
Prabhat
Lawrence Berkeley National Lab

DOECGF
April 21, 2009

1

  Science
◦ Global Cloud Resolving Models
◦ Geodesic Grids

 Our Work
◦  Efficient Parallel I/O
◦ Data Model
◦ Visualization

2

  Science
◦ Global Cloud Resolving Models
◦ Geodesic Grids

 Our Work
◦  Efficient Parallel I/O
◦ Data Model
◦ Visualization

3

 Design and Testing of a Global Cloud
Resolving Model (GCRM)
◦ Dave Randall, CSU

 Community Access to Global Cloud
Resolving Model Data and Analyses
◦  Karen Schuchardt, PNNL

4

5

6

7

8

9

  Shown to agree with radar
observations

  Existing models use
cumulus and stratus cloud
parameterizations

 Cirrus clouds known to
strongly influence weather
patterns
◦  Can only be resolved with

fine grid resolution (< 4km)

10

cirrus

stratus

cumulus

  Computationally expensive to extend a cloud-
resolving model to a global model
◦  Now possible on high-end systems like Franklin and

Jaguar
  GCRM model will be verified using satellite, radar,

and in-situ observations

11 Figure from Celal Konor, Joon Hee Jung, Ross Heikes, David Randall, Akio Arakawa

 Recursive subdivision of an icosahedron
12

13

 N = 10 * 22R + 2
 ~17B cells for 25 levels at R=13

14

R Cell width (Km) N

10 8 10,485,762

11 4 41,943,042

12 2 167,772,162

13 1 671,088,642

 Run at 4km resolution (R=11) or better
 Large Concurrency
◦  30K+ cores
◦ Cray XT4 (Franklin/Jaguar)

15

 ~20 variables
 16-48 GB per variable
 Dump snapshots every simulated hour
 Overall
◦  ~0.3-1 TB/snapshot
◦  ~1-10 PB of simulation data for one simulated

year

16

 GCRM code
◦  dump_buffer(“variable”, *array);

 Write to shared file
  I/O should not add more than 10%

overhead
 Need sustained shared write performance of

2+ GB/s

17

  Implementation in pNetCDF (NetCDF-3)

 2-phase I/O
◦  Subset of compute nodes do aggregation and

writes
◦ Data shuffling (morton-ordering)

 Observed Collective Write Performance
~100-500 MB/s vs. 12 GB/s max

18

  Science
◦ Global Cloud Resolving Models
◦ Geodesic Grids

 Our Work
◦  Efficient Parallel I/O
◦ Data Model
◦ Visualization

19

 Used IOR to generate I/O patterns
 Used IPM to characterize system issues
◦  Impossible to know what POSIX calls are

made by the system stack
  User App
  pNetCDF/HDF5
  MPI-IO
  POSIX

20

6.1MB writes (shared)

21

File-per-proc

7MB writes (shared)

22

Baseline
from PNNL

MPI-IO Calls
reconfigured

Proof-of-concept IO pattern using MPI-
IO in independent mode and 7MB
transfers

Cray’s MPI-IO Implementation (1294 MB/s) ~ MPI-IO VFD collective mode

IOR POSIX Shared File (6535 MB/s) ~ MPI-POSIX VFD

Synchronous vs. Asynchronous Write Calls for Same IO Pattern

Test Parameters
Nodes/stripes: 80
Aggregate data: 40GB
Stripe width: 8MB
Write size: 8MB
Writes per node: 64

Key
Open
Read
Write
Seek
Close

23

  Poor performance when IO patterns do not
align to lustre stripes

  ‘Read-Modify-Write’ semantics pulls stripe
data all the way to the client

  Small (~10-100K) buffer writes
◦  User level aggregation not working

 MPI-IO implementation issues
◦  Conservative, MPI Barriers
◦  2-phase IO doesn’t work

 Highly variable latency on a per-OST basis

24

 NERSC/HDF5 collaboration
◦ Make HDF5 lustre-aware
◦  Add hooks to HDF5 tunable parameters
◦  Pad/align chunks to stripe boundaries

 New Cray MPI-IO version
◦  Improve 2-phase I/O implementation
◦  Avoid user space solutions

 Hardware upgrades
◦  2x OSTs
◦  Split /scratch filesystem in half
  separate MDS
  reduce contention

25

  Science
◦ Global Cloud Resolving Models
◦ Geodesic Grids

 Our Work
◦  Efficient Parallel I/O
◦ Data Model
◦ Visualization

26

 Metadata conventions for geodesic mesh
 All types of mesh variables/layout
◦  cell/corner/edge centered

 Minimize duplicated data
◦  unique vertices, corners, edges

 Ease-of-import for other vis/analysis apps
  Subsetting
 Current implementation in NetCDF-3
◦  Future plans for NetCDF-4

27

28

dimensions:
 time = UNLIMITED ; // (1 currently)
 cells = 10485762 ;
 cellcorners = 6 ;
 corners = 20971520 ;
 celledges = 6 ;
 edges = 31457280 ;
 cellneighbors = 6 ;
 layers = 25 ;
 interfaces = 26 ;

variables:
 float grid_center_lat(cells) ;
 grid_center_lat:long_name = "Latitude of cell center" ;
 grid_center_lat:units = "radians" ;

 float grid_center_lon(cells) ;
 grid_center_lon:long_name = "Longitude of cell center" ;
 grid_center_lon:units = "radians" ;

 float grid_corner_lat(corners) ;
 grid_corner_lat2:long_name = "Latitude of unique cell corners" ;
 grid_corner_lat2:units = "radians" ;

 float grid_corner_lon(corners) ;
 grid_corner_lon2:long_name = "Longitude of unique cell corners" ;
 grid_corner_lon2:units = "radians" ;

29

 int cell_neighbors(cells, cellneighbors) ;
 cell_neighbors:long_name = "List of neighbors to this cell" ;
 cell_neighbors:units = "unitless" ;
 int cell_corners(cells, cellcorners) ;
 cell_corners:long_name = "Indices of cell corners" ;
 int cell_edges(cells, celledges) ;
 cell_edges:long_name = "Indices of cell edges" ;

 float pressure(time, cells, layers) ;
 pressure:long_name = "Pressure" ;
 pressure:units = "Pa" ;
 pressure:coordinates = "grid_center_lat grid_center_lon" ;
 float geopotential(time, cells, interfaces) ;
 geopotential:long_name = "Geo Potential" ;
 geopotential:units = "m**2/sec**2" ;
 geopotential:coordinates = "grid_center_lat grid_center_lon" ;
 float u(time, corners, layers) ;
 u:long_name = "U wind component at cell corners" ;
 u:units = "m/sec" ;
 float v(time, corners, layers) ;
 v:long_name = "V wind component at cell corners" ;
 v:units = "m/sec" ;
 float wind(time, edges, layers) ;
 wind:long_name = "Wind component at faces" ;
 wind:units = "m/sec" ;

  Science
◦ Global Cloud Resolving Models
◦ Geodesic Grids

 Our Work
◦  Efficient Parallel I/O
◦ Data Model
◦ Visualization

30

 Handle large data
◦  Existing tools don’t scale

 Rich vis/analysis feature set
 Remote vis capabilities
◦ Keep data at NERSC

 Deploy on workstations/laptops, OS

31

 VisIt plugin directly imports Geodesic grid
◦  Serial version

  Fully supports GCRM data model
◦ All mesh types and variables are supported
◦ Different tessellations/meshes are created

 http://vis.lbl.gov/~prabhat/Incite19/

32

Variable de!ned at
cell centers (face)

Variable de!ned at
cell corners (vertex)

Variable de!ned at
cell edges (edge)

Requires interpolation
to cell centers (blue points)
using information from
surounding corners (green
points)

Straightforward. No interpolations. Requires interpolation
to cell centers (blue points)
using information from
surounding edges(green
points)

33

34

35

36

37

 GCRM Collective I/O
◦ Acceptable level (~2+GB/s)
◦  Improvements in I/O hardware at NERSC
◦ MPI-IO improvements from Cray

 Data Model
◦ Complete

 Visualization
◦  Serial plugin implemented
◦  Parallel version forthcoming

38

  LBNL/NERSC
◦ Mark Howison, Janet Jacobsen, Gunther Weber,

Wes Bethel
◦  John Shalf, Tony Drummond, Katie Antypas,

Andrew Uselton, Shane Canon
◦ Michael Wehner

  PNNL
◦  Karen Schuchardt, Bruce Palmer, Annette Koontz

 Colorado State Univ
◦  Ross Heikes, Dave Randall

  LLNL
◦  Hank Childs

39

40

41

 ~10K nodes, ~40K cores
  SeaStar Network
 10 OSSs
 40 OSTs
  Fibre Channel path to DDN Disk Arrays

 12GB/s peak I/O rate (Idealized conditions)

42

43

44

 2-phase IO offers another solution:
◦ Aggregate array on writer nodes
◦ Writer node treats data as flat 1D array,

which is split into 1MB segments

45

…

proc 0 proc 1 proc 2

writer 0 …
1MB 1MB

OST

