3D Bilateral Filtering on the GPU

E. Wes Bethel
13 April 2010

Lawrence Berkeley National Laboratory

QOutline

What is Bilateral Filtering?
CUDA Background
GPU implementation project objectives.

The implementation, performance evaluation,

optimization: algorithmic design choices, tunable
algorithm parameters.

' A
reecoeec| |

Gaussian Smoothing

* Convolution kernel, a
stencil-based
algorithm.

* Weights are a 2D
Gaussian (right).

* |dea: nearby pixels
have more influence,

distant pixels have less
Influence.

Bilateral Filtering/Smoothing

Dest pixel i Is the sum
of:

Gaussian weight of
nearby pixel |

“Photometric
difference” between
pixel 1 and pixel |

Normalization constant
kK — c weights are data
dependent.

A
n

Comparison of Bilateral and
Gaussian Smoothing

Synthetic data with Gaussian
gaussian noise smoothing

DB: dirty-3D.hdr DB: dirty-gauss-r16.hdr

~ 0,700

= 0,500

W

\\

BRI \\\k“\“‘w\“;"\‘

R \ R

SRR ‘\}'\Q\"“
\g“

Bilateral
smoothing

llat-16-38.hdr

~ 0.7000

- 0,500

> 08:48.02 2008

Comparison of Bilateral and
Gaussian Smoothing

~ Origihal - Gaussian - Bilateral

Wwhy Bother with GPU
Implementation?

* This algorithm Is compute-bound for large
filter radil.

°* Long run-times:
°* R=8, ~8min, R=16, ~60min.

* Data parallel algorithm, non-iterative.

A
m‘
ELE LAB

GPU Implementation Objectives

* Gain experience developing in CUDA

* Performance optimization

* Algorthmic design choices: device memories and
access patterns.

* Tunable parameters: thread block size/shape

' A
reecoeec| |
BERKELEY LAB

CUDA Background

* Data parallel programming language:
* Eg., A[l] = B[I] + C[I]

* Runs in parallel on all cores on the GPU.

* GeForce GTX 280: 30 “multi-processors”, 8
cores/MP, 240 cores total.

* Requires GPU code and host code (next
slides)

' A
reecoeec| |
BERKELEY LAB

Example: Vector Addition Kernel <X

NVIDIA

// Pair-wise addition of vector elements
// One thread per addition

__global wvoad

vectorAdd (float* 1A, float* 1B, float* o(C)
{
int 1dx = threadldx.x
+ blockDim.x * blockId.x;

oC[1dx] = 1A[idx] + 1B[idx]:;

Example: Vector Addition Host Code <3

NVIDIA

float* h;A = (float*) malloc(N * sizeof(float)):;
floatx h_B = (float*) malloc(N * sizeof(float));
// .. initalize h A and h B

// allocate device memory

float* d A, d B, d C;

cudaMalle((void**) &d A, N * sizeof(float)));
cudaMalloc((void**) &d B, N * sizeof(float)));
cudaMalloc((void*¥*) &d:¢, N * sizeof(float)));

// copy host memory to device

cudaMemcpy(d A, h A, N * sizeof(float),
cudaMemcpyHostToDevice)) ;

cudaMemcpy(d B, h B, N * sizeof(float),
cudaMemcpyHostToDevice))

// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<< N/256, 256>>>(dA, dB, d C);
© NVIDIA Corporation 2006 < < < >>>

Execution Model @

NVIDIA.
Thread Multiple levels of parallelism
o Identified by threadidx Thread block
) Up to 512 threads per block
Thread Block Communicate through shared memory
identified by blociddx (J Threads guaranteed to be resident

(J threadIdx, blockIdx
(J _ syncthreads()

() Grid of thread blocks
(W f<<<nblocks, nthreads>>>(a,b,c)

\ Grid of Thread Blocks
:::H:

Result data array

¥ 3
—
$05: High Performance Computing with CUDA | SCU7

Programming Model (SPMD + SIMD): <3

Thread Batching

® A kernel is executed as a
grid of thread blocks

® A thread block is a batch
of threads that can
cooperate with each
other by:

® Efficiently sharing data
through shared memory

® Synchronizing their
execution

® For hazard-free shared
memory accesses

® Two threads from two
different blocks cannot
cooperate

© NVIDIA Corporation 2006

NVIDIA

Device

Grid 1
Block Block
(0, 0) (1,0)

Block ,-~ Block
(0, 1)° (1,1)

L4
/

/ Grid 2

/

Block (1, 1)

Thread | Thread
0,0 | 1,0

Thread
a,1)

Thread
1,2)

3D Bilateral Filtering on the GPU

* Algorithm design choices
* How do threads access memory?
* Choices about use of high-speed local caches.

* Global memory (shared), constant memory, shared
memory, texture memory, etc.

°* Tunable algorithm parameters
* Thread block size, number of threads per block.

' \
rreerrer
BERKELEY LAB

Other Speed Bumps Influencing
Design

* Limit on number of thread bocks.
* 1D and 2D grids of thread blocks.

* No 3D grid of thread blocks.

* Max dim size = 64K.

* Limit on number of threads per thread block.
* Max of 512 threads per block.

* Max dims (512,512,64) threads/block.

' A
reecoeec| |

Design Constraints

°* No 3D grid of thread blocks:

* QOur thread kernel must process a row of voxels In
width, height or depth.

* \Which works best?

* Thread block array is 2D of some number of
threads.

* Which size/shape works best?

' A
reecoeec| |
BERKELEY LAB

Memory Access Patterns

* Depth-row (blue)

°* Height-row
(green)

* Width-row (red)

°* Question: which
access pattern

results in best
performance?

Memory Access Pattern Test Results

Thread Memory Access Pattern Impacts Performance

180000 -

160000

140000

120000

100000 4 Depth Row
———Width Row
80000 = = = Height Row

Execution Time (ms)

60000

40000

20000

0

Filter Radius

Device Memories

Global — large, high latency, low bandwidth

Constant — small, low-latency, high bandwidth.
* 64KB not large enough for src, dst volumes

* 64KB large enough for 1D&3D filter weights up to r=12.

Shared memory — small, 16KB, split into banks across
multiprocessors (too small for this project).

Question: how is performance affected if we use global
vs. constant memory for the filter weights?

' A
reecoeec| |

Device Memories Test Results

Algorithm Performance: Constant vs. Global Memory

100000 ~
90000
80000
70000
60000
50000
40000
30000
20000
10000

0 -

Constant Memory (avg)
-#- Global Memory (avg)

Execution Time (ms)

Filter Radius

Tunable Parameters: Thread Block
Size and Shape

* Basic ideas:
* More vs. fewer thread blocks.

* Fewer thread blocks means more threads per block.
* Shape of thread blocks.

* Square-shaped vs. oblong.

°* Question: which combination of thread block
size and shape results in best performance?
* Note: this is the domain of autotuning.

' A
reecoeec| |

Thread Size/Shape Test Results (1/3)

Runtime(ms) Under Varying Thread Block Size/Shape (R=11)

m60000-80000
16 Blocks/X-Axis 0140000-60000
020000-40000
[0-20000
@-20000-0

16
Blocks/Y-AXxis

Thread Size/Shape Test Results (2/3)

DB: blockRuns.vtk

Thread Size/Shape Test Results (3/3)

DB: Bock Aurs-nommcdizedBy Min.vik
Contour
Var: d

— 4.000

- 2.000

— 1,500
- 100 //
) -

Max: 3642
Mir: 1800
)

la
fir
1.4

0.8

el ‘..\.‘

BERKELEY LAB

user. wes
Wed Mar 11 20:42:00 2009

CPU vs. GPU Performance
Comparison (1/2)

CPU vs. GPU Runtime Comparison

2000000 -
1800000

1600000

1400000

1200000

—+-CPU (ms)
1000000 -&- GPU-naive (ms)
GPU-16x8 (ms)

800000

600000

Execution Time (ms)

400000

200000

0 -

Filter Radius

CPU vs. GPU Performance
Comparison (2/2)

Comparison of Naive and Tuned GPU Implementations

[
(8))
o

—+— Naive GPU vs CPU Speedup

Tuned GPU (16x8) vs. CPU
Speedup

Absolute Speedup

Filter Radius

Conclusions/Discussion

* GPU configurations with best performance:
* Threads access voxels along depth: coalesced memory access!

* Use Constant memory rather than global memory to hold filter
weights

* Thread block size/shape: 16x8

* GPU version outperforms CPU implementation
* 30x for naive implementation.

* 150x-200x for tuned implementation.
* Why? Memory bandwidth (142GB/s vs. ~10GB/s) and keeping the

memory pipeline full. , A
fm p

BERKELEY LAB

