
3D Bilateral Filtering on the GPU3D Bilateral Filtering on the GPU

E. Wes Bethel
13 April 2010

Lawrence Berkeley National Laboratory



OutlineOutline

What is Bilateral Filtering?

CUDA Background

GPU implementation project objectives.

The implementation, performance evaluation, 
optimization: algorithmic design choices, tunable 
algorithm parameters.



Gaussian SmoothingGaussian Smoothing

• Convolution kernel, a 
stencil-based 
algorithm.

• Weights are a 2D 
Gaussian (right).

• Idea: nearby pixels 
have more influence, 
distant pixels have less 
influence.



Bilateral Filtering/SmoothingBilateral Filtering/Smoothing

• Dest pixel i is the sum 
of:

• Gaussian weight of 
nearby pixel i

• “Photometric 
difference” between 
pixel i and pixel i

• Normalization constant 
k – c weights are data 
dependent.



Comparison of Bilateral and 
Gaussian Smoothing
Comparison of Bilateral and 
Gaussian Smoothing

Synthetic data with 
gaussian noise

Gaussian 
smoothing

Bilateral
smoothing



Comparison of Bilateral and 
Gaussian Smoothing
Comparison of Bilateral and 
Gaussian Smoothing

• Show the 3 brain/ xy plots here.

Original Gaussian Bilateral



Why Bother with GPU 
Implementation?
Why Bother with GPU 
Implementation?

• This algorithm is compute-bound for large 
filter radii.

• Long run-times:
• R=8, ~8min, R=16, ~60min.

• Data parallel algorithm, non-iterative.



GPU Implementation ObjectivesGPU Implementation Objectives

• Gain experience developing in CUDA
• Performance optimization

• Algorthmic design choices: device memories and 
access patterns.

• Tunable parameters: thread block size/shape



CUDA BackgroundCUDA Background

• Data parallel programming language:
• Eg., A[I] = B[I] + C[I]

• Runs in parallel on all cores on the GPU.

• GeForce GTX 280: 30 “multi-processors”, 8 
cores/MP, 240 cores total. 

• Requires GPU code and host code (next 
slides)





<<<nblocks, nthreads>>>







3D Bilateral Filtering on the GPU3D Bilateral Filtering on the GPU

• Algorithm design choices
• How do threads access memory?

• Choices about use of high-speed local caches.

• Global memory (shared), constant memory, shared 
memory, texture memory, etc.

• Tunable algorithm parameters
• Thread block size, number of threads per block.



Other Speed Bumps Influencing 
Design
Other Speed Bumps Influencing 
Design

• Limit on number of thread bocks.
• 1D and 2D grids of thread blocks.

• No 3D grid of thread blocks.

• Max dim size = 64K. 

• Limit on number of threads per thread block.
• Max of 512 threads per block.

• Max dims (512,512,64) threads/block.



Design ConstraintsDesign Constraints

• No 3D grid of thread blocks:
• Our thread kernel must process a row of voxels in 

width, height or depth. 

• Which works best?
• Thread block array is 2D of some number of 

threads. 

• Which size/shape works best?



Memory Access PatternsMemory Access Patterns

• Depth-row (blue)
• Height-row 

(green)
• Width-row (red)
• Question: which 

access pattern 
results in best 
performance?



Memory Access Pattern Test ResultsMemory Access Pattern Test Results



Device MemoriesDevice Memories

• Global – large, high latency, low bandwidth
• Constant – small, low-latency, high bandwidth.

• 64KB not large enough for src, dst volumes

• 64KB large enough for 1D&3D filter weights up to r=12. 

• Shared memory – small, 16KB, split into banks across 
multiprocessors (too small for this project). 

• Question: how is performance affected if we use global 
vs. constant memory for the filter weights?



Device Memories Test ResultsDevice Memories Test Results



Tunable Parameters: Thread Block 
Size and Shape
Tunable Parameters: Thread Block 
Size and Shape

• Basic ideas:
• More vs. fewer thread blocks.

• Fewer thread blocks means more threads per block.
• Shape of thread blocks.

• Square-shaped vs. oblong.

• Question: which combination of thread block 
size and shape results in best performance?
• Note: this is the domain of autotuning.



Thread Size/Shape Test Results (1/3)Thread Size/Shape Test Results (1/3)

Invalid 
configurations

Terrible performance

Best performance 
region



Thread Size/Shape Test Results (2/3)Thread Size/Shape Test Results (2/3)

Invalid 
configurations

Terrible performance

Best performance 
region



Thread Size/Shape Test Results (3/3)Thread Size/Shape Test Results (3/3)

Invalid 
configurations

Terrible performance

Best performance 
region



CPU vs. GPU Performance 
Comparison (1/2)
CPU vs. GPU Performance 
Comparison (1/2)



CPU vs. GPU Performance 
Comparison (2/2)
CPU vs. GPU Performance 
Comparison (2/2)



Conclusions/DiscussionConclusions/Discussion

• GPU configurations with best performance:
• Threads access voxels along depth: coalesced memory access!

• Use Constant memory rather than global memory to hold filter 
weights

• Thread block size/shape: 16x8

• GPU version outperforms CPU implementation
• 30x for naïve implementation.

• 150x-200x for tuned implementation.

• Why? Memory bandwidth (142GB/s vs. ~10GB/s) and keeping the 
memory pipeline full.


