MPI-hybrid Parallelism for Volume
Rendering on Large, Multi-core

Systems

E. Wes Bethel, LBNL
Astronum 2010

17 June 2010

San Diego, CA, USA

Hybrid Parallelism for Volume Rendering on Large,
Multi-core Platforms

Overview

s Traditional approaches for implementing parallel
visualization may not work well on future multi-core
platforms: 100-1000 cores per chip.

Hybrid-parallelism blends distributed- and shared-memory

concepts.

How well does hybrid-parallelism work for volume
rendering at extreme concurrency?

Experiment to compare performance shows favorable
characteristics of hybrid-parallel, especially at very high
concurrency.

Parallelism

s Mid 1970s-present:

* Vector machines: Cray 1 ... NEC SX

* Vectorizing Fortran compilers help optimize a[i]=b[i]*x+c.
s Early 1990s-present:

The rise of the MPP based on the commodity
microprocessor. Cray T3D, TM CM1, CM2, CM5, etc.

Message Passing Interface (MPI) becomes the gold
standard for building/running parallel codes on MPPs.

Using MPI is like writing assembler: you have to do
everything.
s Mid 2000s-present.

* Rise of the multi-core CPU, GPU. AMD Opteron, Intel
Nehalem, Sony Cell BE, NVIDIA G80, etc.

Large supercomputers comprised of lots of multi-core
CPUs.

Shared memory programming on a chip: pthreads,
OpenMP; data parallel languages (CUDA); global share
memory languages (UPC) and utilities (CAF).

State of Parallelism in Scientific Computing

Most production codes written using MPI, vendor MPI
Implementations optimized for their architecture.

HPC community wondering how well MPI will scale to high
concurrency, particularly on 100-core CPUs.

What to do?
« Some alternatives: data parallel languages (CUDA), PGAS
languages (UPC), global shared memory (CAF).

« Various research projects explore different aspects of this space:
e Chombo implementation in Titanium.
« Autotuning work for multi-core platforms.
 Distributed memory, multi-core (hybrid parallelism).

Related work in Hybrid Parallelism

Fundamental questions:

« What is the right balance of distributed- vs. shared-memory parallelism?
How does balance impact performance?

 How to map algorithm onto a complex memory, communication hierarchy?
Relatively new research area, not a great deal of published work.
Studies focus on “solvers,” not vis/graphics.
« Parallel visualization applications all use MPI, none “multi-core” aware.
Conclusions of these previous works.
* What is best? Answer: it depends.
* Many factors influence performance/scalability:
Synchronization overhead.
Load balance (intra- and inter-chip).
Communication overhead and patterns.
Memory access patterns.
Fixed costs of initialization.
Number of runtime threads.

This Study

m First-ever study of hybrid parallelism on visualization:

raycasting volume rendering.
e Parallels similar work done for scientific computing.

s Hybrid-parallel implementation/architecture.

m Performance study.
* Runs at 216K-way parallel: 6x larger than any published results.
* Look at:
o Costs of initialization.
e Memory use comparison.
o Scalability.
o Absolute runtime.

Algorithm Studied: Raycasting VR

m Overview of Levoy’s method
e For each pixel in image plane:
* Find intersection of ray and volume

 Sample data (RGBa) along ray,
Integrate samples to compute final
Image pixel color

Image Plane

Data Set

Parallelizing Volume Rendering

s Image-space decomposition.

Each process works on a disjoint subset of the final image (in
parallel)

Processes may access source voxels more than once, will access
a given output pixel only once.

Great for shared memory parallelism.

m Object-space decomposition.
Each process works on a disjoint subset of the input data (in
parallel).
Processes may access output pixels more than once
Output requires image composition (orderlng semant cs)

Typical approach for distributed memory paral’eFllsm

s

-

Hybrid Parallel Volume Rendering

s Hybrid-parallelism a blend of shared- and distributed-

memory parallelism.
m Distributed-memory parallelism:
« Each socket assigned a spatially disjoint subset of source data,

produces an image of its chunk.
« All subimages composited together into final image.

 MPI implementation.

s Shared-memory parallelism:
* Inside a socket, threads use image-space partitioning, each thread

responsible for a subset of the final image.
 What is the best image tile size? (Autotuning presentation)

* Implementations (2): pthreads, OpenMP.

Hybrid Parallelism vs. Hybrid Volume Rendering

m Hybrid parallelism:
* Refers to mixture of distributed- and shared-memory parallelism.

= Hybrid volume rendering:

* Refers to mixture of object- and image-order technigues to do
volume rendering.

Most contemporary parallel volume rendering projects are hybrid
volume renderers:
» Object order — divide data into disjoint chunks, each processor
works on its chunk of data. 7

* Image order — parallel compositing algorithm divides work over ‘(

final image, each composites over its portion of the final image. § '

» A two-stage algorithm, heavy communication load between
stages.

Hybrid Parallel Volume Rendering

s Our hybrid-parallel architecture:

Distributed-memory parallel

Read Read ‘ ‘ Read Read
Mesh data | | l }
Create Create Create Create
Ghost Data Ghost Data Ghost Data Ghost Data Only performed once
Mesh data lv L lv L
Performed for each render
Raytracing Raytracing Raytracing Raytracing [~
Fragments | ———e—————on—=——4Pb————— | | /\ Create threads
Compositing Compositing Compositing Compositing
Trace rays
Pixels —
IMage End threads
RS Mcing (hybrid only)

Image

Shared memory parallel

11

Our Experiment

Thesis: hybrid-parallel will exhibit favorable performance,

resource utilization characteristics compared to traditional
approach.

How/what to measure?

« Memory footprint, communication traffic load, scalability
characteristics, absolute runtime.

e Across a wide range of concurrencies.

« Remember: we're concerned about what happens at extreme
concurrency.

» Algorithm performance somewhat dependent upon viewpoint, data:
« Vary viewpoints over a set that cut through data in different
directions: will induce different memory access patterns.

m Strong scaling study: hold problem size constant, vary
amount of resources.

Experiment: Platform and Source Data

s Platform: JaguarPF, a Cray XT5 system at ORNL
« 18,688 nodes, dual-socket, six-core AMD Opteron (224K cores)

m Source data:

Combustion simulation results, hydrogen flame (data courtesy J.
Bell, CCSE, LBNL)

Effective AMR resolution: 10243, flattened to 5123, runtime
upscaled to 460832 (to avoid I/O costs).

91B cells, ~3TB total memory footprint.
s Target image size: 46082 image.
« Want approx 1:1 voxels to pixels.
m Strong scaling study:

* As we increase the number of procs/cores, each
on a smaller-sized problem.

« Time-to-solution should drop.

Experiment — The Unit Test

s Raycasting time: view/data dependent

* Execute from 10 different prescribed views: forces
with- and cross-grained memory access patterns.

« Execute 10 times, result is average of all.
x Compositing
* Five different ratios of compositing PEs to rendering
PEs.
m Measure:
Memory footprint right after initialization.
Memory footprint for data blocks and halo exchange.

Absolute runtime and scalability of raycasting and
compositing.
Communication load between RC and compositing.

Memory Use — Data Decomposition

16GB RAM per node

e Sets lower bound on concurrency for this problem size: 1728-way
parallel (no virtual memory!).

Source data (1x), gradient field (3x)

Want cubic decomposition.
« 1x2x3 block configuration per socket for —only.

-hybrid has ~6x data per socket than —only
« Would prefer to run study on 8-core CPUs to maintain cubic shape

MPI-only MPI-hybrid _
MPI PEs Block Dimensions | MPI PEs | Block Dimensions | Memory Per Node

12°=1728 384 x 384 x 384 288 384 x 768 x 1152 10368MB
243=13824 192 x 192 x 192 2304 192 x 384 x 576 1296 MB
36°=46656 128 x 128 x 128 7776 28 x 256 x 384 384MB
48°=110592 96 x 96 x 96 18432 96 x 192 x 288 162MB
6()3=21(1()()() 76 x76 x76 36000 76 x 153 x 230 80.4MB / 81.6MB

Memory Use — MPI_Init()

m Per PE memory:
 About the same at 1728, over 2x at 216000.

s Aggregate memory use:
 About 6x at 1728, about 12x at 216000.

« At 216000, -only requires 2GB of memory for initialization per
node!!!
- ‘ MPI Runtime Memory Usage
Mode MPEPES | per PE (MB) | Per Node (MB) | Agsreeate (GB)
MPI-hybrid 288 67 133 19
MPI-only 1728 67 807 113
MPI-hybrid 2304 67 134 151
MPI-only 13824 71 857 965
MPI-hybrid 7776 68 136 518
MPI-only 46656 88 1055 4007
MPI-hybrid 18432 73 146 1318
MPI-only 110592 1453 13078
MPI-hybrid 36000 2892
MPI-only 216000 37023

Memory Use — Ghost Zones

s Two layers of ghost cells required for this problem:
* One for trilinear interpolation during ray integration loop.
« Another for computing a gradient field (central differences) for
shading.
s Hybrid approach uses fewer, but larger data blocks.
 ~40% less memory required for ghost zones (smaller surface area)
 Reduced communication costs

Ghost Data (GB)

o

Cores
MPI-only MPI-hybrid —¢—

Scalability — Raycasting Phase

Linear Scaling

= Near linear scaling since no jp—
interprocess communication. e

-hybrid shows sublinear
scaling due to oblong block
shape.

-only shows slightly better
than linear due to reduced
work caused by perspective
foreshortening.

Time in seconds

Scalability — Compositing

= How many compositors to use?

Previous work: 1K to 2K for 32K renderers (Peterka, 2009).
Our work: above ~46K renderers, 4K to 8K works better.
-hybrid cases always performs better: fewer messages.
Open question: why the critical point?

4 T T T T T TTIT 4 T T M | T
1.728 216,000
3+ a 2 3F _
8
MPI-only 2 oL i
2+ MPIl+pthreads —«— — i<
MPI+OpenMP —e— g i
= 1b -
1h :\"‘\p—r"
4 L L ITIIII' T T IlTIIIl IIIII| 4l6I6II5I'I6II hﬂ‘ - -
poaa il " L1 sl L IR
0 e ' 1000 10000 100000
10 100 1000 é 3+ . g,o(Compositors)
Log,,(Compositors| &
['}]
w 2L —
£
(V] =
x ‘
= 1 = —
8
0 SR T | r 0l . T......I AT T
10 100 1000 10000 100000

Log,o(Compositors)

Absolute Runtime

= -hybrid outperforms —only at every concurrency level.

* At 216K-way parallel, -hybrid is more than twice as fast as —only.
« Compositing times begin to dominate: communication costs.

1728 13824 46656 110592 216000
[} 25.33 3.62 1.55 1.19 1.25
g "7 2287 2279
= —_ 3.17 3.16
} 80 |- ::] 1.18 1.16
c
Q el 07 07
% 0.56 0.56
= 40 |
—
o
€ 2/
[}
%)
| -
o o
B,y Y, s, % , Y, W,
% %, % % “, P K %, P £ %, P % % %
@% 04"0 S, % 047 >, % OQO @% 0% QO"S\ 047‘)

Raycasting Compositing ——=

Summary of Results

Absolute runtime: -hybrid twice as fast as —only at 216K-way parallel.

Memory footprint: -only requires 12x more memory for MPI
Initialization then —hybrid
* Factor of 6x due to 6x more MPI PEs.

« Additional factor of 2x at high concurrency, likely a vendor MPI
implementation (an N2 effect).

Communication traffic:
* -hybrid performs 40% less communication than -only for ghost zone setup.
» -only requires 6x the number of messages for compositing.

Image: 46082 image of a ~45002 dataset generated using 216, QOO
cores on JaguarPF in ~0.5s (not counting I/O time). /\ ,,

Open Questions

What about weak scaling?

What about other visualization algorithms?
What about more cores? E.g., GPUs?

What about alternatives to pthreads/OpenMP?
What if cores don’t share memory?

