
An	advanced	data	so,ware	architecture	for	Neurodata	Without	Borders	(NWB)	to	
enable	efficient	management,	use	and	sharing	of	neurophysiology	data		

O.	Rübel1*,	A.	Tri01*,	D.	Camp1,	E.F.	Chang3,	D.	Donofrio1,	L.M.	Frank4,	F.T.	Sommer5,	K.	Bouchard2	
5	Redwood	Center	for	TheoreLcal	Neuroscience,	UC	Berkeley,	Berkeley,	CA	
*	These	authors	have	contributed	equally	to	this	work	

1	ComputaLonal	Research	Division,	Lawrence	Berkeley	NaLonal	Laboratory,	Berkeley	CA	
2	Biological	Systems	and	Engineering	Division,	Lawrence	Berkeley	NaLonal	Laboratory,	Berkeley	CA	

3	Department	of	Neurological	Surgery,	UC	San	Francisco,	San	Francisco,	CA	
4	Department	of	Physiology,	UC	San	Francisco,	San	Francisco,	CA	

Data	Storage:	
How	to	store	large	collecDons	of	neuroscience	data?	

SpecificaDon	Language:	
How	to	formally	define	neuroscience	data	standards?	

Format	SpecificaDon:	
How	to	organize	complex	collecDons	of	neuroscience	data?	

PyNWB:	Enabling	users	to	efficiently	interact	with	NWB:N	data	and	format	specificaDons	

Working	with	the	neuroscience	community	towards	beNer	science	soluDons	

Using	Modern	So,ware	Processes	for	PyNWB			

Main	Contributors:			J.-C.	Fillion-Robin,	D.	Ozturk,	C.	KoWila,	M.	Grauer,	W.	Schroeder	(Kitware);		
																																						A.	Tri0	(LBNL)	

We	conLnue	to	see	a	vibrant	community	forming	around	NWB:N.	Below	
we	highlight	several	collaboraLve	efforts	with	and	contribuLons	by	the	
NWB:N	community	related	to	the	development	of	NWB	2.0	beta.		

To	enable	a	collaboraLve	development	process	we	
have	 adopted	 modern	 open-source	 development	
and	 project	 management	 processes	 using	 GitHub.	
To	 ensure	 sobware	 quality	 and	 accessibility	 we	
have	 developed:	 1)	 an	 advanced	 unit	 and	
integraLon	test	suite,	2)	conLnuous	 	integraLon	to	
ensure	regular	tesLng	on	all	major	systems,	3)	code	
standards	 and	 health	 checks,	 and	 4)	 sobware	
deployment	paths	(e.g.,	via	PIP	and	CONDA)	

MatNWB:	Making	NWB:N	2.0	Accessible	via	Matlab	

Main	Contributors:		K.	Svoboda	(Janelia	Farms	HHMI);	N.	Clack	and	L.	Niu	(Vidriotech);										
																																					A.	Tri0	and	O.	Rübel	(LBNL)	

MatNWB	 is	 a	Matlab	API	 for	NWB:N	 2.0.	MatNWB	 supports	 generaLon	 of	Matlab	
classes	 for	 represenLng	NWB:N	neurodata_types	 directly	 from	 the	 NWB:N	 format	
specificaLon	in	YAML.	Using	this	approach,	MatNWB	supports	convenient	read	and	
write	of	NWB:N	HDF5	files,	including	data	defined	via	custom	format	extensions.		

Legacy	Data	Read	

Main	Contributors:		N.	Cain,	L.	Ng	(Allen	InsLtute	for	Brain	Science)	and	A.	Tri0	(LBNL)	

Community	Review	and	ContribuDon	

Data	 in	the	Allen	Cell	Types	Database	(h0p://celltypes.brain-map.org/)	 is	organized	
in	NWB	1.x	format.	Using	the	PyNWB	legacy	data	read	module	enables	users	to	read	
and	interact	with	this	data	using	the	PyNWB	API.		

NWB:N	Governance	
To	 guide	 the	 next	 phase	 of	 growth,	 and	 to	 coordinate	 the	 various	 efforts,	 NWB:	
Neurophysiology	has	created	a	governance	structure.	This	will	allow	NWB:N	to	grow	
in	a	bo0om-up,	but	coordinated	manner.	ParLcipaLon	in	the	project	is	open	to	any	
interested	neuroscienLst,	with	overall	planning	coordinated	by	an	ExecuLve	Board	
(EB)	with	seven	members,	each	appointed	for	a	term	of	2-3	years.	
Current	Members	of	the	ExecuDve	Board:	 	K.	Bouchard	(LBNL),	 	M.	Chun	(KAVLI),	 	L.	Frank	(UCSF),	C.	Koch	(AIBS),	 	Markus	
Meister	(Caltech),		F.	Sommer	(UCB),		K.	Svoboda(HHMI	Janelia)	

ANendees	and	contributors:	C.	MarLn,	M.	Chun,	S.	Albin	(Kavli),	K.	Bouchard,	O.	Rübel,	A.	Tri0,	M.	Dougherty	(LBNL),	L.	Ng,		
N.	Cain,	J.	Kiggins	(AIBS),	T.	Davidson	(UCSF),	M.	Grauer,	W.	Schroeder	(Kitware),	J.	Teeters,	S.	Mackesey,		
P.	 Ježek,	C.	Holdgraf	 (UCB),	K.	Svoboda,	D.	Gennady,	U.	Lowell	 (HHMI	Janelia),	S.	Mckenzie,	D.	Tingley	
(NYU)	among	many	others	

Sponsored	by	the	Kavli	FoundaLon	and	HHMI	Janelia	a	NWB	Hackathon	was	held	on	
07/31	 –	 08/1/2017	 at	 HHMI	 Janelia	 Farms	 for	 community	 discussion,	 review,	 and	
development	 of	NWB:N	2.0	 and	 related	 acLviLes.	 ConLnued	 engagement	 has	 also	
been	 fostered	 via	 the	 NWB:N	 Slack	 channel,	 GitHub	 Issues,	 NWB:N	Google	 group,	
and	countless	emails	and	telecons.		

Overview	

NWB	2.0	Beta	Release	
A	first	public	beta	release	of	PyNWB	(for	Python	2.7.x	and	>3.5)	and	NWB	2.0	is	
available	for	SfN.	The	 intent	of	this	beta	release	 is	to	enable	early	adopters	to	
start	exploring	the	new	format	and	sobware.	While	development	on	NWB	2.0	
has	been	progressing	rapidly,	further	changes	to	the	APIs	as	well	as	the	format	
are	 sLll	 planed	between	 this	beta	and	 the	first	 full	 release	of	NWB	2.0.	A	 full	
release	 of	 NWB	 2.0	 is	 planned	 for	 Spring/Summer	 2018.	 Detailed	
documentaLon	of	the	various	aspects	of	the	NWB:N	project	are	available	here:	
	

•  Neurodata	Without	Borders	main	site:	h0p://www.nwb.org/	
•  General	overview	of	NWB:N	:	h0p://nwb-overview.readthedocs.io	
•  NWB:N	specificaDon	language:	h0p://schema-language.readthedocs.io	
•  NWB:N	format	specificaDon:	h0p://nwb-schema.readthedocs.io	
•  NWB:N	data	storage:	h0p://nwb-storage.readthedocs.io	
•  PyNWB:	h0p://pynwb.readthedocs.io	
•  Sources:	All	sources	are	available	on	GitHub:	

h0ps://github.com/NeurodataWithoutBorders	

PyNWB	

FORM	–	Flexible	Object-RelaDonal	Mapping	

Data	API	
	

•  Provide	easy-to-use,	stable,	and	maintainable	
data	API	for	applicaLons		

•  Customize	mapping	between	data	API	classes	
and	the	format	specificaLon	

	

spec	–SpecificaDon	
	

•  Read,	write	and	use	specificaLon	language	
documents	

•  Create	new	format	extensions	

backends	-	I/O	
	

•  Read/write	data	to	storage,	e.g.,	HDF5	file		

build	-	Data	TranslaDon	
	

•  Map	between	data	API	and	in-storage	object	
representaLons		

•  Integrate	specificaLon	with	data	objects	
•  Insulate	the	data	API	from	the	I/O	backend	
and	vice	versa	

NWB	File	

NWB	Format	Schema	

NWB	Format	
SpecificaLon	(YAML)	

ApplicaDon	and	Analysis	Codes	

Sobware	module	
Main	sobware	
component	

SpecificaLon	
Language	

Format	Extensions	

User	code	

validate	–	Data	ValidaDon	
	

•  Validate	compliance	of	data	with	the	NWB:N	or	
other	format	schema	

Vision	and	future	direcDons	
NWB:N	technologies	at	the	heart	of	the	neurodata	lifecycle	

NWB:N	
²  In	situ	data	pre-processing		

²  Data	lifecycle	
management	strategies	

²  Data	Protocols	
²  NWB:N-Hub	extension	

archive	
²  NWB:N	sobware	

ecosystem	&	core	
technologies	

²  Governance	
²  IntegraLon	with	

data	acquisiLon	
systems	

²  Advanced	I/O	strategies:	
streaming,	compression,	
staging,	…	

²  Centralized	and	
distributed	data	
archives	

²  Backward	
compaLbility	&	
standardizaLon	

²  Data	versioning	
²  Data	publicaLon	

strategies	
²  Data	archives	

²  SemanLc-aware	&	
standardized	visualizaLon,	
analysis,	and	exploraLon		

²  Workflow	management	&	design	
²  IntegraLon	of	NWB:N	with	

workflow	tools	
²  Parallel	analysis	

frameworks	
²  In	situ	data	

analysis		
²  Quality	assurance	&	

control	(QA/QC)	
²  Data	curaLon	&	

standardizaLon	
²  Governance	&	

protocols	
²  Data	ingesLon	
	

²  Modeling	data	relaLonships	
²  Interoperability	
²  Development	and	integraLon	

of	controlled	vocabularies	
and	ontologies	
²  Data	integraLon	
²  Provenance	
²  AutomaLc	capture	&	

extracLon	of	
metadata	

²  Foreign	data	fields	and	
references	

²  Alternate	
storage	
backends	

²  Parallel	data	search,	
query	&	discovery	for	
data-driven	analyLcs	

²  IntegraLon	with	data	archive	
&	management	systems	

A	primary	funcLon	of	the	data	storage	is	to	map	NWB:N	primiLves	(Groups,	Datasets,	
A0ributes,	Links	etc.)	to	storage.	Currently	NWB:N	uses	HDF5	as	main	storage	format.	
•  By	 decoupling	 the	 various	 aspects	 of	 NWB:N,	 PyNWB	 enables	 the	 design	 of	 new	

storage	backends	for	NWB:N,	e.g.,	using	file-system	semanLcs	or	databases.	
•  We	 have	 created	 documentaLon	 describing	 the	 mapping	 of	 the	 NWB:N	

specificaLon	to	HDF5:	h0p://nwb-storage.readthedocs.io	

To	 maximize	 the	 return-on-investment	 into	 creaLon	 of	 neuroscience	 data	 sets	 and	
enhance	reproducibility,	it	is	criLcal	to	share	data	through	standardized	and	extensible	
data	 model	 and	 management	 soluLons.	 In	 addiLon	 to	 standardizing	 data	 and	
metadata,	 support	 for	 fast	 data	 read/write	 and	 high-performance,	 parallel	 data	
analysis	 are	 criLcal	 to	 enable	 labs	 to	 keep	 up	with	 ever	 growing	 data	 volumes.	 The	
Neurodata	Without	Borders:	Neurophysiology	(NWB:N)	effort	was	an	 important	step	
towards	generaLng	a	unified	data	format	for	cellular-based	neurophysiology	data	for	a	
mulLtude	of	 use	 cases.	 To	 enable	 broad	 adopLon	of	NWB:N,	 easily	 accessible	 tools	
and	 an	 advanced	 sobware	 strategy	 aimed	 at	 facilitaLng	 the	 use,	 extension,	
integraLon,	 and	maintenance	 of	 NWB:N	 are	 criLcally	 needed.	 The	 KAVLI-sponsored	
NWB-4-HPC	project	aims	to	ensure	that	the	sobware	instanLaLon	of	NWB:N	adheres	
to	 these	 principles	 and	 enables	 efficient	management	 and	 processing	 of	 large-scale	
neuroscience	data	 sets.	Here,	we	apply	 sobware	engineering	principles	 to	 create	an	
advanced	 sobware	 architecture	 and	define	 abstracLons	 to	 enable	 separaLon	of	 the	
NWB	specificaLon	language,	format	specificaLon,	data	storage,	and	data	API(s).	

To	 support	 the	 formal	 and	verifiable	 specificaLon	of	neurodata	file	 formats,	NWB:N	
defines	 and	 uses	 the	 NWB:N	 specificaLon	 language.	 To	 organize	 complex	 data,	 the	
specificaLon	 language	uses	easy-to-use	primiLves,	e.g.:	Groups,	Datasets,	A0ributes,	
and	Links.	For	NWB:N	2.0	we	have	simplified	and	extended	the	specificaLon	language	
to	ease	readability,	interpretability	and	expressiveness.	Specifically,	we:	
•  Simplified	the	reuse	of	neurodata_types	via	inheritance	and	inclusion	of	types	
•  Added	 support	 for	 object-	 and	 region	 reference	 data	 types	 and	 improved	

specificaLon	of	links,	to	ease	explicit	modeling	of	references	between	data	
•  Added	support	 for	 compound	data	 types,	enabling	 the	specificaLon	of	 tables	and	

complex	data	types		
•  Added	support	for	default	names	and	values		
•  Replaced	values	encoded	 in	keys	with	explicit	key/value	pairs	 to	avoid	collision	of	

keys	and	enhance	explicit	human	interpretaLon	
•  Enable	storage	and	sharing	of	specificaLons	via	YAML	(in	addiLon	to	JSON)	
•  Developed	tools	to	automaLcally	generate	human-readable	documents	from	specs	
•  DocumentaDon:	h0p://schema-language.readthedocs.io	
•  Release	Notes:	h0p://schema-language.readthedocs.io/en/latest/specificaLon_language_release_notes.html	

The	NWB:N	schema	is	specified	via	the	specificaLon	language	and	formally	defines	the	
organizaLon	of	neuroscience	data	via	the	NWB:N	data	format.	For	NWB:N	2.0	we:	
•  Introduced	 the	 concept	 of	 NWBContainer	 and	 NWBData	 as	 common	 base	

neurodata	 types	 for	 improved	 data	 modeling	 and	 to	 improve	 and	 clarify	 the	
organizaLon	of	processed	data	in	NWB:N	

•  Reorganized	 electrode	 metadata	 to	 facilitate	 access,	 search,	 organizaLon,	 and	
interpretaLon	via	a	combinaLon	of:		
•  A	central	ElectrodeTable	for	per-electrode	metadata	and	
•  Accompanying		ElectrodeGroup	containers	for	collecLve	electrode	metadata	

•  Replaced	 implicit	 links	 and	 data-structures	 with	 explicit	 links	 and	 relaLonship	
models	to	facilitate	unique	direct	human	and	programmaLc	data	interpretaLon		

•  Assigned	unique	neurodata_type	/	name	to	all	objects	for	improved	idenLfiability	
•  Improved	consistency	and	completeness	of	metadata	and	object	names	
•  Improved	 governance	 of	 the	 schema	 via	 new	 formal	 release	 and	 documentaLon	

mechanisms	using	YAML	and	the	dedicated	nwb-schema	GitHub	repository	
•  DocumentaDon:	h0p://nwb-schema.readthedocs.io	
•  Release	Notes:	h0p://nwb-schema.readthedocs.io/en/latest/format.html#release-notes-nwb-format	

With	PyNWB	we	have	developed	a	new	modular	sobware	architecture	and	
API	 to	 enable	users/developers	 to	 efficiently	 interact	with	 the	NWB	data	
format,	 format	 files,	 and	 specificaLons.	 This	 novel	 sobware	 architecture	
lays	the	foundaLon	for	the	design	of	advanced	APIs	for	data	management,	
query	and	discovery,	and	 integraLon	of	NWB:N	with	state-of-the-art	data	
analyLcs	 codes	 opLmized	 for	 high-performance	 compuLng	 systems.	
Importantly	this	architecture	decouples	the	various	aspects	of	NWB:N:	

1)  the	specificaLon	language,		
2)  format	specificaLon,		
3)  storage	backend,	and		
4)  data	API	

This	allows	each	to	be	used	and	maintained	independently.		

pynwb.spec:	CreaDng	new	extension	for	NWB:N	

pynwb:		An	easy-to-use	data	API	for	NWB	

PyNWB	 provides	 convenient	 data	 structures	 for	 creaLng,	 reading,	 and	
wriLng	format	extensions	using	the	NWB:N	specificaLon	language.	To	avoid	
collisions	 between	 extension	 and	 facilitate	 versioning	 and	 documentaLon,	
extensions	are	organized	via	namespaces.	
		

pynwb:Reading/wriDng	data	using	extensions	
PyNWB	allows	users	to	create	their	own	interface	classes	for	extensions,	but	
it	also	supports	the	automaLc,	dynamic	creaLon	of	NWBContainer	classes	to	
allow	 users	 to	 directly	 use	 their	 extensions	 to	 read/write	 data	 without	
having	to	write	addiLonal	code	for	PyNWB:		

PyNWB	 provides	 a	 stable,	 intuiLve,	 object-oriented	 applicaLon	
programming	 interface	 (API)	 for	 NWB:N	 for	 development	 of	 user	
applicaLons	and	analysis	codes.	The	user	API	is	independent	of	the	storage	
backend	and	provides	easy	mechanisms	for	reading	and	wriLng	of	NWB:N	
data,	 including	advanced	 I/O	features,	e.g.,	 iteraLve	streaming	data	write	
and	data	compression.	

pynwb.form:		Flexible	object-relaDonal	mapping		
pynwb.validate:	ValidaDng	files	
We	can	easily	validate	data	files	using	the	NWB:N	core	specificaLon	via:	
	
	

as	well	as	using	user-defined	format	extensions	via:	

from pynwb import NWBNamespaceBuilder, NWBGroupSpec, NWBAttributeSpec  

ns_builder = NWBNamespaceBuilder('Extensions for my Lab', "mylab")  
ext = NWBGroupSpec('A custom ElectricalSeries for my lab',  
 attributes=[NWBAttributeSpec('trode_id', 'int’,’tetrode id')],  
 neurodata_type_inc='ElectricalSeries',  
 neurodata_type_def='TetrodeSeries')  
 
ns_builder.add_spec("mylab.extensions.yaml", ext)  
ns_builder.export("mylab.namespace.yaml")

from pynwb import get_class, load_namespaces  
Load the namespace  
ns_path = load_namespaces("mylab.namespace.yaml")  
Get the class for our extension  
TetrodeSeries = get_class('TetrodeSeries', 'mylab')

python -m pynwb.validate myfile.nwb

python -m pynwb.validate -p mylab.namespace.yaml myfile.nwb

Overview	

The	 form	 module	 defines	 a	 general	 library	 for	 creaLng	 scienLfic	 data	
formats	and	builds	the	core	infrastructure	for	PyNWB	.	Through	its	flexible	
object-relaLonal	 mapping	 funcLonality,	 form	 allows	 us	 to	 decouple	 the	
data	API,	format	specificaLon,	and	I/O	backends	from	each	other	enabling	
the	flexible	design	of:	1)	advanced	user	APIs,	2)	new	I/O	backends,	and	3)	
data	formats	and	extensions.	

