies that a
given tag handle can be associated with many mesh entities.

Capabilities: Tags have and can return their string name, size, handle and data (data
retrieval is done in the entity, mesh and entity_set interfaces). Tag data can be retrieved
from TSTT objects by handle in an agglomerated or individual manner and those
interfaces are defined in later sections. The implementation is expected to allocate the
memory as needed to store the tag data.

Methods:
 Create a tag handle with a given name, size (in bytes), and default value.
 The tag name is a unique string; if it duplicates an existing tag name,
 an error is returned. The tag_handle is returned as an opaque value which is

3

 not associated with any mesh entities until explicitly done so through one of the
 'AddTag' functions defined later. The implementation is assumed to allocate
 memory as needed to store the tag data.
 void tagCreate(in string tag_name, in int tag_size,
 in opaque default_value,
 out opaque tag_handle) throws Error;

 Delete a tag handle and the data associated with that tag. The deletion can be forced
 or not forced. If the deletion is forced, the tag and all of its associated data are
 deleted from the implementation even if the tag is still associated with mesh entities.
 If the deletion is not forced, the tag will not be deleted if it is still associated with
 one or more mesh entities. In this case an error is returned asking the user to
 remove the tag from that entity before deleting it. If the underlying implementation
 does not support the requested deletion mechanism, an error will be returned.
 void tagDelete(in opaque tag_handle, in bool forced) throws Error;

 Get the tag name associated with a given tag handle.
 void tagGetName(in opaque tag_handle, out string tag_name) throws Error;

 Get the size of the data associated with a given tag handle.
 void tagGetSize(in opaque tag_handle, out int tag_size) throws Error;

 Get the tag handle associated with a given string name.
 void tagGetHandle(in string tag_name, out opaque tag_handle) throws Error;

3.2.3 Mesh Entity

Definition: TSTT mesh entities are defined by their entity type and entity topology.
Allowable entity types are VERTEX (0D), EDGE (1D), FACE (2D), and REGION (3D).
Allowable entity topologies are listed below; each of these topologies has a unique entity
type associated with it. Faces and regions have no interior holes. Higher-dimensional
entities are defined by lower-dimensional entities using the canonical ordering given in
Section 3.5.

Capabilities: An entity can return both upward and downward adjacency information (if
it exists) in the canonical ordering using both individual and agglomerated request
mechanisms. Vertices can return coordinate information in blocked or interleaved
fashion. All entities have the ability to add, retrieve, set, and delete user-defined tag data.

Examples: a vertex in 0D, an edge in 1D, triangular or quadrilateral faces in 2D, and
tetrahedral or hexahedral regions in 3D.

4

Enumerated Types:

enum EntityType {
 VERTEX,
 EDGE,
 FACE,
 REGION,
 NUMBER_OF_ENTITY_TYPES,
 ALL_TYPES
}

enum EntityTopology {
 POINT,
 LINE_SEGMENT,
 POLYGON,
 TRIANGLE,
 QUADRILATERAL
 POLYHEDRON,
 TETRAHEDRON,
 HEXAHEDRON,
 PRISM,
 PYRAMID,
 SEPTAHEDRON,
 UNDEFINED,
 ALL_TOPOLOGIES
}

enum StorageOrder
{
 BLOCKED,
 INTERLEAVED,
 UNDETERMINED
}

Methods:
 Returns an integer array of topological dimensions for an input array of entity handle.
 void entityGetTopologicalDimension(in array<opaque> entity_handles,

 inout array<int> dim) throws Error;

 Returns an array of entity topologies for an input array of entity handles.
 void entityGetTopology(in array<opaque> entity_handles,

 inout array<int> topology) throws Error;

5

 Returns an array of entity types for an input array of entity handles.
 void entityGetType(in array<opaque> entity_handles,

 inout array<int> type) throws Error;

 Returns the coordinates of an array of vertex mesh entities in the specified storage
 order. If the order is UNDETERMINED upon entry, it contains the storage order
 provided by the implementation upon exit.
 void entityGetVertexCoordinates(in array<opaque> entity_handles,

inout StorageOrder storage_order,
 inout array<double> coords) throws Error;

 Returns the adjacent entity handles of a given entity type in CSR format for an input
 array of entity handles
 void entityGetAdjacencies(in array<opaque> entity_handles,

in EntityType entity_type_requested,
inout array<opaque> adjacentEntityHandles,
inout array<int> csr_pointer,
inout array<int> csr_data) throws Error;

 Allows the user to associate a tag referenced by a tag handle to the input array
 of entity handles. The tag handle is created using the createTag function and
 the default value associated with the tag handle is initially assigned to the
 entity handles. The data associated with this tag on individual entities can be assigned
 unique values (all the same size) using the entitySetTagData function. The tag
 handle used to reference this data is consistent across all entities in the input array.
 void entityAddTag(inout array<opaque> entity_handles,
 in opaque tag_handle) throws Error;

 Allows the user to disassociate the tag referenced by the tag handle from the
 specified entities. The tag data is not deleted in this call, but can be deleted later
 using the deleteTag function defined above.
 void entityRemoveTag(inout array<opaque> entity_handles,
 in opaque tag_handle) throws Error;

 Get all tag handles associated with a given entity.
 void entityGetAllTagHandles(in opaque entity_handle,
 out array<opaque> tag_handles) throws Error;

 Allows the user to retrieve an array of tag values associated with a tag handle from an
 input array of entity handles
 void entityGetTagData(in array<opaque> entity_handles, in opaque tag_handle,

6

 inout array<opaque> tag_value, out int tag_size) throws Error;

 Allows the user to set the tag data values on an array of entity handles
 void entitySetTagData(in array<opaque> entity_handles, in opaque tag_handle,
 in array<opaque> tag_values, in int tag_size) throws Error;

3.2.4 Mesh

Definition: A TSTT mesh is a collection, or database, of TSTT entities that have uniquely
defined entity handles. To be useful to applications, information in the database is
assumed to be a valid computational mesh, examples of which include:

� a nonoverlapping, connected set of TSTT entity regions, for example, the structured
and unstructured meshes commonly used in finite element simulations (Type 1)

� overlapping grids in which a collection of Type 1 meshes are used to represent a
computational domain (Type 2). It is expected that Type 2 meshes will include
chimera, multiblock, and multigrid meshes. The interfaces presented here should
handled these mesh types in a general way; higher-level convenience functions may be
added later to support specific functionalities needed by these meshes.

� adaptive meshes in which both coarse and fine TSTT entity regions are retained in the
TSTT database. The most highly refined TSTT entity regions in this mesh typically
comprise a Type 1 or Type 2 mesh.

� Smooth particle hydrodynamic (SPH) meshes which consist of a collection of TSTT
vertices with no connectivity or adjacency information.

For most of these mesh types, the TSTT entities are related through topological adjacency
information in which higher-dimensional entities are defined by lower-dimensional
entities. (insert RPI adjacency information here). Need to define and access neighbor
information.

Adjacency information may or may not be explicitly available from the TSTT mesh
implementation and we use an adjacency table to allow the user to query for the
availability of such information. The rows and columns of this 4x4 table are denoted
VERTEX, EDGE, FACE, and REGION and a 1 is placed in the corresponding table
entry if the adjacency information is available to the user. The lower triangular entries
denote the downward adjacency relationships; the upper triangular entries denote the
upward adjacency relationships. A 1 on the diagonal indicates that an entity returns
itself if adjacency information of the same dimension is requested. For example,
 V E F R
 V 1 0 0 1
 E 0 1 0 0
 F 0 1 1 0
 R 0 0 0 1
indicates that vertices know about their adjacent regions, and that faces know about their

7

bounding edges. A zero entry indicates that the adjacency information is not available to
the application. A similar table can be used in advanced implementations to allow the
user to assert their needs which may allow greater efficiency by storing only the
information which is needed. For the cases in which adjacency information is available,
higher-dimensioned entities may or may not be uniquely defined by lower-dimensioned
entities and this is denoted by the tag convention “Uniquely_Defined_Entities”.

Capabilities: At the most fundamental level, we consider a static Type 1 mesh. This
mesh provides only basic query capabilities to return entities and their adjacencies
through array or iterator mechanisms. Such meshes also have the ability to add, retrieve,
and delete user-defined tag data.

Extensions: Meshes can be extended to support subsetting capabilities that allow the user
to create arbitrary groupings of mesh entities, called entity_sets, and this is described in
Section 3.2.3. This extension supports the Type 2 meshes mentioned above. In addition,
meshes can also be extended to be “modifiable”, in which case, basic operations that
allow applications to create and add new mesh entities are provided and described in
Section 3.2.4. Modifiable meshes require a minimal interaction with the underlying
geometric model to classify entities and this interaction is described in Section <data
relation manager>.

Methods:

Note: These methods all take an entity_set_handle as the first argument because these
basic query and tag functionalities are supported for both the entire mesh and for the
entity subsets created in Section 3.2.3. Because multiple entity_sets can be defined for
any given mesh, the handle must be passed in to identify the entity_set of interest. If
NULL is passed in for this argument, it is assumed that data is requested for the entire
mesh.

Recall
 * required for Type 1 mesh support in a reference implementation
 ** required for entity_set support in a reference implementation

--- creation

 Create a TSTT mesh interface (This is a babel thing and therefore extraneous.
 We should explicitly document how this is done in babel and remove this function
 from our interface)
 * void create() throws Error;

 Load information into the TSTT mesh. This method must be called after create
 and before any query calls are made. Multiple load calls can be made for a given

8

 TSTT mesh instance. A load call cannot be made on a entity_set.
 * void load(in string name) throws Error;

 Destroy the mesh interface. All data associated with the mesh database will be freed
 (This is a Babel thing and therefore extraneous. We should explicitly document
 how this is done in babel and remove this function from our interface)
 * void destroy() throws Error;

--- query

 Get the geometric dimension of the mesh or entity_set. This may be higher than the
 topological dimension, for example, for topologically 2D faces living in 3D space a
 3 is returned.
 * void entitysetGetGeometricDimension(in opaque entity_set_handle,

 out int dim) throws Error;

 Returns the number of entities of a given type from a mesh or entity_set
 ** int entitysetGetNumberEntityOfType(in opaque entity_set_handle,
 in EntityType entity_type) throws Error;

 Returns the number of entities of a given topology from a mesh or entity_set
 ** int entitysetGetNumberEntityOfTopology(in opaque entity_set_handle,
 in EntityTopology entity_topology) throws Error;

 Gets the preferred storage order for primitive type arrays associated with
 the mesh or entity_set, one of blocked, interleaved, or undetermined. (Should
 this be only on the mesh?)
 void entitysetGetNativeStorageOrder(in opaque entity_set_handle,
 out StorageOrder storage_order) throws Error;

 Get the adjacency information supported in table format in row major order.
 This function operates only on the mesh.
 void getAdjacencyTable(out array<int> adjacency_table) throws Error;

--- primitive type retrieval arrays

 Gets the coordinates of the vertices contained in the entity_set as an array of doubles
 in the order specified by the user (or if undetermined is used, in the order is returned
 in storageOrder). If an entity of dimension d>0 is contained in the entity set, its
 vertices are returned in this list, even if they have not been explicitly added to the
 entity set. The integer array, in_entity_set returns a 1 if the vertex corresponding to
 that index in the coordinates array is explicitly contained in the entity set, it returns

9

 a zero otherwise.
* void vertexGetCoordinates(in opaque entity_set_handle,
 inout array<double> coordinates,
 inout array<int> in_entity_set,
 inout StorageOrder storage_order) throws Error;

 Returns the indices of the vertices that define all entities of a given type or
 topology in the mesh or entity_set. If both type and topology are specified, they
 must be consistent and topology takes precedence. The data is returned for
 the canonical ordering of vertices in CSR format and is assumed to be consistent
 with the vertex coordinate information returned in getVertexCoordinates.
 EntityTopologies are also returned so that there are no ambiguities in
 element topology for mixed element meshes.
* void entityGetVertexCoordinateIndicies(in opaque entity_set_handle,
 in EntityType requested_entity_type,
 in EntityTopology requested_entity_topology,
 inout array<int> count,

 inout array<int> index,
 inout array<EntityTopology> entity_topologies) throws Error;

 Returns the indices of the vertices that define entities of the requested adjacency
 type in CSR format and is assumed to be consistent with the vertex
 coordinate information returned in getVertexCoordinates. EntityTopologies are
 also returned so that there are no ambiguities in element topology for mixed
 element meshes. If an entity set is passed in, all of the downwardly adjacent
 entities are returned even if they are not contained in the entity set. The entries
 of the integer array in_entity_set are set to 1 if the entity is in the entity set. For the
 case of upward adjacencies, there can be situations in which the vertices of
 the requested entity are not contained in the getVertexCoordinates arrays.
 For that case, only upward adjacencies actually in the entity set are returned.
* void getAdjacentEntityVertexCoordinateIndices(in opaque entity_set_handle,
 in EntityType entityType,
 in EntityTopology entityTopology,

 in EntityType entityAdjacencyType,
 inout array<int> count,

 inout array<int> index,
 inout array<int> in_entity_set,
 inout array<EntityTopology> entity_topologies) throws Error;

--- entity retrieval arrays

 Retrieve the entities of a given type and toplogy in an array of entity handles from
 the mesh or entity_set. If both type and topology are specified, they

10

 must be consistent and topology takes precendence. Note that if an array
 containing all of the vertex handles is requested, these handles are required to be
 returned in the same order as the array of coordinates in the getVertexCoordinates
 call. If an array of entities of a given type or topology is requested, it is required
 that they be returned in the same order as the entity indices from
 the getEntityIndices call.
** void entitysetGetEntities(in opaque entity_set_handle,
 in EntityType entity_type,
 in EntityTopology entity_topology,
 inout array<opaque> entity_handles) throws Error;

 Retrieve an array of entities handles for the requested adjacent entity type in CSR
 format. This method works on the entire mesh or entity_set. The originating entities
 are restricted to the entity set, but all upward and downward adjacent entities
 are returned even if they are not in the entity set. The entries in the integer array
 in_entity_set are set to 1 if the returned entity is in the entity set, zero otherwise.
 If downward adjacencies are requested it is required that the entity_handles be
 returned in the same order as the entity indices in the
 getAdjacentEntityVertexCoordinateIndices call.
 void entitysetGetAdjacentEntities(in opaque entity_set_handle,
 in EntityType entity_type_requestor,
 in EntityTopology entity_topology_requestor,

 in EntityType entity_type_requested,
 inout array<opaque> adj_entity_handles,
 inout array<int> count,
 inout array<int> index

 inout array<int> in_entity_set) throws Error;

--- entity retrieval workset iterators

 Initialize a workset iterator of a given size for a given entity type
 or topology. If both type and topology are specified, they must be consistent
 and topology takes precendence. Block iterators allow chunks of entities to
 be returned from the mesh or entity_set in and entity_handle array with a single call
 through the interface.
 void entitysetInitializeWorksetIterator(in opaque entity_set_handle,
 in EntityType requested_entity_type,
 in EntityTopology requested_entity_topology,

 in int requested_workset_size,
 out opaque workset_iterator) throws Error;

 Get the next workset of entities in the iterator. The boolean return value indicates is
 true if the iterator has more entities to return, and false if this is the last workset.

11

 bool getNextWorkset(inout opaque workset_iterator,
 inout array<opaque> entity_handles) throws Error;

 Destroy the workset iterator
 void destroyWorksetIterator(in opaque workset_iterator) throws Error;

--- tags

 Associate a tag referenced by a tag handle with the mesh or entity_set.
 The tag is created with the createTag function.
 void entitysetAddTag(in opaque entity_set_handle,
 in opaque tag_handle) throws Error;

 Remove the tag associated with the tag_handle from the mesh or entity_set. The
 tag data is not destroyed in this function, but can be destroyed using
 the deleteTag function.
 void entitysetRemoveTag(in opaque entity_set_handle,
 in opaque tag_handle) throws Error;

 Get all tag handles associated with a given mesh or entity_set.
 void entitysetGetAllTagHandles(in opaque entity_set_handle,
 out array<opaque> tag_handles) throws Error;

 Get the tag data associated with a tag handle from the mesh or entity_set. It is
 assumed that the tag_value argument is allocated by the application before being
 passed into the getTag function.
 void entitysetGetTagData(in opaque entity_set_handle,
 in opaque tag_handle, inout opaque tag_value,
 out int tag_size) throws Error;

 Set the tag data associated with a given tag handle on the mesh or entity_set
 void entitysetSetTagData(in opaque entity_set_handle,
 in opaque tag_handle, in opaque tag_value,
 in int tag_size) throws Error;

3.2.5 Subsetting via EntitySets

Definition: Static Type 1 mesh capabilities can be extened to include a subsetting
capability which allows arbitrary groupings of entities to be defined in a construct we call
the TSTT EntitySet. Each EntitySet may or may not be a multiset (allows duplicate
entries), may or may not be ordered, and may or may not be a Type 1 mesh as specified
by tag conventions. Many EntitySets may be associated with a given mesh and the

12

EntitySet paradigm allows us to manage these entities and the relationships among them.
In particular, this functionality allows us to define and use the Type 2, or overlapping,
meshes mentioned in Section 3.2.2.

Two primary relationships among EntitySets are supported. First, EntitySets may
contain one or more EntitySets. If an EntitySet is contained in another it is a subset of
that EntitySet. That is, if EntitySet A is contained in EntitySet B, a request for the
contents of B should include EntitySet A. Whether the results include A or the entities in
A (and the entities in sets contained in A) depends on whether the application requests
the contents recursively. Parent/child relationships between EntitySets are used to
represent relations between sets, much like edges connecting nodes in a graph. Because
we distinguish between parent and child links, this is a directed graph. No other
assumptions are made about the graph (e.g. there are no requirements that the graph be
acyclic).

Capabilities: In addition to the query and traversal functionality defined in Section 3.2.2,
EntitySets also have "set operation" capabilities; in particular, you may add and remove
existing TSTT entities from the parent mesh to the EntitySet and you may subtract,
intersect, or unite EntitySets. In addition, subset and hierarchical parent/child
relationships among EntitySets are supported. All entity_sets have the ability to add,
retrieve, and delete user-defined tag data as defined in Section 3.2.2.

Examples: a set of vertices, the set of all faces classified on a geometric face, the set of
regions in a domain decomposition for parallel computing.

Methods:
 -- creation

 This function is called on the parent mesh interface and allows a new entity_set to be
 created. The user may set the multiset, ordered, isMesh, flags as needed; otherwise
 default values (all false) will be used. On creation, EntitySets are empty of entities
 and contained in the parent mesh interface. They must be explicitly filled with entities
 using the addEntities call and relationships with other EntitySets must be
 done through the addEntitySet and parent/child relationship calls.
* void entitysetCreate(in bool multiset,
 in bool ordered,
 out opaque entity_set_created) throws Error;

 Destroy the entity set. This method only destroys the grouping of entities, not the
 entities themselves.
 void entitysetDestroy(in opaque entity_set) throws Error;

--- retrievals

13

 Returns the number of entity_sets contained in a given mesh or entity_set one
 level deep
 ** int entitysetGetNumberEntitySets(in opaque entity_set_handle) throws Error;

 Returns the entity_set handles contained in a given mesh or entity_set
 one level deep
 ** void entitysetGetEntitySets(in opaque entity_set_handle,
 out array<opaque> contained_entity_set_handles) throws Error;

 Allows the user to explicitly add one or more entity_sets to another.
 This automatically sets the contained in relationship, but not the
 parent/child relationships. All entity_set handles are automatically contained
 in the parent mesh interface, so passing in NULL as the first argument
 results in no action.
 ** void entitysetAddEntitySets(inout opaque entity_set,
 in array<opaque> entity_set_handles) throws Error;

 Allows the user to remove one or more entity_sets from another entity_set. Users
 cannot delete a contained in relationship of an entity set with the parent mesh
 interface so passing in a NULL value for the first argument results in no action.
 ** void entitysetRemoveEntitySets(inout opaque entity_set,
 in array<opaque> entity_set_handles) throws Error;

 Recursively get all the entity_sets contained in a given entity_set. If the
 first argument is NULL this returns all the entity_sets associated with the
 TSTT mesh. The retuned entity sets are unique even if they are contained
 in multiple entitysets. That is, if A contains B & C and B contains C, C is
 returned only once for getAllEntitySets(A)
 void entitysetGetAllEntitySetsRecursive(in opaque entity_set_handle,
 out array<opaque> contained_entity_set_handles) throws Error;

 Recursively get all the entities associated with a given entity_set handle. That is,
 get all the entities in the entity_set itself and the entity_sets it contains, recursively.
 The returned entities unique even if they are contained in multiple EntitySets.
 void entitysetGetAllEntitiesRecursive(in opaque entity_set_handle,
 out array<opaque> entity_handles) throws Error;

--- set operations

 Add existing TSTT entities to the entity_set (do not create them). Note that if
 an entity of dimension d>0 is added to the entityset, the lower-dimensional entities
 that define it are not automatically associated with the entityset.
** void entitysetAddEntities(inout opaque entity_set,

14

 in array<opaque> entity_handles) throws Error;

 Remove existing entities from the entity_set (do not delete them)
** void entitysetRemoveEntities(inout opaque entity_set,
 in array<opaque> entity_handles) throws Error;

 Subtract the entities in entity_set_2 from the entities in entity_set_1; the result is
 returned in entity_set_1. If entity_set 1 is a multiset and contains m entries of
 a particular entity, say entity k, and entity_set 2 contains n entry of entity k, the
 result contains m-n entries of entity k.
 void entitysetSubtract(inout opaque entity_set_1,
 in opaque entity_set_2) throws Error;

 Intersect entity_set_1 and entity_set_2; the result is returned in entity_set_1. If
 both are multisets and both contain 2 entries of entity k, the intersection
 contains 2 entries as well.
 void entitysetIntersect(inout opaque entity_set_1,
 in opaque entity_set_2) throws Error;

 Union the entities in entity_set_1 and entity_set_2; the result is returned in
 entity_set_1. The multiset flag in entityset 1 determines if duplicate entries
 are allowed.
 void entitysetUnite(inout opaque entity_set_1,
 in opaque entity_set_2) throws Error;

 Returns true if the entity_sets are related through a parent/child relationship.
 bool entitysetIsParentChildRelated(in opaque entity_set_1,
 in opaque entity_set_2) throws Error;

 Recursively gets the children of this entity_set up to num_hops levels; if num_hops
 is set to -1 all children are returned
 void entitysetGetChildren(in opaque from_entity_set, in int num_hops,
 out array<opaque> entity_set_handles) throws Error;

 Recursively gets the parents of this entity_set up to num_hops levels; if num_hops
 is set to -1 all parents are returned
 void entitysetGetParents(in opaque from_entity_set, in int num_hops,
 out array<opaque> entity_set_handles) throws Error;

 Add a parent to the entity_set
 void entitysetAddParent(inout opaque this_entity_set,
 in opaque parent_entity_set) throws Error;

15

 Add a child to the entity_set
 void entitysetAddChild(inout opaque this_entity_set,
 in opaque child_entity_set) throws Error;

 Returns the number of immediate children in the entity_set (one level down only)
 int entitysetGetNumChildren(in opaque entity_set) throws Error;

 Returns the number of immediate parents to the entity_set (one level up only)
 int entitysetGetNumParents(in opaque entity_set) throws Error;

 Add multiple parents to multiple children (all parents get related to all children)
 void entitysetAddParentsChildren(inout array<opaque> parent_entity_sets,
 inout array<opaque> child_entity_sets) throws Error;

 Remove a parent/child link between entity_sets
 void entitysetRemoveParentChild(inout opaque parent_entity_set,
 inout opaque child_entity_set) throws Error;

3.2.6 Modifiable Meshes

Base operators are intended to be used to carry out unvalidated mesh modification
operations. They provide a base for defining and developing higher level operators.
Because they are defined to support the construction and modification of meshes, they
must deal with geometric, topological and relationship operations. There is one base
geometric operator defined to set the geometric coordinates of vertices. There are two
base topological operators to deal with the creation and deletion of mesh entities. These
operations require a simple classification operation to associate the mesh with underlying
geometry and two base operations for this purpose are defined in Section 3.4.

The three base operators needed for mesh modification in the mesh data base are

Geometric operator:

 Relocate a mesh vertex to the position given by new_coords. The storage order of
 new_coords is given in storage order and can be one of blocked or interleaved.
 void setVertexCoordinates(in array<opaque> vertex_handles,
 in StorageOrder storage_order,
 in array<double> new_coords) throws Error;

Topological operators:

 Create and add a new mesh entity defined by lower order entities of the same order.
 All intermediate entities that doen't already exist are automatically created as well .

16

 It is assumed that all entities to be created with a single call are of the same
 topological type and that the lower order entities that define the new entities are
 input in the canonical ordering. If the entity already exists, it is not created again if
 the Uniquely_Defined_Entities tag has been set for this mesh.
 void createEntities(in EntityTopology new_entity_topology,
 in array<opaque> lower_order_entity_handles,
 out array<opaque> new_entity_handles) throws Error;

 Remove the designated mesh entities. Entities can be removed only if there are no
 upward adjacency dependencies.
 void deleteEntities(in array<opaque> entity_handles) throws Error;

3.2.7 Tag Conventions:

We have defined the following tag conventions for use with the TSTT interface.

String Name Association Meaning
Invariant_Handles mesh The handles of the mesh entities do
 not change over the lifetime of the
 mesh interface (data is a bool)

Uniquely_Defined_Entities mesh Higher dimensional entities are
 defined by unique lower-dimensional
 entities (data is a bool)

Type1_Mesh mesh or A type 1 mesh as defined above
 entity_set (data is a bool)

Type2_Mesh mesh or A type 2 mesh as defined above
 entity_set (data is a bool)

Is_Ordered entity_set The order of the data in the entity set has
 meaning

Is_Multiset entity_set The entity set can contain duplicate
 entries

3.3 Geometry

Definition: A geometric model is a representation of the spatial domain which usually
precedes the discrete or mesh-based representation and which is usually a (topologically)
coarser representation. The geometric model has both a topological description

17

(composed of vertex, edge, face and region entities, and relations between them), and a
geometric or shape description (e.g. Bsplines, Bezier patches, etc.). The names of
geometric topological entities are similar to or the same as those for mesh; where the two
categories of entities are used together, the geometric topological entities are often
qualified with "model", as in "model vertices" or "model faces". Otherwise, the category
should be clear from the context.

Capabilities: The geometry API specified in this section is meant to represent a minimal
set of query functions, from which most other typical query-type operations can be
implemented if necessary. This philosophy is chosen because of the number of
applications which need only this minimal functionality, and to make the implementation
of this interface as simple as possible. The functions in this interface can be broadly
classified as those having to do with loading a model, getting information about model
topology (which entities exist and how they are related), and entity-based geometric
queries (e.g. Closest point).

Methods:

 Load a model specified by name. Which formats are supported and the
 specific meaning of this name string (e.g. file name, model name,
 etc.) are implementation-dependent.
 void loadGeometry(in string name) throws Error;

 Find which topological entities of the specified dimension are extant
 in the model.
 void getGeometryEntities(in int dimension,
 out array<opaque> geom_entities) thows
 Error;

 Return the entities of the requested_dimension adjacent to the
 specified geom_entity. Order of returned entities in this list is
 arbitrary (ordering information, e.g. the order of edges around a
 loop, can be inferred from adjacency + relative sense data).
 void getGeometryAdjacencies(in opaque geom_entity,
 in int requested_dimension,
 out array<opaque> adjacent_geom_entities)
 throws Error;

 Return the sense of child_geom_entity with respect to
 parent_geom_entity; values are -1 (=reversed), 0 (unknown), or 1
 (forward). Forward sense of an edge on a face is defined as
 material on the left traversing along an edge (i.e. counter-clockwise
 for simply-connected faces), and for a face bounding a region an

18

 outward-facing normal.
 void getRelativeSense(in opaque child_geom_entity,
 in opaque parent_geom_entity,
 out int sense) throws Error;

 Get the coordinates on geom_entity closest (in terms of euclidean
 distance) to those in input_coords.
 void getClosestPoints(in opaque geom_entity,
 in array<double> input_coords,
 out array<double> closest_coords) throws Error;

 Get the value of the specified tag name on the specified entity. Size
 is in bytes, and tag_data is assumed to be an already-allocated
 section of memory into which the tag value will be written. If no tag
 of that name exists, the function returns with an error.
 void getTag(in opaque geom_entity, in string name, in int size,
 out opaque tag_data) throws Error;

 Set the value of the named tag with data residing in already-allocated
 space referenced by tag_data. The first time this function is called
 with a given name (over all entities), a tag of fixed size is created;
 subsequent uses of a previously-allocated tag are assumed to be of
 that original size.
 void setTag(in opaque geom_entity, in string name, in int size,
 out opaque tag_data) throws Error;

 Return a list of previously-allocated tag names and corresponding
 sizes. Sizes are measured in bytes.
 void getTagNamesAndSizes(out array<string> names,
 out array<int> sizes);

3.4 Data Relation Managers

The two relationship operators support the interrogation and setting of classification
information between the mesh and geometric models.

 Get the model entity upon which a given mesh entity is classified,
 void getClassifications(in array<opaque> mesh_entity_handles,
 out array<opaque> model_entity_handles) throws Error;

 Classify a given mesh entity against a geometric model entity
 void setClassifications(in array<opaque> mesh_entity_handles,

19

 in array<opaque> model_entity_handles) throws Error;

3.5Canonical Ordering Conventions

The numbering conventions used in the TSTT Mesh Interface were chosen to maximize
correspondence to FE numbering conventions already used in practice in other codes.
There are three useful references for determining canonical numbering used in practice:

• MSC.Patran Element Library
• ExodusII, a finite element data model used at Sandia National Laboratories
• STEP 10303-104: Product data representation and exchange: Integrated

application resource: Finite element analysis
The references above were used to determine numbering used in the TSTT Mesh
Interface, in the order specified. That is, elements defined in the first reference are used
before similar elements defined in later references.

Figure 1 shows the canonical numbering for vertices in the EntityTopology entities
defined in the TSTT Mesh Interface. In all cases, “corner” vertices appear first in the
numbering, with “higher order” nodes or vertices appearing afterwards.

1

POINT

1 3 2

LINE

1 2

3

4

5 6

TRIANGLE

1 2

6

3 4

8

7

5

QUADRILATERAL

5

2

6

3

10

4

8

9
7 1

TETRAHEDRON

1 2

3

12

13
8

7
9

10 11

5 4

14
6

15

HEXAHEDRON

3
7

2

12

5

6 1

8

11 13 10

9
4

PYRAMID

10

1 2 9

3

7

15

19

18

8

20
16

13

5
11

14

6

4
12

17

HEXAHEDRON

Figure 1: Canonical vertex numbering for TSTT Mesh Interface topology types.

Figure 2 shows the canonical edge numbering for relevant EntityTopology entities in the
TSTT Mesh Interface.

20

1 1
2

LINE

1 2

3

1

2 3

TRIANGLE

1 2

2

3 4

4

3

1

QUADRILATERAL

1

2

2
3

6

4

4
5

3
1

TETRAHEDRON

1 2

3

6
7

2
1

3 4 5

5 4
8

6
9

HEXAHEDRON

8

3
2

2

7

5

1
1

3
6

5

4 4

PYRAMID

2

1 2
1

3

7

7

11

10

8

12 8

5

5 3

6

6

4
4

9

HEXAHEDRON

Figure 2: Canonical edge numbering for TSTT Mesh Interface.

Figure 3 shows the canonical face numbering for relevant EntityTopology entities in the
TSTT Mesh Interface.

1 2

3

1

TRIANGLE

1 2

3 4

1

QUADRILATERAL

21

4

3

2

3

4

1

1
2

TETRAHEDRON

1 2

3

5 4

6

1
2 3

5

4

HEXAHEDRON

5
3

2

5

1

4 1
2

3 4

PYRAMID

1 2

3

7 8

5
6

4
2

1

6 3

5

4

HEXAHEDRON

Figure 3: Canonical edge numbering for TSTT Mesh Interface.

22

