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Abstract

Applications that query data streams in order to identify
trends, patterns, or anomalies can often benefit from compar-
ing the live stream data with archived historical stream data.
However, searching this historical data in real time has been
considered so far to be prohibitively expensive. One of the
main bottlenecks is the update costs of the indices over the
archived data. In this paper, we address this problem by us-
ing our highly-efficient bitmap indexing technology (called
FastBit) and demonstrate that the index update operations
are sufficiently efficient for this bottleneck to be removed.
We describe our prototype system based on the TelegraphCQ
streaming query processor and the FastBit bitmap index. We
present a detailed performance evaluation of our system us-
ing a complex query workload for analyzing real network
traffic data. The combined system uses TelegraphCQ to ana-
lyze streams of traffic information and FastBit to correlate
current behaviors with historical trends. We demonstrate
that our system can simultaneously analyze (1) live streams
with high data rates and (2) a large repository of historical
stream data.

1 Introduction

An important feature missing from existing Data Stream
Management Systems (DSMS) is the ability to simultane-
ously query both live and archival data. Most DSMS provide
continuous query processing to live data only. While tra-
ditional Database Management Systems (DBMS) can easily
handle archived stream records, they are not well-suited for
processing continuous queries. In this paper, we demonstrate
an approach that enables efficient simultaneous continuous
processing of queries on live and archived historical data.
Compared with existing approaches proposed in the litera-
ture, ours is not only efficient but also gives precise answers
to historical queries. This paper presents a prototype imple-
mentation and discusses its key performance characteristics.
We also briefly mention ways to expand the capability of the

system through parallelism and approximation.

Many important analysis tasks over streaming data require
both real-time information about the stream and stored in-
formation about the past history of the stream. Supporting
such historical queries in a DSMS is difficult. Many appli-
cations require quantities of historical data that exceed the
size of main memory. Furthermore, these applications of-
ten need to query the historical data every time the real-time
query result changes. Finally, the historical data needs to be
kept up-to-date, with new records being added every few sec-
onds. Because of these large data volumes, high query rates,
and continuous updates, an acceleration technique is needed
to answer the queries on historical data fast enough to keep
pace with the live data.

In this paper, we investigate using Bitmap Indices for
storing and querying historical stream data. Bitmap Indices
are known to be efficient for answering important classes of
queries on large read-only data sets[15, 3, 28, 21, 29], but
the conventional wisdom is that incremental updates to these
indices are not practical. Some bitmap Indices employ run-
length encoding and careful alignment of individual records
[29], in addition to precomputed segmentation of column
values into bitmap slices. These techniques, which are vi-
tal to read performance, can make updates very expensive.
However, by taking advantage of the update characteristics
and query requirements of streaming applications, we show
in this paper that we can, in fact, update Bitmap Indices effi-
ciently over historical stream data. This is the key to achiev-
ing the overall efficiency of the combined system for query-
ing live and historical steaming data in real-time.

There are two main reasons for our ability to efficiently
update Bitmap Indices. The first is that the historical records
are never modified. This means that we only need to ap-
pend new records to the Bitmap Indices, never updating any
existing record. The second reason is that it is possible to
build some bitmap indices without sorting the records. This
means that it is possible to add new records to a bitmap in-
dex in time that is proportional to the number of new records.
The particular bitmap indexing method we use (called Fast-
bit) compresses the bitmaps for efficient space utilization and



searching, but its compression scheme allows appending new
records without disturbing the existing index structure. We
show that this technique achieves the goal of adding records
in time that is proportional to the number of new records.

The main contributions of this paper are: (1) we demon-
strate that bitmap indices can indeed be updated efficiently,
(2) we build a prototype system that simultaneously queries
both live and historical data, and (3) we measure the per-
formance of this prototype system on a large set of network
traffic records from a large computer center. Through our
performance measurements, we show that our prototype sys-
tem can easily handle data rates of 9,000 to 20,000 records
per second on a modest desktop computer. To our knowl-
edge, ours is the first robust end-to-end system studied in the
research literature that performs declarative “live/archive”
queries on high-bandwidth streams.

2 Related Work

A good overview of stream query systems can be found
in [10]. Common to most of these systems is that they pro-
cess continuous data streams that are often not stored persis-
tently for subsequent analysis. Typical application areas for
these systems are financial market analysis, inventory track-
ing and network traffic monitoring (see for instance Tribeca
[26] or the Gigascope system [7]). The architecture of the
TelegraphCQ system that we use in our work was described
in CIDR 2003 [5]. Two previous studies have used Tele-
graphCQ to run simple network monitoring queries [17, 19].
In this paper, we embed TelegraphCQ in an end-to-end sys-
tem and use a larger workload of more complex queries to
get a more realistic view of TelegraphCQ’s performance.

The objective of the work presented in [6] is to build a
database system for analyzing off-line network traffic data
for studying coordinated scan activities. Another recent
database effort for analyzing network traffic is described in
[24]. Both approaches use open source database systems and
index data structures for efficient analysis of off-line network
traffic data. However, these systems do not manage stream-
ing data.

Recently data reduction techniques were introduced to
store historical stream data [4]. The general approach of
this work is to construct random samples, sketches, or other
lossy summaries of the historical data, reducing its size by
a significant amount. This size reduction has been shown
to be efficient for keeping data in core, managing query re-
sponse time, and reducing update costs. However, techniques
based on data reduction produce approximate answers. The
error bounds on these answers can be quite loose in prac-
tice, particularly in cases where the system needs to perform
grouped aggregation or to retrieve a small slice of historical
data [12, 18]. In security-oriented applications, attackers can
exploit these approximation errors to hide their attacks from
monitoring systems [8]. For these reasons, we only consider

approaches that can access quickly all the historical data and
guarantee correct solutions (query answers).

Our approach in this paper uses a Bitmap Index to store
historical stream data. Previous work has investigated us-
ing more conventional indexes like B-Trees and hash indexes
for this purpose. In an earlier paper by Chandrasekaran and
Franklin, the authors argued that the update performance of
B-Trees is too low for many streaming applications [4]. Re-
cent proposals for improving the write performance of B-
Trees [11] may narrow this performance gap, but we are un-
aware of any hard performance numbers for the new designs.
Because B-Trees and similar indexing methods require ei-
ther explicit or implicit sorting of the new records (along
with the existing records), the time required to update the
indices is generally superlinear in the number of new records
added. Hash-based indices can have less CPU overhead for
incremental updates, but these updates significant amounts
of random I/O. In addition, many applications need to per-
form range queries and grouped aggregation over historical
records, tasks for which hash indexes do not perform well.

In the network community, two commonly used Intrusion
Detection Systems are Bro [16] and Snort [20]. These sys-
tems are used to analyze and react to suspicious or malicious
network activity in real time. Recently Bro was extended
by a concept called the time machine [14], i.e. to analyze
historic data by traveling back in time. The high-level con-
cept of a time machine is similar to the one described in this
paper. However, the authors do not provide any details on
the performance of querying historic data. The goal of our
paper is to provide a detailed performance analysis on the
combination of stream processing and historic data analy-
sis. In addition, the analyses in Bro and Snort are performed
through C-like scripting language with manual management
of data structures, while our system uses high-level declara-
tive queries. In contrast, similar scripts written in declarative
languages such as SQL are much more compact and much
easier to create.

Since TelegraphCQ is built on top of PostgreSQL, we
briefly note the difference between the use of bitmaps in
PostgreSQL and in FastBit. FastBit uses bitmap indices as
primary storage, while PostgreSQL (as of version 8.1) uses
in-memory bitmaps to store intermediate results, such as the
results from scanning B-tree indices. The use of bitmaps to
store intermediate results allows PostgreSQL to efficiently
combine results from different index scans. However, Post-
greSQL does not use bitmaps for on-disk index storage, and
previous work [4] has shown that the current PostgreSQL
B-Tree indices are inefficient for storing high volumes of
append-only data.

FastBit implements a set of compressed bitmap indices
using an efficient compression method called the Word
Aligned Hybrid (WAH) code [28, 29]. In an number of
performance measurements, WAH compressed indices were
shown to significantly outperform other indices [27, 28]. Re-
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cently, FastBit has also been used in analysis of network traf-
fic data and shown to be able to handle massive data sets
[25, 2]. This makes it a convenient choice for our prototype.

In this paper, we focus on finding out how much data
a single computer can handle. As the number of network
connections increases, it would become necessary to use a
distributed architecture like that of CoMo [13] or HiFi [9]
to overcome resource and bandwidth constraints. There are
a number of ways to parallelize TelegraphCQ to handle the
stream volume [22], or alternatively the system can use Data
Triage [19] to trade off result accuracy for speed. In terms
of handling historical data, FastBit has been shown to paral-
lelize well [25]. Overall, we anticipate the system we pro-
pose can be parallelized effectively on a modest cluster of
computers.

3 Background

The work we describe in this paper is motivated by the
infrastructure monitoring needs of the United States Depart-
ment of Energy, or DOE. DOE operates nine major research
labs nationwide. These laboratories conduct classified and
unclassified research in areas such as high-energy physics,
nuclear fusion and climate research. Researchers at the labs
regularly collaborate with major university and industrial re-
search organizations. To support collaborations both be-
tween the labs and with outside researchers, each lab main-
tains high-speed network connections to several nationwide
networks. In addition, each lab publishes large amounts of
information via its connection to the public Internet.

To help maintain network security, availability, and per-
formance at its laboratories, DOE is creating a nationwide
network operations center. This centralized monitoring sta-
tion will enable a small team of network administrators to
maintain a 24-hour alert for potential problems. In support
of this initiaitve, we are developing a prototype stream query
processing system that would run at this network operations
center, analyzing network traffic providing continuous up-
dates on potential security threats. We identified three key
requirements for for such a monitoring system:

• Flexibility: The network operator needs to focus analy-
sis on the machines, patterns, and protocols that are rel-
evant to the problem at hand. He or she will also need
to develop and deploy new analyses quickly in response
to evolving threats.

• History: An effective monitoring system needs access
to historical data about the network. This past history
allows the operator to weed out false positives by com-
paring present behavior against past behavior. History
is also essential for determining the cause of a malfunc-
tion or security breach that occurred in the past.

• Performance: During periods of peak load, the DOE
networks generate tens of thousands of flow records per
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Figure 1. Block diagram of our network mon-
itoring prototype. Our system combines the
data retrieval capabilities of FastBit with the
stream query processing of TelegraphCQ.

second. It is during these peak periods that effective
network monitoring is most essential. High traffic puts
stresses on the network that make it more likely to fail.
Also, knowledgeable adversaries will attempt to hide
their attacks inside these large bursts of data.

The authors of this paper have been working on two
late-stage research prototypes, TelegraphCQ and FastBit.
TelegraphCQ[5] is a streaming query processor with a flex-
ible declarative language. FastBit, a bitmap index based
query engine for append-only data, has previously demon-
strated its effectiveness at searching over large amounts of
historical networking data [2, 25].

Combined, these two systems meet the first two of our
requirements. However, the main challenge is to demon-
strate that these two general purpose query processing sys-
tems can meet our third requirement: performance. We were
concerned about performance both in terms of handling high
data rates and in terms of running many complex queries si-
multaneously. These dimensions of performance represent
significant potential problems.

4 Architecture

This section gives a high-level overview of the architec-
ture of our prototype monitoring system and provides refer-
ences for further reading on individual components of our
system. Figure 1 shows how the pieces of our architecture
fit together. The major components of the system are as fol-
lows:

TelegraphCQ is a streaming query processor that filters,
categorizes, and aggregates flow records according to one or
more continuous queries, generating periodic reports. Tele-
graphCQ accepts continuous queries in the CQL query lan-
guage [1]. TelegraphCQ’s query language features include
windowed joins, grouped aggregation, subqueries, and top-
K queries. TelegraphCQ is based on the open-source Post-
greSQL database engine and supports PostgreSQL’s user-
defined types, user-defined aggregates, storage manager, and
application APIs. The work in this paper uses the latest
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development version of TelegraphCQ, which incorporates a
new data ingress layer, additional query language support,
and substantial performance improvements.

FastBit is a bitmap index system with an SQL interface.
It is designed to work with append-only data sets such as
historical records of a network monitoring system. In this
work, we mainly use its command line interface to provide
fast associative access to archived network monitoring data.
The keys to its efficiency are its vertical data organization its
the compressed bitmap indices [23, 28, 29].

The Ingress Manager is a component that merges incom-
ing streams of flow records, converts data into formats that
TelegraphCQ and FastBit understand, and stages data to disk
for loading into FastBit.

The Controller is a component that receives streaming
query results from TelegraphCQ, requests relevant historical
data from the FastBit index, and generates concise reports for
the network administrator. Each analysis that the controller
performs consists of three parts: A TelegraphCQ query tem-
plate, a FastBit query template, and application logic. The
Controller reads TelegraphCQ and FastBit query templates
from configuration files and substitutes in runtime param-
eters. The application logic for an analysis consists of a
callback that is invoked for each batch of query results that
comes back from TelegraphCQ. Each analysis runs in a sepa-
rate process, but the Controller’s admission control limits the
number of concurrent FastBit queries to prevent thrashing.

The controller is currently implemented in the Perl pro-
gramming language. We chose Perl because it has an effi-
cient interface with TelegraphCQ, dynamic compilation for
loading application logic at runtime, and well-developed fa-
cilities for generating reports.

5 Data

All our performance benchmarks are based on real net-
work connection data collected on the NERSC (National En-
ergy Research Scientific Computing) backbone connection
at Berkeley Lab for a 42-week period from August 2004
through June 2005. This data set consists of a stream of
timestamped network flow records, each of which contains
information about a single network session. Each flow record
contains a source/destination IP addresses, source/destina-
tion ports, time stamp, packet size, and some additional in-
formation, for a total of 11 attributes.

The total traffic on the Department of Energy’s networks
is classified, but we can use our (unclassified) data set to es-
timate the amount of network monitoring data that our pro-
totype monitoring system would need to handle. Figure 2
shows the number of flows (or network sessions) per week
during this period. During the trace, the network generated
as many as 250 million flow records in a week, or 500 record-
s/sec on average. However, the rate at which these flows ar-
rived varied significantly, reaching as high as 55,000 flow

Figure 2. Flow records per week in our 42-week
snapshot of Berkeley Lab’s connection to the
NERSC backbone.

records per second.
The NERSC traffic represents about one third of network

connections at Berkeley Lab, whose employees are about one
tenth of all DOE lab researchers. Assuming that other net-
work links have approximately the same traffic levels as the
NERSC link and that network usage scales with the number
of researchers, we therefore expect the NERSC link to repre-
sent approximately 1/30 of the total DOE traffic. So a DOE-
wide network operations center would need to process sus-
tained rates of roughly 500 × 30 = 15, 000 flow records per
second, with peaks of as much as 55, 000×30 = 1, 650, 000
records per second.

For our experiments, we used a subset of our data rep-
resenting a time period of 5 weeks and consisting of 121
million records. Table 1 shows the number of network traf-
fic records per week along with the cumulative number of
records. Note that week 1 comprises about 5 times more
records than week 4.

Week Records/week Cumulative no. of records

1 49,289,726 49,289,726
2 17,826,252 67,115,978
3 22,315,221 89,431,199
4 11,402,761 100,833,960
5 20,256,664 121,090,624

Table 1. Number of network traffic records
collected at Berkeley Lab over a period of 5
weeks.

Each flow record in our data set contained 11 attributes.
We mapped these attributes into the following TelegraphCQ
stream:
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create stream Flow(
src ip Inet ,
dst ip Inet ,
src port integer,
dst port integer,
protocol integer, −− Protocol number
bytes sent integer, −− src−>dst
bytes recv integer, −− dst−>src
outgoing boolean,

−− TRUE if this connection was initiated
−− inside the protected network

state integer,
−− Where in the TCP state machine the
−− connection ended up.

duration interval ,
tcqtime timestamp TIMESTAMPCOLUMN

)
type unarchived;

TelegraphCQ create stream statements are similar to
SQL create table statements. The text type unarchived
at the end of the statement indicates that the TelegraphCQ is
not to archive flow records internally; our system uses Fast-
Bit for all archival storage. The Inet data type is a built-in
PostgreSQL type for storing IP addresses; other types used
in this schema are native SQL92 types.

To store the historical flow records, we created a corre-
sponding FastBit table. FastBit’s queries operate over a sin-
gle vertically-partitioned table, with columns stored in sepa-
rate files. Individual columns values are stored in native C++
data types. Table 2 summarizes the mapping between our
FastBit and TelegraphCQ schemas:

TCQ Column FastBit Column(s) C++ Type

src ip IPS int
dst ip IPR int
src port SP int
dst port DP int
protocol PROT int
bytes sent S SIZE int
bytes recv R SIZE int
outgoing FLAG int
state STATE int
duration dur double
tcqtime ts int

Table 2. Relationship between columns of our
TelegraphCQ and FastBit schemas

6 Queries

Based on a literature search and discussions with network-
ing researchers, we have created a representative workload
of real-time network analyses. Each analysis is comprised of

a stream query processing component, expressed as a Tele-
graphCQ query; and a historical component, expressed as a
FastBit query.

In the sections that follow, we present these queries in
the native query languages of TelegraphCQ and FastBit, re-
spectively, using the schemas from Section 5. We list these
queries in detail here to show the complexities of the query
needed to do real analyses and also to help users understand
the performance data to be presented later.

Each query has one or more parameters that are bound at
runtime. Following the convention of most SQL databases,
we denote these variable parameters with a preceding colon.
For example, in the first “elephants” query below, the pa-
rameter :windowsz is variable. At runtime, the Controller
component of our system substitutes the appropriate values
for for the variable parameters in the templates.

6.1 Elephants

Goal: Find the k most significant sources of traffic
(source/destination pairs, subnets, ports, etc.)1. TelegraphCQ
finds the top k, and FastBit compares these top k against their
previous history. Report significant traffic sources that were
not significant in the past.

TelegraphCQ Query: Finds top 100 addresses by data
sent.

select sum(bytes sent), src ip, wtime(∗) as now
from flow [range by :windowsz slide by :windowsz]
where outgoing = false
group by src ip
order by sum(bytes sent) desc
limit 100 per window;

FastBit Query: Retrieves the total traffic from the indi-
cated 100 addresses for the same time of day over the past
7 days. The variables :X1, :X2 and so on are the src ip
outputed from the above TelegraphCQ query. Note also that
FastBit queries have an implicit GROUP BY clause on all se-
lected attributes that are not part of any aggregate functions.

select IPS, sum(S SIZE), sum(R SIZE)
where IPS in (:X1, :X2, :X3, ..., :X100) and
(( ts between [:now − 24 hr] and [:now − 23 hr])
or ( ts between [:now − 48 hr] and [:now − 47 hr])
or ( ts between [:now − 72 hr] and [:now − 71 hr])
or ( ts between [:now − 96 hr] and [:now − 95 hr])
or ( ts between [:now − 120 hr] and [:now − 125 hr])
or ( ts between [:now − 144 hr] and [:now − 143 hr])
or ( ts between [:now − 168 hr] and [:now − 167 hr])
);

1The names of this query and the one that follow derive from the net-
working term “elephants and mice”, which refers to the sources of the largest
and smallest traffic on a network link, respectively. “Elephants” tend to
dominate bandwidth usage, and security problems often involve “mice”.

5



6.2 Mice

Goal: Find all traffic from hosts that have not historically
sent large amounts of traffic. FastBit finds the top k hosts by
bytes sent over the past week. Then TelegraphCQ looks for
traffic that is not from these top k hosts.

FastBit Query: Retrieves the top k hosts by total traffic
for the past week. The variable : history , called the length
of history, defines how far back in history we look for histor-
ical patterns. We usually vary its value from a few days to a
month.

select sum(S SIZE), IPS
where ts between [:now − :history] and [:now]
order by sum(S SIZE) desc
limit :k;

TelegraphCQ Query: Produce a breakdown of traffic
that is not from the hosts in the FastBit query’s results.

select sum(bytes sent), src ip, dst ip , wtime(∗)
from flow [range by :windowsz slide by :windowsz]
where

src ip != :X1 and src ip != :X2 ...
and src ip != :X100

group by src ip, dst ip
order by sum(bytes sent) desc
limit 100 per window;

6.3 Portscans

Goal: Find behavior that suggests port scanning activity.
TelegraphCQ flags current behavior, and FastBit is used to
filter out hosts that exhibit this behavior as part of normal
traffic.

TelegraphCQ Query: Finds external hosts that connect
to many distinct destinations and ports within Berkeley Lab.

select src ip ,
count(distinct

( dst ip :: varchar || dst port :: varchar))
as fanout,

wtime(∗)
from flow [range by :windowsz slide by :windowsz]
where outgoing = false
group by src ip
order by fanout desc
limit 100 per window;

FastBit Query: Finds the 100 distinct hosts a given host
normally connects to. FastBit queries with no aggregates
have an implicit count(∗) aggregate.

select IPR, IPS
where

IPS in (: X1, :X2, :X3, ... , :X100)
and (ts between [:now − :history] and [:now])

6.4 Anomaly detection

Goal: Compare the current local traffic matrix (traffic by
source/destination pair) against a traffic matrix from the past.
TelegraphCQ fetches the current traffic matrix, and FastBit
fetches the matrix in the past. Then application logic com-
pares the matrices using one of several measures of similarity
to determine if traffic patterns have changed.

TelegraphCQ Query: Computes the local traffic matrix,
merging the traffic in both directions.

select
(case when outgoing = true
then src ip else dst ip end) as inside ip ,
(case when outgoing = true
then dst ip else src ip end) as outside ip,
sum(bytes sent) + sum(bytes recv) as bytes

from flow [range by :windowsz slide by :windowsz]
group by inside ip, outside ip ;

FastBit Query: Fetches the incoming portion of the traf-
fic matrix for a single period of time.

select
IPS, sum(S SIZE)

where
outgoing = false
and (ts between [:now − :history] and [:now])

order by sum(S SIZE) desc

6.5 Dispersion

Goal: Find subnets at a IP prefix length that appear in
two time windows within a given period, and report the time
lag between these two windows. Certain patterns of time lag
can indicate malicious behavior[6]. A TelegraphCQ query
with two subqueries does the real-time analysis, and a Fast-
Bit query summarizes the traffic history for each IP prefix
identified. This is based on a query in [6].

TelegraphCQ Query: Produces a breakdown of traffic
by subnet. The parameter : prefixlen determines the length
of the IP address prefix that defines a subnet.

with
WindowResults1 as
(select

network(set masklen(src ip, 8)) as prefix ,
wtime(∗) as tcqtime

from Flow [range by :windowsz slide by :windowsz]
group by prefix)
WindowResults2 as
(

−− Create a second copy of the stream
select ∗ from WindowResults1

)
(select

W1.prefix as prefix ,
W2.tcqtime − W1.tcqtime as lag,
count(∗),
wtime(∗)

from
WindowResults1 W1 [range by 10 ∗ :windowsz
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slide by :windowsz],
WindowResults2 W2 [range by 10 ∗ :windowsz

slide by :windowsz]
where W1.prefix = W2.prefix

and W2.tcqtime > W1.tcqtime
group by W1.prefix, lag);

FastBit Query: Fetches the incoming traffic for the given
subnets in the given time window. NOTE: FastBit currently
does not support arithmetic expressions in its select lists, so
the query breaks down traffic by source address.

select
IPS, IPR, sum(R SIZE)

where
( prefix (IPS, : prefixlen ) = :X1 OR ... = :X2 OR ... )
and (ts between [:now − :history] and [:now])
and outgoing = false

order by sum(R SIZE) desc

7 Experiments

In this section, we evaluate the performance of our system
in a series of experiments. We start by analyzing the major
components of our system separately to determine the peak
data throughput of each component. We then benchmark the
throughput of the entire system and compare this end-to-end
throughput against that of the individual components. Fi-
nally, we evaluate the performance of the system with real-
istic packet arrival rates derived from the timestamps in our
traces. All experiments were conducted on a machine with
dual 2.8 GHz Pentium 4 processors, 2 GB of main memory,
and an IDE RAID storage system capable of sustaining 60
MB/sec for reads and writes.

Our current implementations of the Ingress Manger and
Controller can process in excess of 100,000 flow records or
result tuples per second, respectively. Neither of these parts
represent a performance bottleneck to the system. We will
not discuss their performances further in this paper.

7.1 TelegraphCQ

Our first experiment examined the performance tradeoffs
of the TelegraphCQ component of our system. We focused
on two parameters: query type and window size. Recall that
each of the five TelegraphCQ queries in our workload pro-
duces results for discrete windows of time, and the size of
these windows is given as a parameter in the query.

We sent week 5 of the trace through TelegraphCQ and
measured the total running time for each of our five Tele-
graphCQ queries. From this running time, the window size,
and the number of tuples in the trace, we computed an aver-
age throughput figure for the query processor. We repeated
the experiment while varying the window size from 1 to
1,000 seconds. This range of time intervals corresponds to
an average of between 38.1 and 38,114 tuples per time win-
dow.
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Figure 3. The throughput of TelegraphCQ run-
ning our queries with varying window sizes
over the 5th week of the NERSC trace. Note
the logarithmic scale.

Figure 3 shows the measured throughput of TelegraphCQ
in our experiments. Each query showed an initial increase in
throughput as window size increased. As window size con-
tinues to increase, throughput eventually reaches a peak and
declines somewhat. The “dispersion” query showed a par-
ticularly pronounced instance of this pattern, with through-
put increasing from 6,000 to 25,000 tuples across the range
of window sizes targeted. The remaining queries had much
flatter throughput curves.

We profiled our TelegraphCQ testbed to determine the
reason for the changes in throughput we observed. We found
that the relatively low throughputs at smaller window sizes
were due to the large number of result tuples the queries pro-
duce at those window sizes. This effect was particularly pro-
nounced with the dispersion query because the results of the
first subquery went into a self-join, which is a more com-
plex operation than the rest. We traced the falloff in perfor-
mance at larger window sizes to increased memory footprint,
as TelegraphCQ buffers the tuples in the current window in
memory.

Lesson 1: With an appropriate choice of window size, a
small cluster of servers running TelegraphCQ should handle
the aggregate flow record traffic of all DOE labs while run-
ning a 10-20 query workload. Choosing the correct window
size automatically remains an interesting open problem.

7.2 FastBit

Next, we examine the performance of indexing and query-
ing the historical data with FastBit. As we indicated be-
fore, we would be appending batches of new records in Fast-
Bit. We will concentrate on how to adjust the batch sizes to
achieve the best performance. In terms of querying perfor-
mances, we will measure the average query response time to
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Figure 4. Speed for appending data and build-
ing the bitmap index in batches of sizes rang-
ing from 1,000 to 100 million. Each tuple con-
tains 11 attributes (48 bytes).

find out how much historical data can be incorporated into
the analysis.

7.2.1 Index Creation

We first measured the speed for appending new data and
building the respective bitmap indices. For these experiments
we appended the data and built the indices in batches of vari-
ous sizes to identify the most efficient batch size. In particu-
lar, the batch sizes were in the range of 1,000 and 100 million
tuples. Each tuple contains 11 attributes.

Figure 4 shows the speed for building the bitmap indices
in terms of tuples per second. In our test data, each tuple is
48 bytes, 10 4-byte values plus 1 8-byte value. The maxi-
mum speed of 213,092 tuples per second is achieved when
the append and index build operations are done in batches of
10 million tuples. The performance graph also shows that the
tuple rate decreases for batch sizes above 10 million tuples
and later stays about constant at around 170,000 tuples per
second. Note that the index update rate is signficantly larger
than the throughput for stream query processing (see Figure
3).

Let us now analyze this result in more detail. Building the
indices consists of two parts: a) appending the data and b)
building the indices. During the append operations FastBit
copies the streaming data into two index directories called
the active directory and backup directory. The active direc-
tory is the directory that is accessible while the indices are
built in the backup directory. Having two separate directo-
ries guarantees that the user has always one consistent copy.
When the batch size is small, say, 1000 tuples, the overhead
such as opening files and closing files dominates the total
time needed for copying data. When the batch size is in
the millions, the total time required for making two copies
is dominated by the read and write speed. As the batch size

further increases, it is no longer possible to keep the con-
tent of files in memory, so another set of read operations is
needed to make the second copy. For this reason, the rates of
the append operations are slower for larger batch sizes.

Lesson 2: Updating the bitmap index in bulks rather than
each tuple at a time achieves update rates than can easily keep
up with the data stream rate.

7.2.2 Index Lookup

In the following experiments we measure the throughput of
the index lookups (query response time) of the five queries
described in Section 6. Apart from the “mice” queries (see
Section 6.2), the starting point for all the queries was one
day’s worth of output data produced by TelegraphCQ. In par-
ticular, the TelegraphCQ continuous queries as described in
Section 6 were run starting from week 5. Next, the output
of these queries was used as input for FastBit to query the
historical data. In order to measure the scalability of FastBit,
we varied the length of history between 1 and 28 days. All
queries were executed with 10 different lengths of history of
equal size in the range of 1 and 28 days. By increasing the
length of history, the result set (number of records fetched)
of the queries increases monotonically and thus allows us to
measure the query response time as a function of the result
size.

Figure 5 shows the average query response time for all
the 5 query types with 10 different lengths of history. In to-
tal, 100 × 10 queries were executed per query type on 100
million tuples with different lengths of history. The input
for the 100 queries was randomly selected from the output
of the TelegraphCQ streaming queries. In general, we ob-
serve a linear query response time with respect to the num-
ber of records fetched. We can see that the “elephants” and
“portscans” queries have the best query response times be-
tween 0.1 and 1 seconds for processing up to 100 million
records. The “mice”, “anomalies” and “dispersion” queries
have a higher query response time since they fetch more
records. In fact, for large historical window sizes, nearly
all of the 100 million records are fetched. Thus, the query
response time is dominated by the time spent on fetching
the results as opposed to the time spent on evaluating the
queries with the bitmap index. For example, it takes about
20 seconds to answer the “anomalies” and “mice” queries
when they fetch about 100 million records. Since both these
queries select two attributes of 4-byte each, a total of about
800 MB are read into memory and sorted to compute aggre-
gate functions. This leads to a reading speed of about 40
MB/s, which is nearly optimal because the read operations
are not contiguous (some records are not needed). This im-
plies that the time spent in evaluating the range conditions in
these queries over 100 million records were negligible. The
total query processing time is dominated by reading the se-
lected values.
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Figure 5. FastBit index lookup time for 5 types
of historical queries with various lengths of
history denoted by variable : history .

7.3 End-to-end Throughput

Our final experiment combined all the components of our
system to measure end-to-end capacity. We connected the
Ingress Manager and Controller components to TelegraphCQ
and FastBit as described in Section 4, and we fed our trace
through the Ingress Manager and measured the amount of
time until the Controller produced its last report. We then
used this total elapsed time and the number of tuples in the
trace to compute the number of flow records per second that
the system can consume.

We benchmarked each pair of TelegraphCQ/FastBit
queries separately. The ranges of time selected in the FastBit
queries were as depicted in Section 6. We varied the window
size of the TelegraphCQ queries over the range of time inter-
vals used in Section 7.1. Flow records were appended to the
FastBit index in batches of 1 million.

Figure 6 shows the results of this experiment. Each thick
line shows the performance of a TelegraphCQ/FastBit query
pair. The thin dotted line indicates the number of flow
records per second the system would need to sustain to be
able to deliver results at 1-second intervals. Points above this
threshold indicate data rates at which the system can support
window sizes of 1 second.

At smaller window sizes, FastBit lookup time dominates
the combined query processing time. As window size in-
creased, TelegraphCQ’s performance came to dominate the
system throughput. One exception to this rule was the mice
queries where the FastBit component is executed offline prior
to starting the TelegraphCQ component. Since we loaded tu-
ples in large batches and ran the FastBit append operations
and querying operations sequentially, the time spent on ap-
pending 1 million flow records (about 4 seconds), can appear
as a noticeable lag in the query response time.

While most of the other queries produced similar through-
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Figure 6. End-to-end throughput with varying
window sizes over the 5th week of the NERSC
trace. Note the logarithmic scale. The thin
dotted line indicates the minimum throughput
necessary to deliver results at 1-second inter-
vals.

put curves, the dispersion query showed an especially high
degree of performance variation at different window sizes.
Throughput for the dispersion queries did not reach com-
parable levels to that of the other queries until the number
of tuples per window approached 20,000. This delayed in-
crease was due to three factors. As we observed in the previ-
ous section, the TelegraphCQ component of the queries runs
slowly at smaller window sizes. Also, the FastBit query for
this analysis is also slower since the amount of data fetched
is very large. Finally, as we noted in Section 6, the current
version of the query returns traffic broken down by address
instead of by subnet. As a workaround, the Controller cur-
rently reads in the (much expanded) results of the FastBit
query and performs an additional round of aggregation by
subnet. We are working to remove this bottleneck by adding
support for arithmetic expressions in FastBit’s select lists.

In Figure 6 we also show the minimum performance
needed to support a time window of 1 second. In this appli-
cation, a window size of 1 second is extremely short. Even in
this case, our system can handle between 9,000 and 20,000
flow records per second when running a single analysis on
our test machine. Such data rates are in line with our esti-
mates (See Section 5) of the average combined data rates for
all DOE labs. However, our current system cannot handle
our estimated peak rates of 1.6 million records per second.
To handle these bursts of data, the system could either spool
flow records to disk for later processing, use Data Triage [19]
to trade off query result accuracy for response time, or use
parallelism [22] to increase capacity.

Lesson 3: The results of our end-to-end experiment un-
derscore the importance of selecting an appropriate window
size to maintain the required throughput.
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8 Conclusions

The preceding sections analyzed the performance of our
system components, both separately and as a complete sys-
tem. To our knowledge, ours is the first robust end-to-end
system studied in the research literature that performs declar-
ative “live/archive” queries on high-bandwidth streams. The
experiments identified several potential bottlenecks for mon-
itoring systems that use declarative queries to perform both
real-time monitoring and comparison against past history:
(1) Stream query processing: Using small window sizes that
create a large number of output tuples per time unit. (2) Index
creation: Adding single records or small batches of records
to the index. (3) Index lookup: Fetching large amounts of
data or performing a large number of lookups.

We also identified effective strategies for mitigating these
bottlenecks: (1) Stream query processing: Control window
size to maintain the proper ratio between input and output
tuples. (2) Index creation: Periodically bulk-load the in-
dex; this contrasts with the strategy proposed in [4]. (3) In-
dex lookup: Limit the number of lookups by keeping win-
dow size sufficiently large; scale selectivity by controlling
how much history the queries consider. With these strate-
gies in place, our end-to-end experiments demonstrated that
the system could handle data rates between 9,000 and 20,000
records per second without resorting to parallel techniques.
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