
MPI-hybrid Parallelism for Volume 
Rendering on Large, Multi-core 
Systems

E. Wes Bethel, LBNL
Astronum 2010
17 June 2010
San Diego, CA, USA



2

Hybrid Parallelism for Volume Rendering on Large, 
Multi-core Platforms

Overview
 Traditional approaches for implementing parallel 

visualization may not work well on future multi-core 
platforms: 100-1000 cores per chip.

 Hybrid-parallelism blends distributed- and shared-memory 
concepts.

 How well does hybrid-parallelism work for volume 
rendering at extreme concurrency?

 Experiment to compare performance shows favorable 
characteristics of hybrid-parallel, especially at very high 
concurrency.



3

Parallelism

 Mid 1970s-present: 
• Vector machines: Cray 1 ... NEC SX
• Vectorizing Fortran compilers help optimize a[i]=b[i]*x+c.

 Early 1990s-present:
• The rise of the MPP based on the commodity 

microprocessor. Cray T3D, TM CM1, CM2, CM5, etc. 
• Message Passing Interface (MPI) becomes the gold 

standard for building/running parallel codes on MPPs.
• Using MPI is like writing assembler: you have to do 

everything.
 Mid 2000s-present.

• Rise of the multi-core CPU, GPU. AMD Opteron, Intel 
Nehalem, Sony Cell BE, NVIDIA G80, etc.

• Large supercomputers comprised of lots of multi-core 
CPUs.

• Shared memory programming on a chip: pthreads, 
OpenMP; data parallel languages (CUDA); global shared 
memory languages (UPC) and utilities (CAF).



4

State of Parallelism in Scientific Computing

 Most production codes written using MPI, vendor MPI 
implementations optimized for their architecture.

 HPC community wondering how well MPI will scale to high 
concurrency, particularly on 100-core CPUs.

 What to do?
• Some alternatives: data parallel languages (CUDA), PGAS 

languages (UPC), global shared memory (CAF).
• Various research projects explore different aspects of this space:

• Chombo implementation in Titanium.
• Autotuning work for multi-core platforms.
• Distributed memory, multi-core (hybrid parallelism).



5

Related work in Hybrid Parallelism

 Fundamental questions:
• What is the right balance of distributed- vs. shared-memory parallelism? 

How does balance impact performance?
• How to map algorithm onto a complex memory, communication hierarchy?

 Relatively new research area, not a great deal of published work.
 Studies focus on “solvers,” not vis/graphics.

• Parallel visualization applications all use MPI, none “multi-core” aware.
 Conclusions of these previous works.

• What is best? Answer: it depends.
• Many factors influence performance/scalability:

• Synchronization overhead.
• Load balance (intra- and inter-chip).
• Communication overhead and patterns.
• Memory access patterns.
• Fixed costs of initialization.
• Number of runtime threads.



6

This Study

 First-ever study of hybrid parallelism on visualization: 
raycasting volume rendering.
• Parallels similar work done for scientific computing.

 Hybrid-parallel implementation/architecture.
 Performance study.

• Runs at 216K-way parallel: 6x larger than any published results.
• Look at:

• Costs of initialization.
• Memory use comparison.
• Scalability.
• Absolute runtime.



7

Algorithm Studied: Raycasting VR

 Overview of Levoy’s method
• For each pixel in image plane:

• Find intersection of ray and volume
• Sample data (RGBa) along ray, 

integrate samples to compute final 
image pixel color



8

Parallelizing Volume Rendering

 Image-space decomposition.
• Each process works on a disjoint subset of the final image (in 

parallel)
• Processes may access source voxels more than once, will access 

a given output pixel only once.
• Great for shared memory parallelism.

 Object-space decomposition.
• Each process works on a disjoint subset of the input data (in 

parallel).
• Processes may access output pixels more than once. 
• Output requires image composition (ordering semantics).
• Typical approach for distributed memory parallelism.



9

Hybrid Parallel Volume Rendering

 Hybrid-parallelism a blend of shared- and distributed-
memory parallelism.

 Distributed-memory parallelism:
• Each socket assigned a spatially disjoint subset of source data, 

produces an image of its chunk.
• All subimages composited together into final image.
• MPI implementation.

 Shared-memory parallelism:
• Inside a socket, threads use image-space partitioning, each thread 

responsible for a subset of the final image.
• What is the best image tile size? (Autotuning presentation)

• Implementations (2): pthreads, OpenMP.



10

Hybrid Parallelism vs. Hybrid Volume Rendering

 Hybrid parallelism:
• Refers to mixture of distributed- and shared-memory parallelism.

 Hybrid volume rendering:
• Refers to mixture of object- and image-order techniques to do 

volume rendering.
• Most contemporary parallel volume rendering projects are hybrid 

volume renderers:
• Object order – divide data into disjoint chunks, each processor 

works on its chunk of data.
• Image order – parallel compositing algorithm divides work over 

final image, each composites over its portion of the final image.
• A two-stage algorithm, heavy communication load between 

stages.



11

Hybrid Parallel Volume Rendering

 Our hybrid-parallel architecture:

Shared memory parallel

Distributed-memory parallel



12

Our Experiment

 Thesis: hybrid-parallel will exhibit favorable performance, 
resource utilization characteristics compared to traditional 
approach.

 How/what to measure?
• Memory footprint, communication traffic load, scalability 

characteristics, absolute runtime.
• Across a wide range of concurrencies.

• Remember: we’re concerned about what happens at extreme 
concurrency.

• Algorithm performance somewhat dependent upon viewpoint, data:
• Vary viewpoints over a set that cut through data in different 

directions: will induce different memory access patterns.
 Strong scaling study: hold problem size constant, vary 

amount of resources.



13

Experiment: Platform and Source Data

 Platform: JaguarPF, a Cray XT5 system at ORNL
• 18,688 nodes, dual-socket, six-core AMD Opteron (224K cores)

 Source data:
• Combustion simulation results, hydrogen flame (data courtesy J. 

Bell, CCSE, LBNL)
• Effective AMR resolution: 10243, flattened to 5123, runtime 

upscaled to 46083 (to avoid I/O costs).
• 91B cells, ~3TB total memory footprint.

 Target image size: 46082 image. 
• Want approx 1:1 voxels to pixels.

 Strong scaling study:
• As we increase the number of procs/cores, each proc/core works 

on a smaller-sized problem.
• Time-to-solution should drop. 



14

Experiment – The Unit Test

 Raycasting time: view/data dependent
• Execute from 10 different prescribed views: forces 

with- and cross-grained memory access patterns.
• Execute 10 times, result is average of all.

 Compositing
• Five different ratios of compositing PEs to rendering 

PEs.

 Measure:
• Memory footprint right after initialization.
• Memory footprint for data blocks and halo exchange.
• Absolute runtime and scalability of raycasting and 

compositing.
• Communication load between RC and compositing.



15

Memory Use – Data Decomposition

 16GB RAM per node
• Sets lower bound on concurrency for this problem size: 1728-way 

parallel (no virtual memory!).

 Source data (1x), gradient field (3x)
 Want cubic decomposition. 

• 1x2x3 block configuration per socket for –only.

 -hybrid has ~6x data per socket than –only
• Would prefer to run study on 8-core CPUs to maintain cubic shape



16

Memory Use – MPI_Init()

 Per PE memory:
• About the same at 1728, over 2x at 216000.

 Aggregate memory use:
• About 6x at 1728, about 12x at 216000.
• At 216000, -only requires 2GB of memory for initialization per 

node!!!



17

Memory Use – Ghost Zones 

 Two layers of ghost cells required for this problem:
• One for trilinear interpolation during ray integration loop.
• Another for computing a gradient field (central differences) for 

shading.

 Hybrid approach uses fewer, but larger data blocks.
• ~40% less memory required for ghost zones (smaller surface area)
• Reduced communication costs



18

Scalability – Raycasting Phase

 Near linear scaling since no 
interprocess communication.

 -hybrid shows sublinear 
scaling due to oblong block 
shape.

 -only shows slightly better 
than linear due to reduced 
work caused by perspective 
foreshortening.



19

Scalability – Compositing 

 How many compositors to use?
• Previous work: 1K to 2K for 32K renderers (Peterka, 2009).
• Our work: above ~46K renderers, 4K to 8K works better.
• -hybrid cases always performs better: fewer messages.
• Open question: why the critical point?



20

Absolute Runtime

 -hybrid outperforms –only at every concurrency level. 
• At 216K-way parallel, -hybrid is more than twice as fast as –only.
• Compositing times begin to dominate: communication costs.



21

Summary of Results

 Absolute runtime: -hybrid twice as fast as –only at 216K-way parallel. 
 Memory footprint: -only requires 12x more memory for MPI 

initialization then –hybrid
• Factor of 6x due to 6x more MPI PEs.
• Additional factor of 2x at high concurrency, likely a vendor MPI 

implementation (an N2 effect).
 Communication traffic:

• -hybrid performs 40% less communication than -only for ghost zone setup.
• -only requires 6x the number of messages for compositing.

 Image: 46082 image of a ~45003 dataset generated using 216,000 
cores on JaguarPF in ~0.5s (not counting I/O time).



22

Open Questions

 What about weak scaling?
 What about other visualization algorithms?
 What about more cores? E.g., GPUs?
 What about alternatives to pthreads/OpenMP?
 What if cores don’t share memory?


