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What is Bilateral Filtering?
CUDA Background
GPU implementation project objectives.

The implementation, performance evaluation,

optimization: algorithmic design choices, tunable
algorithm parameters.
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Gaussian Smoothing

* Convolution kernel, a
stencil-based
algorithm.

* Weights are a 2D
Gaussian (right).

* |dea: nearby pixels
have more influence,

distant pixels have less
Influence.




Bilateral Filtering/Smoothing

Dest pixel i Is the sum
of:

Gaussian weight of
nearby pixel |

“Photometric
difference” between
pixel 1 and pixel |

Normalization constant
kK — c weights are data
dependent.
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Comparison of Bilateral and
Gaussian Smoothing

Synthetic data with Gaussian
gaussian noise smoothing
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Comparison of Bilateral and
Gaussian Smoothing

~ Origihal - Gaussian - Bilateral



Wwhy Bother with GPU
Implementation?

* This algorithm Is compute-bound for large
filter radil.

°* Long run-times:
°* R=8, ~8min, R=16, ~60min.

* Data parallel algorithm, non-iterative.
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GPU Implementation Objectives

* Gain experience developing in CUDA

* Performance optimization

* Algorthmic design choices: device memories and
access patterns.

* Tunable parameters: thread block size/shape
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CUDA Background

* Data parallel programming language:
* Eg., A[l] = B[I] + C[I]

* Runs in parallel on all cores on the GPU.

* GeForce GTX 280: 30 “multi-processors”, 8
cores/MP, 240 cores total.

* Requires GPU code and host code (next
slides)
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Example: Vector Addition Kernel <X

NVIDIA

// Pair-wise addition of vector elements
// One thread per addition

__global  wvoad

vectorAdd (float* 1A, float* 1B, float* o(C)
{
int 1dx = threadldx.x
+ blockDim.x * blockId.x;

oC[1dx] = 1A[idx] + 1B[idx]:;




Example: Vector Addition Host Code <3

NVIDIA

float* h;A = (float*) malloc(N * sizeof(float)):;
floatx h_B = (float*) malloc(N * sizeof(float));
// .. initalize h A and h B

// allocate device memory

float* d A, d B, d C;

cudaMalle( (void**) &d A, N * sizeof(float)));
cudaMalloc( (void**) &d B, N * sizeof(float)));
cudaMalloc( (void*¥*) &d:¢, N * sizeof(float)));

// copy host memory to device

cudaMemcpy( d A, h A, N * sizeof(float),
cudaMemcpyHostToDevice) ) ;

cudaMemcpy( d B, h B, N * sizeof(float),
cudaMemcpyHostToDevice) )

// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<< N/256, 256>>>( dA, dB, d C);
© NVIDIA Corporation 2006 < < < >>>




Execution Model @

NVIDIA.
Thread Multiple levels of parallelism
o Identified by threadidx  Thread block
) Up to 512 threads per block
Thread Block  Communicate through shared memory
identified by blociddx (J Threads guaranteed to be resident

(J threadIdx, blockIdx
(J _ syncthreads()

() Grid of thread blocks
(W f<<<nblocks, nthreads>>>(a,b,c)

\ Grid of Thread Blocks
:::H:

Result data array
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Programming Model (SPMD + SIMD): <3

Thread Batching

® A kernel is executed as a
grid of thread blocks

® A thread block is a batch
of threads that can
cooperate with each
other by:

® Efficiently sharing data
through shared memory

® Synchronizing their
execution

® For hazard-free shared
memory accesses

® Two threads from two
different blocks cannot
cooperate

© NVIDIA Corporation 2006
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3D Bilateral Filtering on the GPU

* Algorithm design choices
* How do threads access memory?
* Choices about use of high-speed local caches.

* Global memory (shared), constant memory, shared
memory, texture memory, etc.

°* Tunable algorithm parameters
* Thread block size, number of threads per block.
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Other Speed Bumps Influencing
Design

* Limit on number of thread bocks.
* 1D and 2D grids of thread blocks.

* No 3D grid of thread blocks.

* Max dim size = 64K.

* Limit on number of threads per thread block.
* Max of 512 threads per block.

* Max dims (512,512,64) threads/block.

' A
reecoeec| |




Design Constraints

°* No 3D grid of thread blocks:

* QOur thread kernel must process a row of voxels In
width, height or depth.

* \Which works best?

* Thread block array is 2D of some number of
threads.

* Which size/shape works best?
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Memory Access Patterns

* Depth-row (blue)

°* Height-row
(green)

* Width-row (red)

°* Question: which
access pattern

results in best
performance?




Memory Access Pattern Test Results

Thread Memory Access Pattern Impacts Performance
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Device Memories

Global — large, high latency, low bandwidth

Constant — small, low-latency, high bandwidth.
* 64KB not large enough for src, dst volumes

* 64KB large enough for 1D&3D filter weights up to r=12.

Shared memory — small, 16KB, split into banks across
multiprocessors (too small for this project).

Question: how is performance affected if we use global
vs. constant memory for the filter weights?
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Device Memories Test Results

Algorithm Performance: Constant vs. Global Memory
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Tunable Parameters: Thread Block
Size and Shape

* Basic ideas:
* More vs. fewer thread blocks.

* Fewer thread blocks means more threads per block.
* Shape of thread blocks.

* Square-shaped vs. oblong.

°* Question: which combination of thread block
size and shape results in best performance?
* Note: this is the domain of autotuning.
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Thread Size/Shape Test Results (1/3)

Runtime(ms) Under Varying Thread Block Size/Shape (R=11)
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Thread Size/Shape Test Results (2/3)

DB: blockRuns.vtk




Thread Size/Shape Test Results (3/3)
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CPU vs. GPU Performance
Comparison (1/2)

CPU vs. GPU Runtime Comparison
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CPU vs. GPU Performance
Comparison (2/2)

Comparison of Naive and Tuned GPU Implementations

[
(8))
o

—+— Naive GPU vs CPU Speedup

Tuned GPU (16x8) vs. CPU
Speedup

Absolute Speedup

Filter Radius




Conclusions/Discussion

* GPU configurations with best performance:
* Threads access voxels along depth: coalesced memory access!

* Use Constant memory rather than global memory to hold filter
weights

* Thread block size/shape: 16x8

* GPU version outperforms CPU implementation
* 30x for naive implementation.

* 150x-200x for tuned implementation.
* Why? Memory bandwidth (142GB/s vs. ~10GB/s) and keeping the

memory pipeline full. , A
fm p
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