
Field Model

The FM User Guide
Second Draft

Patrick J. Moran

NASA Ames Research Center, M/S T27A-2
Moffett Field, CA, 94035, USA

patrick.j.moran@nasa.gov

June 23, 2003

2

Contents

1 Introduction 7
1.1 Overview . 7
1.2 Related Work . 8

2 Concepts 11
2.1 Cells and Meshes . 11
2.2 Fields . 11
2.3 Time . 13
2.4 Simplicial Decomposition . 14

3 Implementation Preamble 15
3.1 C++ and Templates . 15
3.2 Error Handling . 15
3.3 Coordinate Type . 16
3.4 Vectors and Matrices . 16
3.5 Multi-Threading . 17
3.6 Shared Objects . 17
3.7 Memory Management . 17
3.8 Context . 18
3.9 Module Organization . 18

4 Positional Classes 21
4.1 Phys<D,C> . 21
4.2 Base<B,C> . 22
4.3 Cell . 22
4.4 Sub . 24
4.5 Time . 24

5 The Mesh and Field Interface 27
5.1 Properties . 28

5.1.1 Behaviors . 28
5.1.2 Dimensionality and Node Association Index 29
5.1.3 Node Type . 29
5.1.4 Dimensions . 29

3

4 CONTENTS

5.1.5 Mesh . 30
5.1.6 Bounding Box and Min-Max 30
5.1.7 Number of Subblocks . 30
5.1.8 Property Names . 30

5.2 Cardinality . 30
5.3 Cells and Canonical Enumeration 31
5.4 Cell Incidence Relationships . 31
5.5 Neighbor Relationship . 33
5.6 Accessing Field Values and Coordinates 33

5.6.1 at base . 33
5.6.2 at cell . 34
5.6.3 at phys . 34
5.6.4 at vert . 35

5.7 Converting Between Positional Representations 35
5.7.1 base to cell . 35
5.7.2 phys to cell . 35
5.7.3 phys to base . 36
5.7.4 The Other Combinations . 36

5.8 Iterators . 36
5.9 General Properties Interface . 38
5.10 Miscellaneous . 39

6 Structured Meshes 41
6.1 Structured Mesh Dimensions . 41
6.2 Simplicial Decomposition . 41
6.3 Alignments . 42
6.4 Structured Cell Types . 43

6.4.1 Structured Cell 43
6.4.2 Structured K Cell 44
6.4.3 Structured 0 Cell 44
6.4.4 Structured B Cell 44
6.4.5 Structured Subsimplex 44
6.4.6 Structured B Subsimplex 45

6.5 Iterators . 45
6.5.1 ALIGNMENT . 45
6.5.2 AXIS BEGIN, AXIS END, AXIS STRIDE 46
6.5.3 CELL DIMENSION, CELL TYPE 46
6.5.4 I SURFACE, J SURFACE, K SURFACE 46
6.5.5 SIMPLICIAL DECOMPOSITION 46
6.5.6 SUB, TIME . 47

6.6 Regular Interval . 47
6.7 Irregular Interval . 47
6.8 Product Mesh<B,D> . 47
6.9 Regular Mesh<B,D> . 48
6.10 Cylindrical Mesh . 49
6.11 Curvilinear Mesh<B,D> . 49

CONTENTS 5

6.11.1 Curvilinear Mesh T Layout<B,D,U> 49

7 Unstructured Meshes 51
7.1 Unstructured Vertex Mesh<D> 51
7.2 Unstructured Edge Mesh<D> 51
7.3 Unstructured Triangle Mesh<D> 52
7.4 Unstructured TPWH Mesh . 52

6 CONTENTS

Chapter 1

Introduction

1.1 Overview

Underlying virtually every object-oriented visualization system is a data model. The
data model forms a key part of the system design, effectively spelling out the types
of data that can be analyzed by the system. A well-designed data model component
can significantly enhance the capabilities of the overall system. For example, the de-
velopers of OpenDX (formerly IBM Data Explorer) often cite the consistent, unified
nature of the DX data model as one of the key reasons for the success of their system
[20, 1]. For large data visualization, the data model can have a significant impact on
system efficacy. Poorly chosen abstractions can lead to performance problems or make
development awkward. Well-designed abstractions can enhance code reuse and enable
the coupling of components in new and interesting ways.

For those in the visualization community, the large variety of mesh and field types
offers the opportunities of new and interesting research topics. For example, with adap-
tive meshes one might want to couple various multi-resolution visualization techniques
with the adaptive mesh data structures. For visualization system developers, the variety
of mesh and field types are a challenge. There are a number of current development
efforts, for example with adaptive meshes, each with its own custom algorithms and
data structures. One would like to apply the wealth of visualization techniques that
have already been developed, yet one is likely not to have the resources to devote to in-
terfacing to each mesh variation. This is where a carefully designed data model comes
in. With appropriately chosen abstractions, a data model can insulate the visualization
techniques from the majority of the idiosyncrasies of the mesh and field data structures.
A carefully designed model can also enhance modularity: newly added mesh and field
types in the future should not require significant modifications to existing code.

Overall, our goal is to provide a common model for field data that will enhance
the sharing of data sets and of visualization technique implementations. In the follow-
ing chapters we describe the design and implementation intended to make that goal a
reality.

7

8 CHAPTER 1. INTRODUCTION

1.2 Related Work

The importance of a well-designed data model has been recognized early on in the vi-
sualization community, and there have been a number of efforts to develop a general
design with a strong, formal foundation. One of the earliest was the fiber bundle model
by Butler and Pendley [8]. Their model was inspired the mathematical abstraction of
the same name. Fiber bundles have proven to be somewhat difficult to implement in
their pure form, though the concepts have inspired several follow-on efforts. The orig-
inal fiber bundle abstractions did not provide a convenient means to access the under-
lying discretization (mesh) of a data set. This was a problem since many visualization
algorithms operate by iterating over various types of cells of the mesh.

One system in particular that has been influenced by fiber bundle concepts is
OpenDX (formerly IBM Data Explorer[20, 1]). Beginning with Haber et al [13], the
fiber bundle model was adapted into a model that would support a general-purpose
data-flow visualization system. OpenDX can handle “vertex-centered” and “cell-
centered” fields. OpenDX does not support adaptive meshes, though more recent work
by Treinish [30] describes a model that would accommodate such data.

Another field modeling effort was the Field Encapsulation Library (FEL) project,
first presented at Visualization ’96 [7]. FEL excelled with the multi-block curvilinear
grids that are popular in computational fluid dynamics applications. FEL differed from
most other modeling efforts in that it defined separate class hierarchies for meshes
and fields, rather than a single combined object type. A second version of FEL, FEL2,
followed after a basic redesign and total rewrite [24, 23]. FEL2 introduced fundamental
design features that enabled the library to operate with far larger data sets, including a
consistent demand-driven evaluation model [22] and the integration of demand-paging
techniques [9]. FEL2, like the original version of FEL, assumed that all objects were
in
���

physical space, and that all fields were “vertex-centered”.
The Visualization Toolkit (vtk) [28], like OpenDX, is an open source visualization

system with a fairly general data model. The vtk data model uses an extended concept
of cells, including such primitives as polylines and triangle strips as cell types. Recent
extensions [19] have focused on enabling the data model (and thus the whole system)
to handle large data. Like FM, vtk utilizes a demand-driven evaluation strategy. In vtk
visualization techniques negotiate with a data source in order to determine appropriate
streaming parameters, then the streaming commences. FM demand-driven evaluation
is maximally fine-grained: visualization techniques request data one cell at a time, and
the lazy evaluation happens at the same granularity. The FM approach leads to more
function calls between the data consumer and producer, while the vtk approach implies
that the data consumer has to know more about the characteristics of the data set it
is accessing. The FM approach provides better insulation between data producers and
consumers, which implies that new producers and consumers can be added in the future
with less modifications to existing modules.

Another object-oriented data flow visualization system intended for large data vi-
sualization is SCIRun [5, 27]. One distinguishing characteristic of the SCIRun de-
velopment effort was the focus on computational steering, i.e., analyzing data from a
simulation and modifying simulation parameters, as the simulation is running. SCIRun
also allowed for some mesh adaptation during a simulation run. The data model was

1.2. RELATED WORK 9

not the primary focus of the overall development effort.
VisAD [16, 15] is a relatively general, object-oriented model for numerical data.

The user can construct data objects with a style similar to expressing mathematical
functions. In contrast to the models described previously, VisAD is implemented in
Java. The VisAD model is quite flexible, though the Java implementation makes it less
suitable for very large data. The VisAD model does put more effort into the inclusion
of metadata – data about data – than most other designs. For example, VisAD provides
for the specification of the units of measurement.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Concepts

2.1 Cells and Meshes

Field Model objects are embedded in
���

, also known as physical space. Objects in
���

are also said to have a physical dimensionality of
�

. Fields are based on meshes,
which in turn are composed of cells. A � -cell is a subset of

���
that is homeomorphic

(topologically equivalent) to a � -ball. Cells in FM are currently all linear objects.
A � -cell is a vertex, a � -cell is an edge, � -cells include triangles and quadrilaterals.
Hexahedra, tetrahedra, pyramids and prisms are all examples of 	 -cells. Every cell

 has a set of vertices. A face of
 can be specified by a non-empty subset of the
vertices of
 1. For example, a hexahedron has vertex, edge, and quadrilateral faces.
Every cell is also a face of itself. A mesh � is a finite collection of cells such that if

� � , and � is a face of
 , then � � � . Typically, cells in a mesh share common
faces, so for example two tetrahedra can share triangle, edge, and vertex faces. If the
cells with the highest dimensionality in mesh � are � -cells, then � is a � -mesh,
and � has a base dimensionality of � . Meshes in FM are not allowed to have mixed
dimensionality, in other words, every cell in a � -mesh � must be the face of some � -
cell in � . The base dimensionality of a mesh must be less than or equal to its physical
dimensionality. Figure 2.1 illustrates example meshes that can be constructed in FM.
Note that FM meshes can represent familiar objects such as regular meshes, curvilinear
meshes, and tetrahedral unstructured meshes. FM can also represent objects most are
less accustomed to thinking of as meshes, such as scattered vertices or a molecular
skeleton. In most cases the shape of a � -mesh is a � -manifold, though for example
the molecular mesh in Figure 2.1 would not qualify as a 1-manifold.

2.2 Fields

A field defines a function within a region of space. In FM, each field object has a set of
values called nodes (which can be accessed on demand), a mesh, and a pairing between

1If a cell � is not a simplex, then not every subset of the vertices of � constitutes a face. In practice it is
clear which subsets define valid faces.

11

12 CHAPTER 2. CONCEPTS

D

3

2

1

0 1 2 3
B

Figure 2.1: Example FM meshes organized in columns and rows by base dimension-
ality (B) and physical dimensionality (D), respectively. Note that the model is general
enough to represent not only the input to visualization techniques, but also the out-
put. For example, regular meshes in

���
((B,D) = (2,2)) could serve as the underlying

discretization for images, and surfaces in
� �

naturally correspond to (2,3) meshes.

2.3. TIME 13

2-D v. 1-D time slice figure here

Figure 2.2: Caption here.

the � -cells in the mesh and the nodes. The value of � for a particular field is known as
its node association index. The base and physical dimensionalities of a field are the di-
mensionalities of its underlying mesh. For fields with base dimensionality � , the most
common node association indices seen in visualization data are 0 (“vertex centered”)
and � (typically called “cell centered”). Other node association indices tend to be
underrepresented in visualization studies, though they are still important scientifically.
Node association index 1 fields often occur in electromagnetics simulations as well as
some adaptive mesh systems, where adaptation criteria are paired with the edges. Node
association index 2 fields are useful in some flow studies, where fluxes are tracked at
the 2-cells in order to verify the correctness of the simulation.

For a field with node association index � , the user can request a single value at a
particular � -cell or request multiple values at a

�
-cell,

���� � . We define later how the
field selects node values in the case where

���� � . The user can also request a field value
at an arbitrary point in physical space, or for fields based on meshes with structured
behavior, at an arbitrary point in base space. In response to such queries fields return
an integer code indicating whether the query was successful (e.g., depending upon
whether the given point was within the part of the domain where the field is defined),
and a field value. Appropriate interpolation techniques are fairly well agreed upon for
fields with node association index 0; for other node association indices appropriate
interpolation methods are still under investigation.

2.3 Time

Given the general way Field Model is designed for handling data of various dimension-
alities, one might wonder how time-varying data are handled. One approach would
be to simply treat time as an extra dimension, reusing the existing multi-dimensional
mechanisms. An alternative approach would be to keep time “special”, in other words,
a specifically identified parameter built-in to positional arguments. The FM design opts
for the latter design, for several reasons:

� Most users are accustomed to an � -D plus time model. For example, our ex-
perience has been that most users do not prefer to think of a time-varying field

14 CHAPTER 2. CONCEPTS

based on a hexahedral mesh as 4-
�

. FM uses some abstractions, such as that for
cells, that require some users to think more � -dimensionally than they probably
would otherwise, but in general we want abstractions that most users feel the
most comfortable with.

� Time can be at a much lower resolution compared to spatial dimensions. In many
simulation post-processing scenarios, the data available for analysis is already
down-sampled in time, relative to the simulation. This implies that the user may
wish to handle the time dimension differently for purposes of interpolation. This
in turn does not necessarily mean that an explicit “time” parameter is required,
but at least there should be a means to support interpolation that is not the same
for every axis.

� Building higher-dimensional objects via Cartesian products can lead to awkward
cell types. For example the Cartesian product of a tetrahedron with an interval
would be a 4-cell that few would be eager to work with. Defining objects via
Cartesian products does have a certain mathematical appeal, and several earlier
data model articles proposed the approach [8, 13]. In FM we limit the use of the
Cartesian product concept to defining structured mesh objects.

� For adaptive mesh applications, we would like to have a parameter to specify
where in the series of mesh adaptations we were interested. Some applications
may not think of that parameter being called “time”, but the need for a parameter
exists nevertheless.

� Implemenation challenges: we want abstractions that are general and powerful,
but we also want an implementation that is relatively straight-forward to under-
stand, and performance that is competitive. Clearly there are trade-offs, and we
chose the route that we were more familiar with in terms of design and imple-
mentation.

Figure 2.2 illustrates how a time-varying field with 1 spatial dimension can be
viewed either as 2-

�
data or as a 1-

�
slice

2.4 Simplicial Decomposition

Some algorithms require simplices, but not all meshes are composed solely of sim-
plices. For example, some vector field topology algorithms require tetrahedra; if the
mesh is hexahedral then we need to decompose the hexahedra into simplices. FM
provides a means to request simplices, even when the mesh has other types of cells:
simplicial decomposition. With simplicial decomposition turned on, FM mesh objects
transparently decompose non-simplicial cells into simplicial cells. Internally, mesh
objects typically support simplicial decomposition with relatively low overhead book-
keeping techniques, rather then constructing the full simplicial mesh. We revisit the
simplicial decomposition topic in the structured and unstructured mesh chapters.

Chapter 3

Implementation Preamble

3.1 C++ and Templates

Field Model is implemented in C++. Familiarity with C++, templates in C++, and
the C++ standard library classes (e.g., std::vector<T>) is essential. The FM im-
plementation does not use some of the more exotic C++ template metaprogramming
techniques (see for example [2]) such as expression templates [14, 31].

The FM implementation uses C++ namespaces to organize the code by modules.
The primary namespace used by Field Model is the FM namespace. The definitions and
examples shown in the following chapters are all assumed to be within FM. We revisit
the topic of modules in Section 3.9 below.

3.2 Error Handling

Errors happen. In FM most errors are indicated by the integer return value provided
by most object member functions. Success is indicated by the constant OK; various
integer failure constants are defined in FM err.h. FM objects may also generate ex-
ceptions in cases where there is not an opportunity to indicate an error via an inte-
ger return value. For example, if a problem is discovered during object construction,
then that problem is indicated by an exception. FM exceptions are returned as either
std::runtime error or std::logic error instances ([29], 14.10). Errors that
correctly written code may encounter, such as problems opening a file, are reported as
runtime exceptions. Errors that are due to incorrectly written code are reported as logic
exceptions.

If one has a particular field class in mind when developing an application, then
it is tempting to make “this call cannot fail” assumptions and skip checking return
values. We encourage application developers to resist this temptation. One of the major
benefits of the FM design is polymorphism. Polymorphism facilitates code reuse: in
many cases we can transparently exchange one field instance for another that conforms
to the same interface, without modifying the code written in terms of the interface. One

15

16 CHAPTER 3. IMPLEMENTATION PREAMBLE

Abbrev. C++ Type
i int

u unsigned

f float

d double

Table 3.1: FM abbreviations for scalar node types.

might know that a particular field class may never return a value other than OK for a
specific call, but it is usually a mistake to assume all fields behave that way.

A second reason to be conscientious about return value checking is that not doing
the checking can lead to potentially insidious bugs. Since most member functions work
by writing their results into a location passed into the call, one always has something in
result location, whether or not the call succeeds. In some cases it may be obvious that
the result location contains junk, but at other times the contents may seem plausible.
For example, the result may contain a value from a previous, successful call. Checking
return values is the only reliable way to guard against this type of problem.

3.3 Coordinate Type

The coordinate type in FM is provided by the Coord typedef. The default for Coord
is float. The implementation should also work with a double coordinate typedef.
The type declaration provides a means of comparing how the coordinate type choice
effects numerical accuracy and performance, albiet after recompiling the whole enchi-
lada after the type is changed. Use of a single typedef means that one cannot easily
mix objects with different coordinate types in the same application.

3.4 Vectors and Matrices

Small, fixed-length vectors appear throughout the FM design. In FM such vectors
are represented by Vector<N,T> objects, where N specifies the vector length, and T

specifies the element type. Most of the standard infix operators that one would expect
for vectors are implemented for Vector<N,T> objects. One can also reference vector
elements using square brackets notation. For the full Vector<N,T> declaration, see
FM Vector.h. The FM implementation provides typedef statements for some of the
most frequently used Vector<N,T> instantiations. The naming convention concate-
nates Vector, the length, and a scalar type abbreviation from Table 3.1. For example,
the typedef for a vector of 3 floats is Vector3f.

Matrices in FM are constructed as vectors of vectors. FM provides basic operations
for matrices, such as multiplication, determinants and inversion. See FM Matrix.h.
Template notation for vectors of vectors gets pretty unwieldy, so FM provides typedef
statements for the most commonly used instantiations. The convention is similar to that
for Vector types. Matrix ����� stands for an ����� matrix, with an element type

3.5. MULTI-THREADING 17

abbreviation from Table 3.1. For example, Matrix33d is shorthand for a 	 � 	 matrix
of doubles.

3.5 Multi-Threading

The Field Model implementation is intended to support multi-threaded applications. In-
troducing multi-threading immediately brings in other practical implementation issues.
Some synchronization primitive libraries are not mutually compatible, thus committing
to one set of primitives may make use with other libraries problematic. Furthermore,
some frameworks employ relatively elaborate thread scheduling schemes that require
buy-in from all components in the framework. We in FM-land take a minimal stand on
this issue. FM has a single mutual exclusion primitive, based on pthread mutex t.
See FM Mutex.h. We defer on trying to provide a more full-featured set of thread
synchronization abstractions for now.

3.6 Shared Objects

FM provides a relatively standard “smart pointer” reference-counted object mecha-
nism (see for example, Meyers [21]) to facilitate sharing objects. FM implements a
templated pointer type Ptr<T> and a class from which all shared objects inherit: Ob-
ject. The reference counting mechanism is thread-safe. The most widely used shared
object classes in FM are cells, meshes and fields. Meshes and fields are for the most
part read-only, scanning through the mesh and field member functions one can see that
they are almost all declared const. Sharing a mesh or field object among many threads
is relatively straight-forward.

Working with Ptr<Cell> instances requires a little more awareness. Cell objects
have many methods that explicitly change the state of the object (i.e., methods that
are not declared const). Typically, an application that changes the that state of a cell
object does not intend that object to be shared. Cells provide a copy method to create
copies when needed; it is the application developer’s responsibility to be aware of when
to make a copy.

An earlier version of the FM implementation did not provide non-const member
functions for cells or other shared objects. To change the state of a cell one had to con-
struct a new cell with the desired state. This constraint protected the programmer from
some potentially subtle bugs, but it came at a significant performance cost. For some
common cell uses, such as iteration, the costs add up quickly. The FM implementation
now relaxes the “shared objects must be immutable” requirement, but we add a few
cautionary reminders later in this document, where appropriate.

3.7 Memory Management

FM objects allocate and deallocate memory using the standard C++ new and delete

operators. The FM implementation follows the convention that when an object explic-
itly allocates memory, that object is responsible for eventually deallocating that mem-

18 CHAPTER 3. IMPLEMENTATION PREAMBLE

ory. The one significant exception to this rule is with object construction: when an
object such as a curvilinear mesh (Chapter 6) or core field (Chapter ??) is constructed,
the data array buffer passed in at construction time become the responsibility of the
constructed object to eventually deallocate.

Occasionally one may want to suppress the automatic array buffer deletion. For
example, if the data used to construct a core field are in a buffer shared with other ap-
plication threads (e.g., an analysis application running concurrently with a simulation
application), then it is unlikely that the user would want the FM object to deallocate
it. Whether or not the buffer is shared, FM assumes that the buffer was allocated using
C++ operator new [] (), therefore the deallocation is done with C++ opera-
tor delete [] (). Thus even if a buffer is not shared, one must suppress deletion
by FM if the allocation was done another way; in general it is a bad idea to not use
matched allocation and deallocation calls. FM provides delete supression via setting
the delete suppression property:

Ptr<Object> t = new Simple_Value<bool>(true);
object_with_buffer_responsibility->set("delete_suppression", t);

The FM properties mechanism is described later in Section 5.1 and Section 5.9.

3.8 Context

Field objects tend to be large, and for the most part, immutable. They are natural can-
didates for sharing when writing multi-threaded applications. One potential problem
with sharing is that different threads may want the same field to behave in different
ways. For example, different threads may require different interpolation modes. Or,
one thread may require that simplicial decomposition (Section 2.4) be turned on, while
another may require that it be turned off. FM provides Context objects to enable cus-
tomization of behavior. Each thread in a multi-threaded application should have its own
Context, and each can set its parameters as needed. Field methods, such as at cell,
take a pointer to a Context instance as an argument. Thus the same call made by
different threads can behave differently, depending on the Context settings.

Threads should not share Context instances, even if they intend to use the same
settings. Some FM mesh classes use Context objects to cache information, such as
the last cell searched in point location. The caching will not work properly if multiple
threads share the same Context instance.

Users familiar with FEL [24] will recognize that the Context design is one of
the differences between FEL and FM. The lack of something equivalent to a Context
object in FEL was a problem that lead to some fairly awkward solutions, none very
satisfactory.

3.9 Module Organization

There are a multitude of file formats in use by scientists for storing data. Some are
fairly widely recognized standards, such as PLOT3D [32], FITS [11], or HDF [12],
others may be local to a particular research laboratory. FM does not define its own file

3.9. MODULE ORGANIZATION 19

Module Description
FITS reads FITS files [11], metadata read into attributes
FM the central Field Model module
HDF4 rudamentary support for HDF 4.x [12]
HDFEOS4 reads HDFEOS files using EOS library, based on HDF 4.x [26]
PLOT3D extensive support for PLOT3D data [32]
SILO the SILO format is native to LLNL, a minimal skeleton currently
VISUAL3 reads VISUAL3 unstructured meshes

Table 3.2: Current FM modules.

format, it defines interfaces and classes. The central FM interfaces are intended to be
file-format neutral. While FM strives for file-format independence, from a practical
standpoint there needs to be a relatively straight-forward means for scientists to be able
to import and export data between their preferred data format and FM objects. Data
objects are much more interesting to a scientist if they contain his or her own data.
Field Model is organized as modules. The central FM module contains interfaces and
classes common to various data standards. For data from specific file formats, there are
modules corresponding to those formats. Table 3.2 lists the current set of FM modules.
We describe the modules beyond FM in later chapters.

20 CHAPTER 3. IMPLEMENTATION PREAMBLE

Chapter 4

Positional Classes

FM has three positional types: physical, base, and cell. All three types have a Time

data member. Base objects also have a Sub data member for specifying a subblock
in a multi-block object. We describe the three positional types and the Sub and Time

modifier types next.

4.1 Phys<D,C>

Phys<D,C> class instances are used to represent points in
�

-dimensional physical
space. The second template parameter C specifies the coordinate type, it defaults to
Coord. Currently FM only uses physical positions with the default coordinate type,
thus physical position declarations appear with a single parameter. An abbreviated
version of the class declaration looks like:

template <int D, typename C = Coord>
class Phys : public Vector<D,C>
{
public:

Phys() {}
Phys(const Vector<D,C>&);
Phys(const Vector<D,C>&, const Time&);
Phys(const Time&);
const Time& get_time() const;
void set_time(const Time&);

private:
Time time;

};

template <int D, typename C>
std::ostream& operator<<(std::ostream&, const Phys<D,C>&);

See the full declaration in FM Phys.h. Phys<D,C> is derived from Vector<D,C>.
Like vector instances, individual coordinates can be accessed and set via the square
brackets operator. Also, like a vector instance, a physical position instance can be

21

22 CHAPTER 4. POSITIONAL CLASSES

used as an argument to libraries expecting a pointer to a C-style array, For example, a
physical position p with dimensionality 3 and a coordinate type of float could be used
to provide coordinates to OpenGL via glVertex3fv(p). Physical positions include a
time data member.

4.2 Base<B,C>

Base<B,C> class instances are used to represent points in � -dimensional base space.
As with the physical position class, the second template parameter defaults to Coord;
currently FM leaves the second parameter at its default value, thus base position dec-
larations typically appear with a single parameter. An abbreviated version of the class
declaration looks like:

template <int B, typename C = Coord>
class Base : public Vector<B,C>
{
public:
Base();
Base(const Vector<B,C>&);
Base(const Vector<B,C>&, const Sub&, const Time&);
const Sub& get_sub() const;
void set_sub(const Sub&);
const Time& get_time() const;
void set_time(const Time&);

private:
Sub sub;
Time time;

};

template <int B, typename C>
std::ostream& operator<<(std::ostream&, const Base<B,C>&);

See the full declaration in FM Base.h. Unlike physical position objects, Base
include a Sub data member which is used to specify a subblock in a multi-block mesh.
Base positions also include a time data member.

4.3 Cell

The Cell class is the parent class to a variety of cell subclasses in FM. Cell is an
abstract class that declares interface and data members common to all concrete cell
classes, i.e., the classes that one can directly instantiate. We distinguish between classes
and types here: there are more cell classes than there are cell types. For example, there
are different vertex cell classes for structured and unstructured meshes. We introduce
the specific cell classes in the following chapters along with specific mesh types. Ta-
ble 4.1 summarizes the current set of cell types in FM, along with their dimensionality
and face counts.

An abbreviated version of the Cell declaration looks like:

4.3. CELL 23

Prefix Dim. Type 0-faces 1-faces 2-faces 3-faces
V 0 VERTEX CELL 1 0 0 0
E 1 EDGE CELL 2 1 0 0
F 2 TRIANGLE CELL 3 3 1 0
Q 2 QUADRILATERAL CELL 4 4 1 0
T 3 TETRAHEDRON CELL 4 6 4 1
P 3 PYRAMID CELL 5 8 5 1
W 3 PRISM CELL 6 9 5 1
H 3 HEXAHEDRON CELL 8 12 6 1

Table 4.1: The FM cell types. “Prefix” refers to the prefix used with cells are written
to an std::ostream. The prefixes are chosen to be unique. “F” stands for “Face”
or “Facet”, “W” stands for “Wedge”. The “Dim.” column contains the values that
would be returned by get dimension(). The type constants, such as VERTEX CELL,
would be returned by get type(). The final 4 columns contain the return values
for get n faces(�) for � equal to 0 through 3. Thus for example a prism has 6 0-
faces (vertices), 9 1-faces (edges), 5 2-faces (triangles and quadrilaterals) and 1 3-face
(itself).

class Cell : public Object
{
public:

const Sub& get_sub() const;
const Time& get_time() const;
virtual void set_sub(const Sub&);
virtual void set_time(const Time&);

virtual unsigned get_dimension() const = 0;
virtual unsigned get_n_faces(unsigned) const = 0;
virtual int get_type() const = 0;
virtual bool is_subsimplex() const;
virtual Cell* copy() const = 0;

friend bool operator==(const Cell&, const Cell&);

protected:
Cell();
Cell(const Sub&, const Time&);

Sub sub;
Time time;

};

bool operator!=(const Cell&, const Cell&);

The full declaration for Cell and the subclasses of Cell can be found in
FM Cell.[hC].

24 CHAPTER 4. POSITIONAL CLASSES

4.4 Sub

Currently FM provides support for multi-block objects via the Multi Mesh<B,D> and
Multi Field<B,D,T> classes (see Chapter ??). The current classes provide a single
level of hierarchy, thus the minimum required to specify a subblock is a single integer
value. Compared to using a “bare” integer, the Sub class provides safeguards against
using a subblock value that is not initialized. In the longer run, the Sub class is intended
to be able to grow to support specifying subblocks in more general hierarchical objects,
such as adaptive meshes. An abbreviated version of the Sub declaration looks like:

class Sub {
public:
Sub();
Sub(const unsigned);
bool defined() const;
operator unsigned() const;

friend bool operator==(const Sub&, const Sub&);

private:
static const unsigned UNDEFINED;
unsigned sub;

};

bool operator!=(const Sub&, const Sub&);
std::ostream& operator<<(std::ostream&, const Sub&);

The full declaration for Sub can be found in FM Sub.[hC].

4.5 Time

FM uses three time representations: physical, base and step. (For an introduction to
time in FM, see Section 2.3.) The step representation is essentially an integer ver-
sion of base representation. The FM design allows one to use whichever represen-
tation works best for their application. Currently, most time-varying objects inter-
nally consist of a series of instances in time. See Time Series Mesh<B,D> and
Time Series Field<B,D,T>. Setting the time member of a positional object to a
physical value provides the most generality: one can query a time-series object without
concern to where in time the individual time steps are located. Using physical time im-
plies a bit more cost per access: time-series objects must locate where a given physical
time falls in the series and possibly do temporal interpolation. The small amount of
extra computational cost can add up if the positional object is used in many calls. We
return to this issue in the time-series chapter.

The base time representation is in some respects an intermediate to physical and
step representations. Like spatial base coordinates, a base time coordinate provides a
means for the user to specify a position with respect to the discretization. For example,
a base time of 0.5 would be half way between the first and second steps in a time series.

4.5. TIME 25

(Base coordinates are C-style, starting at 0). As with physical coordinates, access using
base coordinates may require a time-series object to do temporal interpolation.

The third time representation is step. Like base coordinates, the step representa-
tion is discretization aware. Unlike base coordinates, step coordinates are restricted to
integer values. The step time representation provides a means for the user to specify
a particular instance in a time series with the assurance that no temporal interpolation
will occur. Using step time in a position argument is the cheapest per access.

Time representation in FM is implemented by the class Time and three classes
derived from Time: Phys Time, Base Time and Step Time. An abbreviated version
of the class declarations looks like:

class Time {
public:

Time();
Time(const Time&);
bool defined() const;
friend bool operator==(const Time&, const Time&);

protected:
enum Representation {UNDEFINED, PHYS, BASE, STEP};
Representation representation;
union {

Coord f;
unsigned u;

} u;
Time(const Representation&, Coord);
Time(const Representation&, unsigned);

};

bool operator!=(const Time&, const Time&);
std::ostream& operator<<(std::ostream&, const Time&);

class Phys_Time : public Time
{
public:

Phys_Time(Coord t);
};

class Base_Time : public Time
{
public:

Base_Time(Coord t);
};

class Step_Time : public Time
{
public:

Step_Time(unsigned t);
};

The full declaration for the time classes can be found in FM Time.[hC]. Time objects

26 CHAPTER 4. POSITIONAL CLASSES

provide an equality test (operator==). Two time objects are equal if and only if they
have both the same representation and same the value. Mixing time representations
in an application should be done with caution if one requires equality tests between
positional arguments. For example:

Vector3u indices(7, 11, 13);
Ptr<Cell> u = new Structured_0_Cell<3>(indices); // vertex
Ptr<Cell> v = u->copy();
std::cout << (*u == *v ? "true" : "false") << std::endl;

u->set_time(Step_Time(1));
v->set_time(Base_Time(1.0));
std::cout << (*u == *v ? "true" : "false") << std::endl;

The first output statement returns true, the second false. Conceivably the FM imple-
mentation could go to greater lengths to ascertain whether a time in step representation
is equivalent to a time in base representation, but it does not. In general, the equality
test code cannot compare times in two different representations because the means to
convert between representations is not available at the point of the equality test.

Here are a few more typical usage examples involving time:

Phys<3> p;
Base<3> b;
p.set_time(Step_Time(2));
b.set_time(p.get_time());

bool equal = p.get_time() == b.get_time();
std::cout << (equal ? "true" : "false") << std::endl;

The final statement prints true.

Chapter 5

The Mesh and Field Interface

A key interface in Field Model, as one would expect, is that for fields. The interface is
templated by three parameters: B, D and T. B and D are integer parameters specifying
base and physical dimensionality, respectively. T specifies the field node type, e.g.,
float. The interface is declared by the class Field<B,D,T>. The subset of the
interface that is not dependent on B, D and T is declared by the class Field (parent
class to Field<B,D,T>). The Field type provides a convenient means to handle
fields in a generic manner, for example, when one has a collection of fields with mixed
dimensionalities and node types.

Every field has a mesh; the mesh encapsulates both geometric and topological in-
formation. The mesh interface is the same as for fields, and in fact every mesh is a field.
As with other fields, the B and D parameters specify base and physical dimensionality.
The node type for meshes is the type for coordinate vectors: Vector<D,Coord>. The
“every field has a mesh” principle still holds true: a mesh is its own mesh.

The field interface methods are covered in the following sections:

Section 5.1 Properties (get base dimensionality, etc.)

Section 5.2 Cardinality (card)

Section 5.3 Canonical enumeration (enum to cell, cell to enum)

Section 5.4 Cell incidence relationships (closure, star, faces)

Section 5.5 Cell neighbor relationships (neighbors)

Section 5.6 Field values (& coordinates) (at base, at cell, at phys, at vert)

Section 5.7 Converting between positional representations (phys to cell, etc.)

Section 5.8 Iterators (begin, split begin, end)

Section 5.9 General properties interface (get, set)

Section 5.10 Miscellaneous.

Specific mesh and field classes are covered in the following chapters.

27

28 CHAPTER 5. THE MESH AND FIELD INTERFACE

Property C++ Return Type get * Arguments
base dimensionality unsigned
blanking behavior bool const Sub* =0, const Time* =0
bounding box std::pair<VDC,VDC> const Sub* =0, const Time* =0
dimensions Vector<B,unsigned> const Sub* =0, const Time* =0
mesh Mesh<B,D>* const Sub* =0, const Time* =0
min max std::pair<T,T> const Sub* =0, const Time* =0
n subs unsigned const Sub* =0, const Time* =0
node association index unsigned
node type std::string
phys dimensionality unsigned
property names std::set<std::string> const Sub* =0, const Time* =0
structured behavior bool const Sub* =0, const Time* =0
time varying behavior bool const Sub* =0

Table 5.1: The standard mesh and field properties that are accessible via get * member
functions. The template arguments B and D specify base and physical dimensionalities,
respectively. The T template argument specifies field node type. The identifier VDC
used in the bounding box return type is shorthand for Vector<D,Coord>.

5.1 Properties

Properties are values associated with a field object such as the base dimensionality,
a string describing the field node type, or the structured dimensions of an underlying
mesh. For convenience and performance, FM provides dedicated access functions for
the most frequently used properties. Field objects also have a general property mech-
anism, which we describe later in Section 5.9. Table 5.1 summarizes the properties
available via dedicated functions. The access function name format is get followed
by the property name, e.g., get base dimensionality. The get functions may
also take optional arguments, listed in Table 5.1. We describe the properties next.

5.1.1 Behaviors

Users can query whether a mesh or field object has blanking, structured, or
time varying behavior using the corresponding get * calls. Querying for a par-
ticular behavior is preferred to testing whether one has a particular implementation
class (e.g., dynamic casting down to Structured Mesh<B,D>*) because there are
many ways to compose objects that have each of the recognized behaviors. “Blank-
ing” indicates that the data contain a means of indicating nodes that do not have valid
values. For example, remote-sensing data may specify a reserved value to use at nodes
where data were not available. In FM requesting data based on blanked nodes pro-
duces the BLANKED DATA return value. One can also query blanking behavior for a
particular subblock in a multi-block object by defining the Sub argument. If the data
are multi-block and Sub is not defined, then blanking behavior is true if any of
the subblocks have blanking behavior. For time-varying data, blanking behavior is
true if blanking behavior is true at any point in time.

5.1. PROPERTIES 29

The structured behavior property indicates whether methods exclusive to
objects with structured behavior can succeed. Such methods include requesting
the dimensions property and those involving an argument in base coordinates
(i.e., a Base argument). As with blanking behavior, one can query a spe-
cific subblock in a multi-block object using the optional Sub argument. Unlike
blanking behavior, if the Sub argument is not defined and the object is multi-block,
then structured behavior is true if and only if all subblocks exhibit structured
behavior. FM uses some interpolation and differential-operator techniques that only
apply in structured-behavior cases. FM internally tests for structured behavior as
a prerequisite to using those techniques.

The time varying behavior property, as the name suggests, indicates whether
the data vary with time. For multi-block data, time varying behavior is true if any
of the subblocks are time-varying. There is no need for an optional Time argument for
this property.

5.1.2 Dimensionality and Node Association Index

The methods get base dimensionality and get phys dimensionality provide
a means to query the base and physical dimensionalities of a mesh or field object. Typ-
ically these properties are queried when starting with a Field object, as a preable to
casting and calling member functions where the arguments depend on the dimensional-
ities. The method get node association index returns the node association, e.g.,
0 for “vertex-centered” data. The dimensionalities and node association must be homo-
geneous across the subblocks of a multi-block object, thus there is no need to provide
an optional Sub argument. These properties cannot change over time, thus there is no
optional Time argument.

5.1.3 Node Type

The node type of a field can be requested in a std::string format. With multi-block
objects the node type must be the same across all the subblocks. Furthermore, node
type cannot change over time. Thus get node type has no optional arguments. The
naming convention for scalar node types follows that used for elements in FM vector
and matrix typedefs, see Section 3.4. For example, a field of C++ float values would
have node type "f". Node types corresponding to an FM Vector<N,T> are composed
by concatenating v, � , and the standard FM name for type � , for instance "v3f".
Naming for vectors of non-scalar types is defined recursively, e.g., a 	 � 	 matrix of
doubles would have the node type "v3v3d".

5.1.4 Dimensions

The dimensions property applies to objects with structured behavior, e.g., a regular
mesh. The dimension property is described in the structured meshes chapter (Chap-
ter 6). For multi-block objects, Sub must be defined – there is no aggregate dimension
property. Requesting the dimensions property on an object that does not have struc-
tured behavior will generate an exception.

30 CHAPTER 5. THE MESH AND FIELD INTERFACE

5.1.5 Mesh

Every field has a mesh, and get mesh provides a means to access that mesh. Calling
get mesh on a mesh causes the mesh to return itself. By defining the Sub argument
one can access a submesh in a multi-block object. Through the Time argument one can
access the mesh from an individual step in a time-series.

5.1.6 Bounding Box and Min-Max

The method get bounding box returns a pair of points in
���

: the low and high
corners of the mesh bounding box. The optional Sub argument can be used to restrict
the query to a particular subblock in a multi-block object. The Time argument can be
used to specify a particular instance in time. If the mesh varies with time, and no time
is specified, then the bounding box over the whole time range will be returned.

The method get min max returns the minimum and maximum values for a field.
If the field node type is non-scalar, then the first value in the returned pair contains the
minimum value for each element, the second value in the returned pair contains the
maximum value for each element. As with get bounding box, the optional Sub and
Time arguments can be used to restrict the query to a specific subblock or instance in
time. For mesh objects, get min max is the same as get bounding box.

5.1.7 Number of Subblocks

The n subs property specifies the number of subblocks in a multi-block object. The
property is 0 for objects that are not multi-block. The Sub and Time optional argu-
ments become important with hierarchical and adaptive meshes. Currently FM pro-
vides meshes and fields with a single level of hierarchy, and the number of subblocks
cannot change over time, thus the optional arguments do not yet come into play.

5.1.8 Property Names

The property names property provides a means to query about what properties are
defined by an object. At a minimum the property names listed in Table 5.1 will be
returned. Various mesh and field subclasses are free to define extra properties. For
example, PLOT3D [32] solution data includes a reynolds number property for fields.
The values associated with additional named properties can be requested via the general
properties interface, described in Section 5.9 below. Through property names one
can do a form of object introspection.

5.2 Cardinality

Meshes are collections of cells. The cardinality, or quantity, of any particular cell type
or cell dimensionality can be requested via the card member function:

unsigned long long card(int, const Sub* =0, const Time* =0,
unsigned=0, int=GROUP_UNDEFINED) const;

5.3. CELLS AND CANONICAL ENUMERATION 31

The first argument specifies a cell type or dimensionality. Typical cell types include
VERTEX CELL or HEXAHEDRON CELL, the full list of cell type constants can be found in
Table 4.1. If the first argument is an integer � � � , then card returns the cardinality of
� -cells. The distinction between cell types and cell dimensionalities becomes important
when working with meshes that contain a mix of cell types for a given dimensionality,
for example, an unstructured mesh where the 3-cells are a mix of prisms and hexahedra.
With multi-block objects, card sums over the subblocks. Defining the Sub argument
causes card to return cardinality for the given subblock only. The card interface
is intended to support adaptive mesh uses. For adaptive meshes, the Sub argument
would be used to specify a subtree in the adaptive mesh hierarchy. The Time argument
would be used to specify the instance in time (where in the series of adaptations) that
one is interested in. The second-to-last argument specifies simplicial decomposition,
by default simplicial decomposition is off (0). The final optional argument is used to
specify groups of cells identified beforehand by particular data formats. For example,
PLOT3D [32] unstructured meshes identify sets of triangles that typically correspond
to aircraft surfaces or symmetry planes.

5.3 Cells and Canonical Enumeration

For each type of cell in a mesh, FM provides a canonical enumeration, in other words,
there is a unique integer associated with each cell of a given type. If the cardinality for
a particular cell type is � , then the enumeration values are in the range ������� ��� ��� . The
enumeration is useful for, among other things, bookkeeping. For example, an algorithm
that keeps track of sets of cells can reduce memory usage by storing the enumeration
value for each cell rather than the cell itself. To convert between one representation
and the other, FM provides the methods:

int cell_to_enum(const Cell* c, unsigned long long* e,
const Sub* =0, const Time* =0) const;

int enum_to_cell(unsigned long long e, int cell_type, Ptr<Cell>* c,
const Sub* =0, const Time* =0) const;

For multi-block objects, the canonical enumeration is cumulative. If the Sub argument
is defined, then the enumeration value will be with respect to the specified subblock
only. The Time argument would be applicable in adaptive mesh cases, since the meshes
and their enumerations would be changing over time.

The canonical enumeration chosen by various mesh and field objects is not arbi-
trary. Typically the numbering is chosen so that each value is equivalent to the index
one would use to access data from a single array with the “usual” layout. We revisit
the topic of canonical enumeration in later chapters.

5.4 Cell Incidence Relationships

Given a cell 	 , an application may require cells incident to 	 . Two cells 	 and
 are
incident if 	 is the face of
 or vice versa. For example, for a given triangle 	 in
a mesh, one may need the vertices of 	 , or perhaps the tetrahedra for which 	 is a

32 CHAPTER 5. THE MESH AND FIELD INTERFACE

a

b
c

d

e

f

g

a b c d e f g

ab ac ae bc cd ce bf cf de df ef eg fg

abc ace bcf cde cdf def efg

Figure 5.1: A small example mesh and its incidence graph.

face. The incidence relationships among cells can be described as a partial ordering
(see for example Alexandroff [4]), and visualized as a graph. Figure 5.1 illustrates
the incidence relationships for a small mesh in

���
. The graph to the right contains

a node for each cell in the mesh to the left. The nodes are organized into rows, each
row containing cells of a particular dimension. The rows are ordered by ascending
dimensionality: higher rows signify higher-dimension cells. A mesh containing 3-cells
would have one extra row at the top. The example queries from above can be seen as
starting at a particular node and following paths downward or upward. For example,
to get the vertices of a triangle 	 , one could start at the node representing 	 and follow
all the paths downwards. Likewise, in a tetrahedral mesh, one could start at a node
representing a triangle 	 and follow the 1 or 2 paths upward, depending on the number
of tetrahedra that have 	 as a face. FM meshes support queries based on cell incidence
relationships via closure, star and faces:

int closure(const Cell* c, unsigned k, std::vector<Ptr<Cell> >*) const;
int star(const Cell* c, unsigned k, std::vector<Ptr<Cell> >*) const;
int faces(const Cell* c, unsigned k, std::vector<Ptr<Cell> >*) const;

The closure and star function definitions follow those in algebraic topology texts (see
for example [3, 4, 25]) except that the methods return cells of a single dimensionality � .
For a

�
-cell 	 , closure returns the � -faces of 	 , where ��� � . For example, one can use

closure to obtain the vertex faces of any cell. For a
�
-cell 	 , star returns the � -cells

that 	 is the face of (� � �). For example, the star of a quadrilateral 	 in a hexahedral
mesh can return the 1 or 2 hexahedra that 	 is the face of. The faces method combines
the functionality of closure and star:

�
-faces of a � -cell is equivalent to closure

if
��� � and star if

��� � . In the the case where
� � � , the faces result would

contain 	 ; every cell is trivially a face of itself.

Note that the concepts of incidence relationships, closure and star are not specific
to a particular type of mesh; algorithms written in terms of closure and star have
the potential of working with many types of meshes.

5.5. NEIGHBOR RELATIONSHIP 33

5.5 Neighbor Relationship

A concept related to the incidence relationships between cells is neighbor relationship.
The method neighbors supports requests for the cells neighboring a given cell:

int neighbors(const Cell*, std::vector<Ptr<Cell> >*) const;

The typical usage of the neighbors with a � -mesh is with a � -cell argument. For
example, given a hexahedron 	 from a hexahedral mesh, neighbors would return the
hexahedra which share a quadrilateral face with 	 . Likewise, given a tetrahedron 	
from a tetrahedral mesh neighbors will return the tetrahedra which share a triangle
face with 	 . The neighbors method is handy for algorithms that work breadth-first,
starting from a seed cell. For example, one could construct an isosurface incrementally,
processing cells outward from an initial 3-cell.

We use a formal definition for neighbors following that given for “adjacent cells”
in Dobkin and Laszlo [10]. Returning to the graph in Figure 5.1, imagine that each
vertex is the face of a special (-1)-cell, i.e. that there is an extra row beneath the
vertex (0-cell) row with one node, and arcs from each vertex to the (-1)-cell node.
Furthermore, if the cells in the top row are � -cells, then imagine an extra row above the
� -cells with a single � ��� ��� -cell that every � -cell is the face of. Given this augmented
incidence relationship graph, one can define the adjacent cells of a cell 	 via the star
and closure operations described above. Let ����� be the set of cells produced by going
up one dimension and then down one dimension, starting with 	 . Let ����� be the set of
cells produced by going down one dimension and then up one dimension, starting with
	 . The neighbor cells to a cell 	 are the cells in �	�
������
��� � � 	 . For example, for the
mesh in Figure 5.1, the neighbors of vertex c would be the vertices a, b, d, e and f. In
the molecular skeleton in Figure 2.1, the neighbors of a vertex � would be the vertices
that share an edge with � , i.e., the neighbors of atom � would be the atoms that share a
bond with � .

5.6 Accessing Field Values and Coordinates

The field interface provides field value access methods for each of the three posi-
tional types: Base, Cell, and Phys<D>. The interface also provides an additional
method dedicated to a specific cell type: vertex. The signatures for the four methods
are:

int at_base(const Base&, Context*, T*) const;
int at_cell(const Cell*, Context*, T*) const;
int at_phys(const Phys<D>&, Context*, T*) const;
int at_vert(const Cell*, Context*, T*) const;

We describe each method in detail next.

5.6.1 at base

The at base method provides access to the value of a field at a specific Base po-
sition. The field must have the structured behavior property. Internally, at base

34 CHAPTER 5. THE MESH AND FIELD INTERFACE

entails point location and interpolation. Calling at base on a mesh provides a means
to convert spatial coordinates from base to physical.

5.6.2 at cell

The at cell method is a “workhorse” method that many other methods operate in
terms of. The number of values written into the buffer passed in as the final argument
to at cell depends on the type of the cell argument and the node association index of
the field. For a field where the field values are in a single buffer (data in the example
below), such as a Core Field T Layout<B,D,T> instance (see Chapter ??), at cell
is defined as:

at_cell(const Cell* c, Context*, T* vals) const
{
std::vector<Ptr<Cell> > faces;
int res = mesh->faces(c, node_association_index, &faces);
if (res != OK)

return res;
for (size_t i = 0; i < faces.size(); i++) {

unsigned long long index;
res = mesh->cell_to_enum(faces[i], &index);
if (res != OK)

return res;
*vals++ = data[index];

}
return OK;

}

The faces method is used to obtain the cells that are paired 1-to-1 with the field
nodes, then cell to enum is used to obtain the data array index for each one. Thus
for example if the argument were a hexahedron, and the node association index was
0, then faces would return the vertex faces, and 8 field values would be written into
the vals buffer. If the first argument were a vertex in a “cell-centered” (i.e., node
association index 3) field based on a hexahedral mesh, then 1 to 8 values would be
written in the vals buffer, depending on the number cells produced by the star of the
vertex.

The definition above is general but rather expensive to evaluate. Many classes
implement at cell using algorithms that exploit optimization opportunities, see for
example Classic Core Field T Layout<B,D,T> (Chapter ??).

In most cases the number of field values to be written into the buffer provided as a
final argument to at cell is known a priori. In cases where the number of values to
be written is not known, there is the method n at cell. See Section 5.10.

5.6.3 at phys

The at phys method is used to obtain a field value at a specific position in physi-
cal space. Internally, at phys entails point location and interpolation. The at phys

method also has a use with meshes: by the return code one can determine whether a
given physical point is within the field domain or not.

5.7. CONVERTING BETWEEN POSITIONAL REPRESENTATIONS 35

5.6.4 at vert

The at vert method is like at cell, except that the first argument is assumed to be
a vertex class instance and the field is assumed to have a node association index of 0.
Any call to at vert could be replaced with at cell; at vert is provided because
accessing “vertex centered” data one vertex at a time is a common usage scenario,
and we wanted to provide optimized performance for that scenario. Observant readers
will notice that the first argument to at vert is declared as const Cell* rather than
a vertex class. This is because there is more than one class for representing vertices:
Structured 0 Cell for structured meshes, Unstructured Vertex for unstruc-
tured meshes. Structured K Cell is also an option for structured meshes. In-
ternally at vert uses C++ reinterpret cast to cast the cell argument to an ap-
propriate vertex cell class. The user is responsible for providing the right cell type
argument to at vert, the use of reinterpret cast means that the C++ compiler
will not protect the user from type mistakes here. Either a Structured 0 Cell or
Structured K Cell instance will work with structured meshes. An FM iterator
is guaranteed to provide an appropriate type if it is initialized to iterate over vertices
(by the same field as that used for the at vert calls).

5.7 Converting Between Positional Representations

The field interface provides a means of converting from one of the three positional
representations to another:

int base_to_cell(const Base&,
Ptr<Structured_B_Cell >*) const;

int phys_to_cell(const Phys<D>&, Context*, Ptr<Cell>*) const;
int phys_to_base(const Phys<D>&, Context*, Base*,

Ptr<Structured_B_Cell >* =0) const;

Fields delegate these methods to their underlying mesh. We discuss each method, and
the conversion combinations that the interface does not provide, below.

5.7.1 base to cell

The call base to cell produces the � -cube from a � -mesh that contains the given
base position.

5.7.2 phys to cell

The method phys to cell essentially does point location, producing a cell that con-
tains a given point � in physical coordinates. Note we say a cell rather than the cell
because it possible for cells to overlap, especially with multi-block objects. Point loca-
tion is not defined for fields where the base dimensionality is not equal to the physical
dimensionality. For example, point location is not defined for a surface in

� �
.

36 CHAPTER 5. THE MESH AND FIELD INTERFACE

5.7.3 phys to base

The method phys to base converts a position from one space to the other. The op-
tional final argument provides an opportunity to obtain a cell containing the given phys-
ical point. This cell is the same as one would obtain using base to cell. As with
phys to cell, phys to base is only defined in cases where the physical and base
dimensionalities are equal.

5.7.4 The Other Combinations

One can imagine six possible combinations, three beyond the three listed above.
The three additional methods would be “base to phys”, “cell to phys” and
“cell to base”. The effect of “base to phys” can be achieved by calling at base
on the underlying mesh, i.e.:

// equivalent to "base_to_phys"
res = mesh->at_base(b, ctxt, &p);
p.set_time(b.get_time());

The methods “cell to phys” and “cell to base” are ambiguous since in general
cells do not correspond to a single point in physical or base space.

5.8 Iterators

Fields are based on meshes, and meshes are collections of cells. FM provides iterators
to ease the development of algorithms that operate over sets of mesh cells. The interface
is intended by be familiar to those already familiar with C++ standard library iterators,
but there are some differences due to the nature of how one might want to iterate over
mesh and field objects:

� Meshes are collections of cells, and those collections include a variety of cell
types; C++ standard library collections contain only one type. Users typically
want to iterate over only one cell type at a time.

� Users often want to iterate over a subset of cells; a means to efficiently describe
a subset at iterator initialization time is needed.

� C++ iterators are not polymorphic, but we want polymorphism. We want to be
able to iterate over a mesh and use a single iterator to access coordinates and
field values. In some cases we may have multiple fields, possibly with different
node types, based on the same mesh. We may want to use the same iterator to
access data from each.

FM supports iteration with the methods begin, split begin, and end. The declara-
tions for the three methods look like:

Iter begin(const Iter_Attrs* =0) const;
std::vector<Iter> split_begin(unsigned n, const Iter_Attrs* =0) const;
Iter end() const;

5.8. ITERATORS 37

Iter Attrs is essentially a std::vector<Iter Attr>, and one can use standard
vector methods to add Iter Attr instances to the vector. The method split begin

is intended for multi-threaded applications. Given a first argument � , split begin

returns � iterators, each for roughly the same number of cells. How the split is done
depends on the underlying mesh type. The split begin method provides a means to
load balance work over multiple threads. Finally, the end method is used in the same
way as with standard library collections.

The basic use of FM iterators looks like:

for (Iter iter = field->begin(); iter != field->end(); ++iter) {
int res = field->at_cell(*iter, &ctxt, &val);
...

}

By default FM iterators iterate over all the vertices in a mesh. Dereferencing the iterator
produces an argument of type const Cell* for use with at cell or at vert, where
appropriate.

A slightly more advanced example of iterator usage would be:

Iter_Attrs iter_attrs;
iter_attrs.push_back(Iter_Attr(CELL_TYPE, HEXAHEDRON_CELL));
for (Iter iter = field->begin(&iter_attrs); !iter.done(); ++iter) {

int res = field->get_mesh()->at_cell(*iter, &ctxt, xyzs);
...
res = field->at_cell(*iter, &ctxt, vals);
...

}

In this case we use an Iter Attrs instance to specify that we want to iterate over hex-
ahedra. Note too that we test whether we are done using the expression !iter.done()
rather than comparing the iter with field->end(). Using the done method is more
efficient. There are many more attributes that we can specify via Iter Attr instances;
the choices are dependent upon the mesh type. We revisit iterator initialization in later
chapters. Within the loop body, note that we can use the same iterator as an argument
to both the underlying mesh and to the field.

Another usage scenario that is fairly common is iterating over cells to identify those
that meet some criterion. For example, when using simplicial decomposition with a
hexahedral mesh, we will get tetrahedra with zero volume if there are hexahedra with
collapsed edges. Here is an excerpt where we search for those cells:

Iter_Attrs iter_attrs;
iter_attrs.push_back(Iter_Attr(SIMPLICIAL_DECOMPOSITION, 1));
Context ctxt;
double volume;
std::vector<Ptr<Cell> > zero_volume_cells;
for (Iter iter = mesh->begin(&iter_attrs); !iter.done(); ++iter) {

int res = mesh->volume(*iter, &ctxt, &volume);
...
if (volume == 0.0)

zero_volume_cells.push_back((*iter)->copy());
}

38 CHAPTER 5. THE MESH AND FIELD INTERFACE

Testing for equality with floating-point numbers is always a little dubious, but we ig-
nore that issue here. There are two things to note about the push back statement.
First, the extra parentheses around the *iter expression are necessary due to C++
precedence idiosyncrasies. Second, note that we call the copy method on the cell we
get from dereferencing the iterator. FM iterators modify their cell values in place, for
performance. We do not want another reference to the cell the iterator is using, we
want a copy that will not change.

5.9 General Properties Interface

In Section 5.1 we listed the standard mesh and field properties that can be queried via
dedicated access methods. Dedicated methods are convenient, efficient, and their use
provides compile-time type checking. Unfortunately, an extensible design can never
provide a complete set of dedicated property access functions. There are an arbitrarily
large number properties that one may wish to associate with a mesh or field object;
some mesh or field subclasses have properties that only apply to instances of those
subclasses. Furthermore, various data file formats provide additional data about the
data (“metadata”) that would be appropriate to make available as properties. Through
the property names property described above, one can obtain the set of all property
names associated with an object. The general get and set interface described below
provides a means to access and modify the values.

FM provides two helper classes for representing general values:
Simple Value<T> and Tuple Value. Their class declarations look like:

template <typename T>
class Simple_Value : public Object
{
public:
Simple_Value(const T&);
T get_value() const;

private:
const T value;

};

class Tuple_Value : public Object
{
public:
Tuple_Value(const std::vector<Ptr<Object> >&);
Tuple_Value(Object*);
Tuple_Value(Object*, Object*);
size_t size() const;
const Ptr<Object>& operator[](int) const;

private:
std::vector<Ptr<Object> > values;

};

Simple Value<T> is used for “simple” values such as scalars and strings.
Tuple Value is used for sequences of values. C++ pairs (std::pair<S,T>), sets

5.10. MISCELLANEOUS 39

(std::set<T>) and vectors (std::vector<T>) are returned using tuple objects. FM
Vector<N,T> instances are also returned as N-tuples. The get and set interface is
declared as:

Ptr<Object> get(const std::string&,
const Sub* =0, const Time* =0) const;

void set(const std::string&, const Ptr<Object>&,
const Sub* =0, const Time* =0);

As with the dedicated property access functions, one can direct a request to a specific
subblock or instance in time using the optional arguments. Calling get on a prop-
erty that is not defined generates an exception. Call set on a property that is not
defined adds that property to an object. Some care is required here: if one intends to
set an extant property to a new value, but misspells the property name, then the ob-
ject will silently add a new property under the misspelled name. Many properties are
immutable; in particular, the properties listed in Table 5.1 cannot be changed. Calling
set on those properties will at best be ignored, at worst it will lead to undefined behav-
ior. Note that the set member function is not const; set is one of the few member
functions that explicitly changes the state of a mesh or field object. The data structures
used internally by FM field objects to store properties are protected by critical-section
mutexes; calling get and set in multithreaded applications is safe. Though thread
safe, using set with objects that are shared by multiple threads obviously should be
done with care.

Finally, FM provides two access functions for cases where one wants to access
arbitrary properties, and the property value type is known a priori:

template <typename T>
void get_simple_value(const std::string&, T*,

const Sub* =0, const Time* =0) const;
template <typename T>
void get_tuple_value(const std::string&, std::vector<T>*,

const Sub* =0, const Time* =0) const;

Attempting to access an undefined property, or a value not of the appropriate type,
generates an exception. As a usage example, here is an alternate method for querying
the physical dimensionality of a field:

unsigned d;
field->get_simple_value("phys_dimensionality", &d);

Using get phys dimensionality would be more efficient since there is no interme-
diate construction of a Simple Value<unsigned> instance.

5.10 Miscellaneous

There are a few field methods that do not neatly fall neatly into the previously listed
categories:

int volume(const Cell*, Context*, double*) const;
int n_at_cell(const Cell*, Context*, unsigned*) const;
int iblanks_at_cell(const Cell*, Context*, int*) const;

40 CHAPTER 5. THE MESH AND FIELD INTERFACE

The volume method, as one would expect, computes the volume for a given cell. The
n at cell method would typically be used in preparation for calling at cell. (de-
scribed in Section 5.6). In most applications, the number of values to be written into
buffer provided as the final argument to at cell is known in advance, thus one can
use a fixed-size buffer. In the relatively infrequent cases where the number of values
to be returned is not known a priori, an application can query what the number will be
via the n at cell method; the value can then be used to dynamically allocate a buffer.

In the FM field interface design, we strove to be independent of any one file format
standard. The iblanks at cell method is a concession to one particular file format:
PLOT3D [32]. IBLANK values in PLOT3D serve two purposes: to flag nodes where
the field values are “blanked”, and to indicate overlap in multi-block meshes. IBLANK
values are integers and are associated with the vertices of a mesh. Use of IBLANK
values is discussed in more detail in the PLOT3D chapter.

Chapter 6

Structured Meshes

The mesh types that users are typically most familiar with are structured meshes. Reg-
ular meshes, rectilinear meshes and curvilinear meshes are all structured types. The
base space for a structured mesh is defined as the Cartesian product of discretely sam-
pled 1-D intervals. For a structured mesh with base dimensionality B, the Cartesian
product defining the base space results in B-dimensional cubes and the faces of those
cubes. For example, a 3-D base space is defined by the product of 3 intervals, and the
mesh consists of hexahedral, quadrilateral, edge and vertex cells.

6.1 Structured Mesh Dimensions

The intervals used to define the base space are meshes themselves: the base and phys-
ical dimensionality for an interval is 1. The number of samples in an interval is
equal to card(0). The dimensions of a structured mesh consist of the number of
samples for each axis in the Cartesian product. Dimensions are available as a mesh
property, see Section 5.1. The get dimensions method returns the dimensions as
a Vector<B,unsigned> object. Traditionally, the axes of a structured mesh are la-
beled � ,

�
, � , and so on. Let dimensions be the return value from get dimensions,

dimensions[0] corresponds to the � -axis, dimensions[1] to the
�
-axis, and so on.

The canonical enumeration (see Section 5.3) for structured meshes is defined with
dimensions[0] (� -axis) changing most rapidly, followed by dimensions[1], and
so forth.

6.2 Simplicial Decomposition

Structured meshes with base dimensionality 2 or 3 optionally provide simplicial de-
composition. When simplicial decomposition is turned on, quadrilaterals are split into
triangles, and hexahedra are split into tetrahedra. For structured meshes the user has the
choice of 3 simplicial decomposition modes. Mode 0 corresponds to no decomposition.
Modes 1 and 2 specify decompositions where each hexahedron is broken into 5 tetrahe-
dra. There are two 5-tetrahedra decompositions possible for a hexahedron. In order for

41

42 CHAPTER 6. STRUCTURED MESHES

� -Cell Alignment Bools Alignment Dimensions Alignment Cards
� 0 1 2 0 1 2 0 1 2
0 (f, f, f) (7, 11, 13) 1001
1 (t, f, f) (f, t, f) (f, f, t) (6, 11, 13) (7, 10, 13) (7, 11, 12) 858 910 924
2 (t, t, f) (t, f, t) (f, t, t) (6, 10, 13) (6, 11, 12) (7, 10, 12) 780 792 840
3 (t, t, t) (6, 10, 12) 720

Table 6.1: An example of the values in internal Structured Mesh<B,D> data struc-
tures for a hexahedral mesh with dimensions (7, 11, 13). The Alignment Bools would
be the same for any structured mesh with base dimensionality 3.

� -Cell Cell Type Alignment
� 0 1 2
1 EDGE CELL � -edges

�
-edges � -edges

2 QUADRILATERAL CELL � -surface
�
-surface � -surface

Table 6.2: The names commonly associated with the standard alignments of a struc-
tured 3-mesh. A surface in a structured 3-mesh can be designated by fixing one of the
axis indices to a specific value. For example, one specifies a � -surface by providing a
specific value for the � axis.

the decompositions to be consistent between each pair of neighboring hexahedra, the
decomposition for each hexahedron must be the opposite of its neighbors. Thus, given
the decomposition choice for one hexahedron in a structured mesh, the choices for all
the remaining hexahedra are forced. FM organizes the 2 decompositions in terms of
“odd” and “even” vertices, where the odd and even designations come from the vertex
indices. A vertex is even if the sum of its indices is even, otherwise it is odd. In decom-
position mode 1, the diagonals added to decompose the quadrilaterals go between even
vertices. The decomposition choices for the 6 quadrilateral faces of a hexahedron leave
only one possible tetrahedral decomposition. In decomposition mode 2, the diagonals
go between odd vertices, and the hexahedral decomposition follows suit.

6.3 Alignments

In FM one can instantiate a structured mesh with arbitrary base dimensionality � . A
structured � -mesh contains � -cells, � � � � � . We require a means to specify any
particular cell. For the moment let us assume simplicial decomposition is off; � -cells,
� � ����� 	 , correspond to vertices, edges, quadrilaterals, and hexahedra, respectively. In
general, we would have � -cubes. In base space, a � -cell would extend along � different
axes. A 0-cell would extend along no axes, a 1-cell along 1 axis, a 2-cell along 2 axes,
and so on. We term the choice of which axes a cell is aligned with as an alignment. The
number of possible alignments for a � -cell in a � -mesh can be expressed combinato-
rially: ��� ��� , i.e., � choose � . For a hexahedral mesh, there is 1 alignment for vertices
(������), 3 alignments for edges (��� 	��), 3 alignments for quadrialaterals (�
��
�), and 1 align-
ment for hexahedra (� �� �). Table 6.1 provides a concrete example: the internal data

6.4. STRUCTURED CELL TYPES 43

structure values for a mesh with dimensions (7, 11, 13). Under the Alignment Bools
heading we see the boolean flags specifying along which axes cells with the given
alignment extend. For example, a quadrilateral with alignment 0 extends along axes 0
and 1. The alignment bools are the same for any structured 3-mesh. The Alignment
Dimensions are a function of the alignment bools and the structured mesh dimensions.
Where the alignment bool is true, the alignment dimension is decremented by 1. Fi-
nally, Alignment Cards are defined as the product of the corresponding alignment
dimensions. For example, for the mesh in Table 6.1, there are 858 edges aligned with
axis 0. There are 2692 (858 + 910 + 924) edges total in the mesh. This is the same total
one would get by calling card(1) on the mesh.

For structured 3-meshes, the terms � -surface,
�
-surface and � -surface are tradition-

ally used to designate the standard surfaces produced by holding one axis index to a
fixed value. Table 6.2 summarizes the correspondence between FM alignments and the
traditional surface names.

6.4 Structured Cell Types

There are 5 structured cell types derived from Structured Cell. For casual
users, it is probably not important to know all 5. Some cell types are implemented
by more than one cell class. For example, there is more than one class that can rep-
resent a hexahedron. FM structured meshes may construct any of the 5 types when
initializing an iterator (e.g, via begin), depending on the cell dimensionality and sim-
plicial decomposition mode specified in the iterator attributes (see Section 6.5 below).
The begin method is essentially a factory; extra effort is made within begin to choose
the most optimal cell type for the requested iteration. The extra effort pays off during
the iteration itself: specific cell classes provide small performance improvements that
add up when making many at cell calls.

6.4.1 Structured Cell

An abbreviated version of the structured cell declaration looks like:

template <int B>
class Structured_Cell : public Cell
{
public:

const Vector<B,unsigned>& get_indices() const;
const unsigned& operator[](int) const;
virtual unsigned& operator[](int);
virtual unsigned get_alignment() const;
virtual unsigned get_subid() const;

protected:
Vector<B,unsigned> indices;

};

The template parameter B specifies the base dimensionality of the mesh that the cell
is intended to work with. The indices for any structured cell can be accessed via the

44 CHAPTER 6. STRUCTURED MESHES

square brackets notation, e.g., structured cell[2] = 4.

6.4.2 Structured K Cell

Structured K Cell is the most general class for representing � -cells in a struc-
tured � -mesh when simplicial decomposition is off. An appreviated version of the
class declaration looks like:

template <int B>
class Structured_K_Cell : public Structured_Cell
{
public:
Structured_K_Cell(const Sub& s, const Time& t,

unsigned d, unsigned a,
const Vector<B,unsigned>& i);

private:
unsigned dimension, alignment;

};

The concept of alignments is described previously in Section 6.3.
Structured K Cell can be used to represent any � -cell, � � � � � . In
cases where one knows a priori that � will be always be 0 or � , then one should use
the classes dedicated to those cell types, which we describe next.

6.4.3 Structured 0 Cell

The Structured 0 Cell class represent vertices. There is no need to provide a
dimension or alignment in a Structured 0 Cell constructor.

6.4.4 Structured B Cell

The Structured B Cell class represents � -cubes, e.g., hexahedra in a 3-mesh,
or quadrilaterals in a 2-mesh. As with Structured 0 Cell, there is no need to
provide a dimension or alignment argument in a Structured B Cell constructor.

6.4.5 Structured Subsimplex

When simplicial decomposition is turned on, then we need objects that can represent
subsimplexes within a � -cube.

template <int B>
class Structured_Subsimplex : public Structured_Cell
{
public:
Structured_Subsimplex(const Sub& s, const Time& t,

unsigned d, unsigned sid,
const Vector<B,unsigned>&);

private:
unsigned dimension, subid;

};

6.5. ITERATORS 45

Attribute Arg. Types Default
ALIGNMENT unsigned none
AXIS BEGIN unsigned axis, unsigned i 0
AXIS END unsigned axis, unsigned i see caption
AXIS STRIDE unsigned axis, unsigned i 1
CELL DIMENSION unsigned 0
CELL TYPE int VERTEX CELL
I SURFACE unsigned none
J SURFACE unsigned none
K SURFACE unsigned none
SIMPLICIAL DECOMPOSITION unsigned 0
SUB Sub Sub undefined
TIME Time Time undefined

Table 6.3: The standard structured mesh Iter Attr codes. The default AXIS END

values depend on the cell type and whether an alignment is specified.

6.4.6 Structured B Subsimplex

Analogous to the performance-optimized class for a � -cube, we have an optimized
class for a structured � -subsimplex, i.e., a subtetrahedron of a hexahedron, or the sub-
triangle of quadrilateral.

6.5 Iterators

In Section 5.8 we introduced the iterator interface for Field Model meshes and fields.
By default FM iterators loop over every vertex in a mesh. To change the set or
type of cells iterated over, one can provide an Iter Attrs argument to begin or
split begin. Table 6.3 summarizes the Iter Attr keywords for structured meshes.
Typical usage looks like:

Iter_Attrs iter_attrs;
iter_attrs.push_back(Iter_Attr(K_SURFACE, 2));
iter_attrs.push_back(Iter_Attr(AXIS_BEGIN, 0, 5));
iter_attrs.push_back(Iter_Attr(AXIS_END, 0, 10));
for (Iter iter = field->begin(&iter_attrs); !iter.done(); ++iter) {

int res = field->get_mesh()->at_cell(*iter, &ctxt, xyzs);
...
res = field->at_cell(*iter, &ctxt, vals);
...

}

We walk through the Iter Attr options for structured behavior objects next.

6.5.1 ALIGNMENT

By default, an iterator will iterate over every alignment that is appropriate for a given
cell type. The � -cells in a � -mesh � have more than one alignment if � � � � � , in

46 CHAPTER 6. STRUCTURED MESHES

other words, if the cell type is neither a vertex nor a � -cube in � . Via the ALIGNMENT
Iter Attr, one can restrict the iteration to a specific alignment.

6.5.2 AXIS BEGIN, AXIS END, AXIS STRIDE

The loop construct for an axis, given begin, end and stride values, would look like:

for (unsigned i = begin; i < end; i += stride)
...

For a � -mesh, the loops for the � axes would essentially be nested, with axis 0 as
the innermost loop. The AXIS BEGIN and AXIS STRIDE values for each axis default
to 0 and 1, respectively. The AXIS END default value depends on the alignment im-
plied by the iterator attributes. Recall in Section 6.3 we introduced the concepts of
alignments and alignment dimensions. Table 6.1 provided a concrete example. The
alignment dimensions provide the default iteration end values for a particular cell type
and alignment.

Recall that � -cells, � � � � � , have multiple alignments. For such cells, if the
ALIGNMENT attribute is not given in the initialization, then the iterator will loop over
each alignment. This implies an ambiguity: which alignment should AXIS BEGIN,
AXIS STRIDE and AXIS END attributes be applied to? Applying the attributes to all
alignments is one possibility, but this interpretation is not always meaningful. Cur-
rently the implementation takes the more conservative approach: the AXIS BEGIN,
AXIS STRIDE and AXIS END attributes are ignored multi-alignment cases. If neces-
sary one can still control these attributes by iterating over one alignment at a time.

6.5.3 CELL DIMENSION, CELL TYPE

One can directly specify the type of cells to iterate over via either CELL DIMENSION

or CELL TYPE. If both dimension and type are specified, then cell type trumps cell
dimension. If the cell type is given as TRIANGLE CELL or TETRAHDRON CELL and
simplicial decomposition mode is 0 (either because it was not specified or because it
was explicitly given as 0) then the simplicial decomposition mode is set to 1.

6.5.4 I SURFACE, J SURFACE, K SURFACE

The I SURFACE, J SURFACE and K SURFACE attributes provide a convenient shorthand
in 3-mesh cases for initializing an iterator to loop over the 2-cells in a surface defined
by holding one of the structured mesh indices constant. The alignment is implied by
the I, J, or K designation. See Table 6.2

6.5.5 SIMPLICIAL DECOMPOSITION

The SIMPLICIAL DECOMPOSITION option is available for meshes with base dimen-
sionality 2 or 3. See Section 6.2.

6.6. REGULAR INTERVAL 47

6.5.6 SUB, TIME

By default in multi-block cases an iterator will iterate over all the subblocks. If a SUB
Iter Attr is provided, then the iteration will be over the particular subblock only. For
more on multi-block iteration, see Chapter ??

For time-varying data, time must be set on cell arguments, including the cell argu-
ments provided by dereferenced iterators. Time is set via the TIME iterator attribute:

Iter_Attrs iter_attrs;
iter_attrs.push_back(Iter_Attr(SUB, Sub(10)));
iter_attrs.push_back(Iter_Attr(TIME, Phys_Time(3.0)));

It is difficult to set the subblock or time on an iterator once it is initialized because
the dereferenced iterator type is const Cell* and the Cell set sub and set time

methods are not const.

6.6 Regular Interval

Regular Interval is derived from Structured Mesh<1,1>, it represents a 1-
�

interval. The constructor looks like:

Regular_Interval::
Regular_Interval(unsigned n,

Coord origin = Coord(0), Coord delta = Coord(1));

The delta value is required to be non-zero. Negative values for delta are allowed.
Regular Interval is typically used in the construction of higher-dimensional ob-
jects. See for example Product Mesh<B,D>.

6.7 Irregular Interval

Irregular Interval is derived from Structured Mesh<1,1>, just as with regular
intervals. The constructor looks like:

Irregular_Interval::
Irregular_Interval(unsigned n, const Coord* x);

The coordinate values x are required to be strictly ascending or descending. As with
regular intervals, Irregular Interval is typically used in the construction of prod-
uct meshes. The user can control whether an Irregular Interval instance will
deallocate its coordinate buffer when it is destructed via the delete suppression

property. See Section 3.7.

6.8 Product Mesh<B,D>

The Product Mesh<B,D> class represents rectilinear meshes aligned with the physical
coordinate axes. The meshes can be defined as the Cartesian product of � 1-

�
axes.

Those axes are passed in to the Product Mesh<B,D> constructor:

48 CHAPTER 6. STRUCTURED MESHES

Cylindrical Physical Axis Indices
Centerline Radial Rotational Length

X-Axis 1 2 0
Y-Axis 2 0 1
Z-Axis 0 1 2

Table 6.4: The standard choices for the physical axis indices in a Cylindrical Mesh

constructor. By default the cylinder centerline is the � -axis. The standard combina-
tions produce right-handed cells.

template <int B, int D>
Product_Mesh<B,D>::
Product_Mesh(const std::vector<Ptr<Mesh<1,1> > >& axes);

The Mesh<1,1> objects used to specify each axis are typically in-
stances of Regular Interval or Irregular Interval, described above.
Product Mesh<B,D> instances have structured behavior, and each of the axes must
also have structured behavior. In the cases where � � � , the

� � � highest physical
coordinates are fixed at 0.0. For example, Product Mesh<2,3> would represent a
rectangular surface mesh in the � � � plane.

6.9 Regular Mesh<B,D>

Regular Mesh<B,D> objects are essentially Product Mesh<B,D> instances with
more convenient constructors and some performance optimizations. Both
Regular Mesh<B,D> constructors take the mesh dimensions as the first argument.
By default the origin and spacing along each axis is 0 and 1, respectively. The second
form of the Regular Mesh<B,D> constructor takes arguments enabling one to specify
an origin and a spacing different from the default. The two constructor declarations
are:

template <int B, int D>
Regular_Mesh<B,D>::
Regular_Mesh(const Vector<B,unsigned>& dimensions);

template <int B, int D>
Regular_Mesh<B,D>::
Regular_Mesh(const Vector<B,unsigned>& dimensions,

const Vector<B,double>& origin,
const Vector<B,double>& spacing);

The implementation is free to provide Regular Mesh<B,D> specializations that are
optimized for various dimensionalities. Currently the implementation provides a
full specialization for some of the methods of the most popular instantiation type:
Regular Mesh<3,3>. See FM Regular Mesh.[hC].

6.10. CYLINDRICAL MESH 49

6.10 Cylindrical Mesh

The Cylindrical Mesh class represents cylindrical meshes aligned with the physical
coordinate axes. Both the base and physical dimensionality for Cylindrical Mesh
objects are 3. Cylindrical Mesh are defined such that the radial axis extends in
the direction of 0 rotation, the rotational axis extends in the direction of one quarter
revolution, and the length axis extends in the direction of the cylindrical centerline.
The Cylindrical Mesh constructor definition is:

Cylindrical_Mesh::
Cylindrical_Mesh(const Ptr<Mesh<1,1> >& radial_axis,

const Ptr<Mesh<1,1> >& rotational_axis,
const Ptr<Mesh<1,1> >& length_axis,
unsigned phys_radial_axis_index = 0,
unsigned phys_rotational_axis_index = 1,
unsigned phys_length_axis_index = 2,
unsigned base_radial_axis_index = 0,
unsigned base_rotational_axis_index = 1,
unsigned base_length_axis_index = 2);

The first 3 arguments to the constructor are 1-
�

meshes specifying the coordinates to
use for each axis. Rotational coordinates should be in radians. Each of the 3 axes is
required to have structured behavior. The next three arguments specify which axis the
cylinder is aligned with. Table 6.4 summarizes the standard choices. By default the
centerline of the cylinder is the � -axis. One can imagine 6 possible combinations, 3
beyond those listed in Table 6.4. The remaining three combinations would define cylin-
drical meshes with left-handed cells. The constructor detects this; using combinations
that result in left-handed cells is OK. The final three arguments specify the pairings
between the base and physical axes.

The Cylindrical Mesh specification is intended to be flexible enough to rep-
resent a wide variety of axis-aligned cylinder uses. Compared to the more general
Curvilinear Mesh<3,3>, Cylindrical Mesh objects require less memory and
have better point location performance.

6.11 Curvilinear Mesh<B,D>

Curvilinear meshes are the most general type of structured mesh in FM.
Curvilinear Mesh<B,D> is an abstract class and parent to derived classes distin-
guished by how the coordinates are stored. We review those classes next.

6.11.1 Curvilinear Mesh T Layout<B,D,U>

The class Curvilinear Mesh T Layout<B,D,U> is constructed with a single array
of Vector<D,Coord>, the type “T” in T Layout. The constructor looks like:

template <int B, int D, typename U = unsigned>
Curvilinear_Mesh_T_Layout<B,D,U>::
Curvilinear_Mesh_T_Layout(const Vector<B,unsigned>& dimensions,

const Vector<D,Coord>* coordinates);

50 CHAPTER 6. STRUCTURED MESHES

The final template argument U specifies the type to use for array indexing. The type
should be either unsigned (the default) or unsigned long long. Typically the
unsigned type consists of 32 bits and unsigned long long consists of 64. Use
of 64-bit values adds a small cost to indexing calculations. Since coordinate access
tends to be one of the most performance-critical operations, we provide the choice of
indexing type.

The convention in FM for mesh and field constructors is that any buffer provided as
a constructor argument becomes the reponsibility of the FM object to deallocate. One
can suppress the default deallocation behavior by setting the delete suppression

property to true. See Section 3.7.

Chapter 7

Unstructured Meshes

The unstructured mesh classes in Field Model inherit from the parent abstract class
Unstructured Mesh<B,D>. There are several classes to choose from, each distin-
guished by the internal data structures used to represent the mesh. We review the
current classes next.

7.1 Unstructured Vertex Mesh<D>

Unstructured Vertex Mesh<D> is designed for meshes with a base dimensionality
of 0, i.e., what are known as “scattered vertex” meshes. The constructor looks like:

template <int D>
Unstructured_Vertex_Mesh::
Unstructured_Vertex_Mesh(unsigned n, const Vector<D,Coord>* x);

The class is templated on the physical dimensionality
�

, typical instantiation val-
ues for

�
are 2 or 3.. In Figure 2.1, the � ��� � � and � ��� 	 � cases correspond to

Unstructured Vertex Mesh<2> and Unstructured Vertex Mesh<3> instances,
respectively.

7.2 Unstructured Edge Mesh<D>

Unstructured Edge Mesh<D> is designed for meshes with a base dimensionality of
1, i.e., meshes consisting of vertices and edges. The constructor looks like:

template <int D>
Unstructured_Edge_Mesh<D>::
Unstructured_Edge_Mesh(unsigned n_vertices, const Vector<D,Coord>* x,

unsigned n_edges, const Vector2u* edges);

The class is templated on the physical dimensionality
�

. As with the unstructured
vertex mesh class described above, typical instantiation values are 2 or 3. In Fig-
ure 2.1, the � ��� � � and � ��� 	 � cases correspond to Unstructured Edge Mesh<2> and

51

52 CHAPTER 7. UNSTRUCTURED MESHES

Unstructured Edge Mesh<3> instances, respectively. Note that the class is con-
structued with minimal connectivity information: the edges array simply consists of
pairs of unsigned integers specifying the indices for the two vertex faces of each edge.
Unstructured Edge Mesh<D> does not construct additional connectivity data struc-
tures, thus some topological requests can be relatively expensive to compute. In partic-
ular, for a mesh with � edges, the 1-star of a vertex is computed in order

� � � � time.

7.3 Unstructured Triangle Mesh<D>

Unstructured Triangle Mesh<D> is designed for meshes consisting of triangles,
edges and vertices. Typical values for

�
are 2 and 3. The constructor looks like:

template <int D>
Unstructured_Triangle_Mesh<D>::
Unstructured_Triangle_Mesh(unsigned n_v, const Vector<D,Coord>* x,

unsigned n_t, const Vector3u* t);

Like Unstructured Edge Mesh<D>, Unstructured Triangle Mesh<D> is con-
structed with the coordinates of each vertex and minimal connectivity information:
the vertex indices for each triangle for the triangle mesh case. Unlike the un-
structured edge mesh class, Unstructured Triangle Mesh<D> may construct ad-
ditional internal data structures if required by the access requests. In particular,
Unstructured Triangle Mesh<D> instances can enumerate the edges in the mesh
if needed. Requests that require edge enumeration include card(1), topological oper-
ations involving 1-cells, and iteration over 1-cells.

7.4 Unstructured TPWH Mesh

The Unstructured TPWH Mesh class represents meshes with base and physical di-
mensionality of 3. The 3-cells are tetrahedra, pyramids, prisms, and hexahedra. The
TPWH designation comes from the 3-cell names, prisms are also known as “wedges”.
There are two constructors:

Unstructured_TPWH_Mesh::
Unstructured_TPWH_Mesh(unsigned n_vertices, const Vector3C* xyzs,

unsigned n_tetrahedra, Vector4u* tetrahedra,
unsigned n_pyramids, Vector5u* pyramids,
unsigned n_prisms, Vector6u* prisms,
unsigned n_hexahedra, Vector8u* hexahedra);

Unstructured_TPWH_Mesh::
Unstructured_TPWH_Mesh(unsigned n_vertices, const Vector3C* xyzs,

unsigned n_tetrahedra, Vector4u* tetrahedra,
unsigned n_pyramids, Vector5u* pyramids,
unsigned n_prisms, Vector6u* prisms,
unsigned n_hexahedra, Vector8u* hexahedra,
Triangle_Vertices_To_Facet_Info_Map*,
Quadrilateral_Vertices_To_Facet_Info_Map*);

7.4. UNSTRUCTURED TPWH MESH 53

The second constructor includes two extra arguments: a pointer to a hash table that
maps from triangle vertices to facet info, and a pointer to a hash table that maps from
quadrilateral vertices to facet info. Facets are 2-cells (triangles and quadrilaterals here),
and facet info is a data structure containing information about the 1 or 2 3-cells that
each facet is the face of. Facet info is used for neighbors calls and point location
algorithms that walk from one 3-cell to another.

54 CHAPTER 7. UNSTRUCTURED MESHES

Bibliography

[1] G. Abram and L. Treinish. An extended data-flow architecture for a data analysis
and visualization. In Proceedings of Visualization ’95, pages 263–270. IEEE
Computer Society Press, 1995.

[2] A. Alexandrescu. Modern C++ Design. Addison Wesley, 2001.

[3] P. Alexandroff. Elementary Concepts of Topology. Dover Publications, Inc., New
York, 1961. Translated by Alan E. Farley.

[4] P. S. Alexandroff. Combinatorial Topology. Dover Publications, Inc., New York,
1998.

[5] S. Parker amd D. Weinstein and C. Johnson. The SCIRun computational steering
software system. In E. Arge, A. Bruaset, and H. Langtangen, editors, Modern
Software Tools for Scientific Computing. Birkhäuser, 1997.

[6] G. Bancroft et al. FAST: A multi-processed environment for visualization of
computational fluid dynamics. In Proceedings of Visualization ’90, pages 14–24.
IEEE Computer Society Press, October 1990.

[7] S. Bryson, D. Kenwright, and M. Gerald-Yamasaki. FEL: The field encapsulation
library. In Proceedings of Visualization ’96, pages 241–247. IEEE Computer
Society Press, October 1996.

[8] D. M. Butler and M. H. Pendley. A visualization model based on the mathematics
of fiber bundles. Computers in Physics, 3(5):45–51, Sep/Oct 1989.

[9] M. Cox and D. Ellsworth. Application-controlled demand paging for out-of-
core visualization. In Proceedings of Visualization ’97, pages 235–244. IEEE
Computer Society Press, October 1997.

[10] D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-
dimensional subdivisions. Algorithmica, 4:3–32, 1989.

[11] FITS. http://www.gsfc.nasa.gov/astro/fits/fits home.html.

[12] National Center for Supercomputing Applications. Hierarchical Data Format.
http://hdf.ncsa.uiuc.edu/.

55

56 BIBLIOGRAPHY

[13] R. B. Haber, B. Lucas, and N. Collins. A data model for scientific visualization
with provisions for regular and irregular grids. In IEEE Visualization ’91, pages
298–305. IEEE, October 1991.

[14] S. Haney and J. Crotinger. How templates enable high-performance scientific
computing in C++. Computing in Science & Engineering, 1(4):66–72, Jul/Aug
1999.

[15] W. Hibbard. VisAD: Connecting people to computations and people to people.
Computer Graphics, 32(3), 1998.

[16] W. L. Hibbard, C. R. Dyer, and B. E. Paul. A lattice model for data display. In
IEEE Visualization ’94, pages 310–317. IEEE, October 1994.

[17] D. Kenwright. Automatic detection of open and closed separation and attachment
lines. In Proceedings of Visualization 1998, pages 151–158. IEEE Computer
Society Press, October 1995. using delta wing data, not time-varying.

[18] D. Kenwright and D. Lane. Optimization of time-dependent particle tracing using
tetrahedral decomposition. In Proceedings of Visualization ’95. IEEE Computer
Society Press, October 1995.

[19] C. Law, K. Martin, W. Schroeder, and J. Temkin. A multi-threaded streaming
pipeline architecture for large structured data sets. In Proceedings of Visualization
’99, pages 225–232, October 1999.

[20] B. Lucas et al. An architecture for a scientific visualization system. In Proceed-
ings of Visualization ’92, pages 107–114. IEEE Computer Society Press, 1992.

[21] S. Meyers. More Effective C++. Addison Wesley, 1996.

[22] P. Moran and C. Henze. Large data visualization with demand-driven calculation.
In Proceedings of Visualization ’99, pages 27–33. IEEE Computer Society Press,
October 1999.

[23] P. Moran and C. Henze. The FEL 2.2 reference manual. Technical report, Na-
tional Aeronautics and Space Administration, 2000. NAS-00-007.

[24] P. Moran, C. Henze, and D. Ellsworth. The FEL 2.2 user guide. Technical report,
National Aeronautics and Space Administration, 2000. NAS-00-002.

[25] J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.

[26] NCSA/NASA. HDF-EOS. http://hdfeos.gsfc.nasa.gov/.

[27] S. Parker. The SCIRun Problem Solving Environment and Computational Steering
Software System. PhD thesis, University of Utah, 1999.

[28] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics. Prentice-Hall Inc., New Jersey, second edi-
tion, 1997.

BIBLIOGRAPHY 57

[29] B. Stroustrup. The C++ Programming Language. Addison Wesley, special edi-
tion, 2000.

[30] L. A. Treinish. A function-based data model for visualization. In Visualization
’99 Late Breaking Hot Topics. IEEE Computer Society Press, 1999.

[31] T. Veldhuizen. Expression templates. C++ Report, 7(26), 1995.

[32] P. Walatka, P. Buning, L. Pierce, and P. Elson. PLOT3D User’s Manual. National
Aeronautics and Space Administration, July 1992. NASA Technical Memoran-
dum 101067.

