

Science-Driven Visualization Research Challenges

9 Nov 2004 SC2004 – Pittsburgh PA

Wes Bethel

with help from Friends at Lawrence Berkeley National Laboratory

vis.lbl.gov

Outline

Science-driven Visualization Challenges.

LBNL Visualization Research

- Remote, Distributed and High Performance Visualization.
- Domain-specific solutions for scientific research.
- Computer Science research.
- Conclusion and Future Directions

Outline

Science-driven Visualization Challenges.

LBNL Visualization Research

- Remote, Distributed and High Performance Visualization – Introduction and Approach.
- Domain-specific solutions for scientific research.
- Computer Science research.
- Conclusion and Future Directions

Science-Drive Visualization Challenges – Outline

- Role of visualization in science, and what users really want?
- Challenges of user needs.
- What efforts targeted at meeting those needs?
- Is the current approach meeting user needs?

Role of Visualization in Science

An instrument to "see data" that is otherwise unseeable. A vehicle to communicate findings and results. Plays an integral part of the scientific process and scientific workflows.

Something doesn't "look right" in this picture – what happened?

Introduction – The Scientific Process and Workflows

Hypothesize – experiment/test – refine. Workflows are the sequence of tasks in the scientific process. Visualization serves as the "instrument" to aid in "seeing results" at each stage in the workflow.

Biomolecular Simulation

What Do (Science) Users Need?

- Easy to use software.
- That is free (and works).
- That is supported.
- Help learning/using/applying the software to their problem.
- New visualization capabilities for their problem.
- Support for remote and distributed operations, capacity to analyze large and complex data.

Challenges of User Needs

- For many modern computational science projects, there exists no "canned" visualization solution. Tools and technology must be created.
- Such efforts require expertise in a wide range of specialties: computer science, software engineering, cognitive science, people skills, etc.
- Creating such tools requires close and ongoing effort between researchers of many disciplines.
- Few, if any, "standards" to help provide a stable environment for visualization.

Science-Drive Visualization Research Problem Statement

- Trend is towards remote and distributed data analysis and visualization.
- Domain-specific solutions required.
- Such solutions are inherently multidisciplinary and extremely complex.

Efforts Targeted at Meeting Science Needs

- Individual P.I. Funded to perform some visualization research.
 - A fraction of a P.I. and a graduate student.
 - Publish a research paper, might release a research prototype of their software (or might not).
 - Their reward is the technical publication.
- Institutional visualization support.
 - NERSC, ASCI/Views, etc.

• Missing: large, program-wide coordination of activities.

Examples of Success

Sloan Digital Sky

Survey Portal

 Interface and operations tailored to astronomy community.

Does the Current Approach Work?

• Generally, no:

- Duplication of effort across disparate programs.
- Little impetus to share work, to leverage others work.

What's Missing?

- Critical visualization infrastructure: community-centric data models, fungible visualization technology that can be shared and reused across program areas.
- Program-wide emphasis upon coordinated visualization activities.
- Requires conscious engineering coordinated activities will not "emerge" from many small visualization projects.

Outline

Science-driven Visualization Challenges.

LBNL Visualization Research

- Remote, Distributed and High Performance Visualization – Introduction and Approach.
- Domain-specific solutions for scientific research.
- Computer Science research.
- Conclusion and Future Directions

LBNL Visualization Research – Outline

- The LBNL Visualization Research Vision.
- The Research Strategy and Tactics.
- Near-term and long-term goals.
- Results:
 - Domain-specific solutions.
 - Remote and Distributed visualization research results.
 - Computer Science Research.

LBNL Visualization Research Vision

Problem Statement – Repeated

- Trend is towards remote and distributed data analysis and visualization.
- Domain-specific solutions required.
- Such solutions are inherently multidisciplinary and extremely complex.

Research Challenges for Remote and Distributed Visualization

- Community-centric data models, component interfaces, execution frameworks.
- Visualization algorithms, delivery mechanisms.
- Effective and simplified use of parallel and distributed resources.

LBNL Visualization Research Strategy

Map the canonical visualization pipeline into remote & distributed use model.

LBNL Visualization Research Tactics

- Close relationships with DOE science projects to deliver domain-specific (useful) technologies.
- Research advances on the visualization pipeline to realize the dream of "vis anywhere, anytime, by anybody."
- Fundamental CS research to complement visualization research.

LBNL Visualization Research Tactics

- Components encapsulate algorithms, frameworks marshal data and mediate execution (see HECRTF).
- Bottom-up: focus on specific applicationdriven projects. E.g., Accelerator SciDAC.

LBNL Visualization Research Tactics

- Distributed and parallel architectures offer new algorithmic opportunities (Visapult).
- Interaction methodology important for large data exploration, cuts across data management, visualization, applications.
- Delivery mechanisms are "the handles" provided to the user to guide data exploration and analysis.

Outline

Science-driven Visualization Challenges.

LBNL Visualization Research

- Remote, Distributed and High Performance Visualization – Introduction and Approach.
- Domain-specific solutions for scientific research.
- Computer Science research.
- Conclusion and Future Directions

Domain-Specific Solutions

- 21st Century Accelerator Modeling (SciDAC)
- Center for Extended MHD (SciDAC)
- Protein Structure Prediction

- Data: time-varying, 6D, multi-species.
- Typical visualization: scatterplots of one dimension against another. E.g., xposition vs. x-phase.
- Need: ability to explore, to subset, to visually comprehend science.

- Interactive data subsetting and selection.
 - Paint metaphor
 - Using domain knowledge.
- Novel visualization technique wellsuited for 6D data (next slide).

Proton beam (particles) passing through a cloud of electrons (volume rendering).

Electron trajectories

Accelerator Modeling: Remote and High Performance Visual Analysis

- User-requested domain-specific tool for browsing data.
- Distributed, pipelined architecture to scale with increasing data sizes.

Accelerator Modeling: Remote and High Performance Visual Analysis

- Our group engineered a HDF5 file format for the computational scientists.
 - They were using ASCII files.
- Our group also engineered parallel I/O capabilities using HDF5.
- A common data model/format is the basis for a family of high performance analysis software technology.

Accelerator Modeling Visualization: Conclusion

- Close interaction with scientists resulted in domain-specific technologies as well as new visualization research.
- The "unglamorous work" of data models/formats and I/O is the underpinning for the much of the project.
- We are in a good position to move forward with additional tools based upon a community-centric data model.

Remote Visualization of Fusion Simulation Results

Problems:

- Simulations run at centralized supercomputing facilities generate large, complex data.
- Analysis to be performed by remotely located scientists.
- Science teams are themselves geographically distributed, and have requested some form of collaborative investigation/visualization.

Remote Visualization of Fusion Simulation Results

Approach:

- Use high performance, parallel resources located "close to" the data.
- Where plausible, retain the high performance rendering capabilities of desktop workstations.
- Partition the visualization pipeline (more later) across sites in multiple ways. Which works best?

Fusion Visualization: Pipelined, Distributed and Parallel Architecture

Fusion Visualization: Pipelined, Distributed and Parallel Architecture

 High capacity I/O and compute located "near" large data source.

Collaborative Visualization

Ensight

LBL

Ensight Client

- Rapid inspection of data too large to move:
- Saves having to transfer 100s of GB across country.
- **Multiple simultaneous** participants (roundtable model).

PPPL

Ensight Client

PPPL

Ensight Client

Remote Fusion Simulation Visualization – Sending Images

~50fps 800x600, 24-bpp

- Over 100BaseT, low latency connection (LAN)
- Freely running image generator only framebuffer contents sent; no mouse events, etc.
- Frame rate relatively insensitive to compression algorithm, as long as some compression is used.

4-5fps "full screen interactive application"

- 100BaseT Ethernet, 50ms latency (WAN between LBNL PPPL)
- Interactive application.

4-5fps "not unexpected"

- 50 ms one-way latency is 100ms RTT
- Maximum possible framerate: 10fps
- Add in more latency due to fb reads, detect and package mouse events, etc.
- Conclusion: latency is a killer.

Frame Rate Limit Due to Latency: 1000/2*latencyMS.

A – user drags the mouse, mouse event sent to server.

B – "instantaneous" frame render, grab, compress, send and receipt by client.

C – client decompresses, displays image, grabs next mouse

Office of Science event, etc.

Fusion Visualization: Conclusions

- Using high capacity visualization resources located "close to" the source data for remote use appears promising.
- Different approaches, each with advantages and disadvantages.
- Functional results: good.
- Performance results: mixed.

Protein Structure Prediction Outline

- Problem Description.
- Approaches to help solve an NP-hard problem:
 - Better initial configurations.
 - Visualization and intervention to guide optimizations.

Challenges

- Protein structure prediction is difficult (NP-hard) it is one of the grand challenges in computational biology.
- Visualization and interactive techniques can accelerate the process.
- No "off-the-shelf" technologies exist they must be created.

Given: an amino acid sequence, Find: an optimal protein conformation.

Problem: what is the minimal-energy structure of a sequence of amino acids?

Solution: Nature knows, but computing an answer is NP-hard (not solvable).

Approach: Human-guided setup, computer-aided energy optimization and minimization.

Optimization and computational steering Initial configurations used as "seed points" for optimization. Intermediate results – the "search tree" – is displayed for

- inspection. A human may intervene
- in the optimization.

Protein Structure Prediction – Energy Visualization

- Energy gradient
- <u>(Movie)</u>

Protein Structure Prediction – Energy Visualization

Protein Structure Prediction – Conclusion

- Increased scientific capacity and capability.
 - CASP4 2000 days; CASP6 2004 hours.
- New scientific opportunities:
 - Multiple molecule interactions drug design.
- Visualization impact:
 - Best Application Paper award, IEEE Visualization 2003.

Outline

Science-driven Visualization Challenges.

LBNL Visualization Research

- Remote, Distributed and High Performance Visualization – Introduction and Approach.
- Domain-specific solutions for scientific research.
- Computer Science research.
- Conclusion and Future Directions

Computer Science/Visualization Research - Outline

- Research Challenges.
- Query-based visualization.
- Desktop delivery R&D.
- Remote and distributed visualization pipeline optimization.

Fundamental Remote and Distributed Visualization Research Challenges

- Fungible technologies for creating visualization applications.
 - Components, data/application adapters, vis-centric network transport, resource discovery/allocation, dynamic application construction, decoupling UI from vis/analysis "engine," decoupling execution control from component architecture.
- Community-centric data models.
- Multiresolution and progressive analysis/vis.

Fundamental Remote and Distributed Visualization Research Challenges, ctd.

- More interactions with other communities: science applications, data management and data analysis.
- Long-term deployment and maintenance strategy.
- Community and programmatic focus on technology interoperability.

Query-Driven Visualization (Dex)

- Combine Visualization with SDM technology to accelerate visualization and analysis.
- Select data based upon boolean queries.
- Only visualize/analyze data that meets query criteria.

Remote Desktop Delivery – Thin Client

QuickTime VR

- Panorama Movies
- Object Movies
 - Two axis, time-varying.

• QTVR:

- Industry standard
- Freely available players (except Linux!).

LBNL Contribution

- Object-movie encoder.
- Current research multiresolution-capable.

Visualization Pipeline Optimization

- Context: many heterogenous, distributed resources.
- Goal: user wants to take advantage of distributed resources to solve a problem.
- Problem(s): need to select a set of resources to meet the task at hand.

Visualization Pipeline Optimization

- Problem: component placement on distributed resources changes as a function of both performance target and specific data.
- Problem: distributed applications launched "by hand," resource placement performed "by hand."

- Approach: model performance of individual components, optimize placement as a function of performance target.
- Goal: automate the process of placing components on distribute resources.
- Results: quadratic order algorithm, high degree of accuracy.

• Render Remote

- Move images:
 - setenv DISPLAY
 - SGI's Vizserver
- Data too big to move.
- Render Local
 - Move data
 - ftp, scp
 - Logistical networking

• Hybrid approaches

- Move "vis results" for local rendering
- CEI's Ensight, Visapult

Pipeline Optimization – User View

Goal: simplify use of distributed visualization resources.

Visualization Pipeline Optimization – Overview

- Obtain/derive performance measurements for pipeline components.
 - Load data, compute isosurface, render & display.
- Automatically select placement of tasks on distributed resources to meet performance objectives.

- Single workflow:
 - Reader -> Isosurface -> Render

Reader performance:

- Function of:
 - Data Size
 - Machine constant

•
$$T_{reader} (n_v) = n_v * C_{reader}$$

Render Performance:

- Function of:
 - Number of triangles,
 - Machine constant.

• $T_{render} = n_t * C_{render} + T_{readback}$

Isosurface Performance:

- Function of:
 - Data set size,
 - Number of triangles generated (determined by combination of dataset and isocontour level).
- Dominated number of triangles generated!

•
$$T_{iso}(n_t, n_v) = n_v * C_{base} + n_t * C_{iso}$$

- Precompute histogram of data values.
- Use histogram to estimate number of triangles as a function of iso level.

Performance targets:

- Optimize for interactive transformation.
- Optimize for changing isocontour level.
- Optimize for data throughput.

• Pipeline Configurations:

- Render local send data to workstation.
- Render remote send images to workstation.
- Hybrid send triangles to workstation.

PITTSBURGH PA NOVEMBER 6 - 12

- Optimize placement using Djikstra's shortest path algorithm.
- Edge weights assigned based upon performance target.
- Low-cost algorithm:
 O(E + VlogV)

Performance Modeling and Pipeline Optimization - Conclusions

- "Microbenchmarks" to estimate individual component performance.
 - Per-dataset statistics can be precomputed and saved with the dataset.
- Low-cost (N/ogN) workflow-to-resource placement algorithm.
- Optimizes pipeline performance for an specific interaction target – relieves users from task of manual resource selection.

Outline

Science-driven Visualization Challenges.

LBNL Visualization Research

- Remote, Distributed and High Performance Visualization – Introduction and Approach.
- Domain-specific solutions for scientific research.
- Computer Science research.

Conclusion and Future Directions

Conclusions

- Close collaboration with applications produces usable, focused visualization technologies.
- Such collaborations are long-term relationships.
 - How to formalize and sustain such relationships?

Conclusions

- Component-based development holds much promise (see HECRTF).
- Underpinnings:
 - Community-centric data models.
 - Interactive, parallel, distributed execution framework.

Conclusions

- Opportunity to move towards technology sharing and reuse, especially for visualization community.
- Produce usable, long-lived visualization technology for applications.
- Need for cross-program bridges one form is stable infrastructure underpinnings based upon common component interfaces and community centric data models.

Summary

LBNL has a world-class Visualization R&D program that has a balanced and effective having an emphasis upon remote, distributed and high performance visualization, and meeting the needs of science.

Visit us on the web at http://vis.lbl.gov/

This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

The End

