

Query-Driven Visualization

April 18, 2005

E. Wes Bethel

with help from Friends at

Lawrence Berkeley National Laboratory

Problem Statement

We live in an information dominant age.

Problem Statement

- Information management is a limiting factor in many sciences and endeavors:
 - Time: You have 20 minutes between tokomak experiments to analyze results from previous run and set parameters for next one.
 - Did the magnetic field lines stabilize in the last run?
 - What happened in that other experiment?

Problem Statement

- Simple questions give rise to startling complexity.
 - Will a new malaria vaccine be effective?
 - Genome dbase, metabolic pathway dbases, prioritization, compare against human genes.
 - What is a flame front?
 - Should I fly today? (When should we launch the shuttle or schedule a landing?)

A Simple Question: Should I Fly Today?

U.S. DEPARTMENT OF ENERGY

The Simple Question Becomes More Complex When Considering All Available Data

Dimensions of the Problem

Data size and complexity.

- Where to store it? How to access it?
- "I'm spending nearly all my time, finding, processing, organizing, and moving data—and it's going to get much worse."

N-body problem.

- Multiple research groups within one discipline.
- Migration of data between disciplines.

 Other problems: metadata management, workflows, federated data, distributed data, data analysis, ...

One "Bigger Data" Solution: Use A Bigger Hammer

- Scalable solutions for processing larger data using existing algorithms.
 - Faster computers, scalable tools produce increased capacity – humans ought to be able to visually process the increased load.

Some known problems:

- Doesn't really solve the "overwhelmed with data" problem.
- Increasing the amount of visible data may result in *less* comprehension.

Another "Big Data" Solution: Save and Analyze only Interesting Data

- A researcher is focusing effort on a specific line of inquiry. Engineering vs. scientific discovery.
- Large, parallel simulation includes some visualization processing code.
- "Throwing away data" has an opportunity cost.

Alternative: Query-Driven Analysis

- Combines scientific data management and visualization/analysis technology.
- Quickly locate scientifically interesting or relevant data from a larger, complete collection (don't throw data away).
- Limit processing in downstream analysis pipeline to smaller-sized data subset.
- This approach adaptable to many different deployment alternatives: big hammer, specialized hammer, etc.

Query-Driven Visualization and Analysis

- <u>New capability</u>: Bitmap Indices find data records/cells that meet search criteria.
 - (500<temp<1000) && (pressure<10.0mb) && (CH4>10ppm)
- <u>New capability:</u> For spatial data, generate connected regions from records/cells returned by search.
- Exceptional performance:
 - Searches evaluated in linear time proportional to number of hits as opposed to number of data records/points.
- <u>Widely applicable</u>: Search results are input to visualization or analysis tools.

What is a Bitmap Index?

- Compact: one bit per distinct value per object.
- Easy to build: faster than common B-tree
- Efficient to query: use bitwise logical operations.
 - (A < 2) AND (b₀ OR b₁)
- Efficient for multi-dimensional queries.
 - Use bitwise operations to combine the partial results
- What about floating point data?

Bitmap Index Compression

- Let N denote the number of objects and H denote the number of hits of a condition
- Using uncompressed bitmap indices, search time is O(N)
- With a good compression scheme, the search time is
 O(H) the theoretical optimum.
- In the worst case (completely random data), the bitmap index requires about 2x in data size.
- On the average, we've seen a cost of 1/10th the size of the original data.

Word-Aligned Hybrid Codes – Fast and Compact

Imi

BERKELEY LAB

WAH Query Performance

What Does This All Mean for Scientific Research?

More productive science:

 E.g.; Locate regions of data relevant to line of scientific inquiry and focus processing/analysis on "interesting regions."

Through new analysis capabilities:

- Traditional visualization tools (slice, crop, isosurface) fall short of meeting current scientific needs.
- Multidimensional queries directly addresses many types of scientific inquiry.

With less time-to-solution:

• Bitmap index searches are theoretically optimum.

Some Potential Uses

Multidimensional "Data Google"

- Not only data values, but relationships between data elements.
 - Scientific: physics, astronomy, biology, …
 - Economic: Credit risk assessment, …
 - Cybersecurity: internet traffic analysis,

Toehold on Data Babel problem?

Query-Driven Analysis Themes

- Human judgment guides how to extract meaningful data from large and complex data collections.
- QDVA, when combined with interactive analysis pipelines, accommodates well-known cognitive processes:
 - Switching between macro and micro views.
 - Data equivalent of motion parallax.
- A patented, highly efficient data analysis capability.

Query-Driven Analysis Future

- Multiresolution queries, temporal queries.
- Queries across federated sources.
- "Embedded" bitmap indexing as a filter in realtime, stream-processing applications.
- As the basis for comparative and integrative visual data analysis.

The End

