
Query-Driven Visualization

Kurt Stockinger, Kesheng (John) Wu,
John Shalf, and Wes Bethel

Computational Research Division
Lawrence Berkeley National Laboratory
November 2005

2

Motivation and Problem Statement

Too much data.
Visualization “meat grinders” not
especially responsive to needs of
scientific research community.
What scientific users want:
• Scientific Insight
• Quantitative results
• Feature detection, tracking,

characterization
• (lots of bullets here omitted)

See:
http://vis.lbl.gov/Publications/2002/VisGreenFindings-

LBNL-51699.pdf
http://www-user.slac.stanford.edu/rmount/dm-workshop-

04/Final-report.pdf

3

Motivation and Problem Statement

Too much data.
Visualization “meat grinders” not
especially responsive to needs of
scientific research community.
What scientific users want:
• Scientific Insight
• Quantitative results
• Feature detection, tracking,

characterization
• (lots of bullets here omitted)

See:
http://vis.lbl.gov/Publications/2002/VisGreenFindings-

LBNL-51699.pdf
http://www-user.slac.stanford.edu/rmount/dm-workshop-

04/Final-report.pdf

4

Today’s Main Message

Visualization stands to benefit in a huge way by leveraging technology
from the field of scientific data management.

An introduction to compressed bitmap indexing using reference points
familiar to the visualization community.

Compressed bitmap indexing:
• Has low storage overhead.
• Has low computational complexity (theoretically optimal).
• Accommodates n-dimensional queries.

Topics for another day:
• Assisted/guided query posing.
• Effective visualization of n-dimensional data.

5

Query-Driven Visualization: Visual Example

CH4 > 0.3

Temp < T1

CH4 > 0.3 AND temp < T1

CH4 > 0.3 AND temp < T2
• T1 < T2

6

Architecture Overview: Generic Vis Pipeline

Data Vis Render

7

Architecture Overview: Query-Driven Pipeline

Vis Render

Index

Data
Query

FastBit

(Region
Growing)

DEX

8

What is Query-Driven Visualization?

Focus visualization processing on subsets of data deemed
to be “interesting.”
• “Interesting” is something the user needs to define.

Challenges
• How to define “interesting.”

• Formulation of definition (domain-specific).
• Expression of definition (semantic).

• Find interesting data quickly (data management).
• Effective visual presentation of “interesting data” (visualization).
• Architectures/deployment that complements existing visualization

algorithms and applications (computer science).

9

Value of Multi-dimensional Queries

New opportunities for scientific insight: N-dimensional
queries are the basis for complex analysis and hypothesis
testing.
• What are the characteristics of a flame front?
• How are two (or n) Supernovae explosions similar/different?
• Will this vaccine work against the Bird Flu?
• Temporal-based queries and analysis.

Reducing processing and interpretation load.
• 100TB datasets being queued up now.
• Increased spatial resolution.
• Lots more variables per cell.
• Can’t expect a user to visually process 100TB of data.

10

Related Work

Query-Driven Visualization
• VisDB – Keim & Kriegel, 1994.
• Demand Driven Visualization. Moran & Henze, 1999.
• Scout – McCormick et. al., 2004.

Finding Data Quickly
• Traditional: decades of data management research.
• Visualization community: isocontouring algorithms:

• Marching cubes
• Octrees – Wilhelms & Gelder, 1992.
• Span-space methods:

– NOISE – Livnat, et. al., 1996.
– ISSUE – Shen, et. al., 1996.
– Interval Tree – Cignoni et. al., 1996.

11

VisDB – Keim and Kriegel, 1994

Motivation: assist in specification of
query formulation.
Approach: rank-ordered query results.
How:
• For each data point [i], compute a

“relevance factor” indicating how closely
data point [i] matches the query (distance).

• Sort all relevance factors, display in sorted
relevance order or by colorizing relevance
ranking.

For n data values:
• O(n) complexity for queries.
• O(n log n) for sort.

12

Scout – McCormick et. al., 2004

Motivation: interactive,
expression-based queries.
How: data-parallel language
that executes on the GPU.
For n data points, O(n)
complexity.
N will be small, though: limited
GPU memory.
Other: floating point resolution
on the GPU.

13

Query-Driven Visualization: Summary

Demand-Driven Visualization:
• Visualization routines request only the data they need.
• Works well in some circumstances: streamlines, etc.

VisDB:
• O(n) processing time for each query.
• Data presented in relevance order, reduced in part by quartile

culling.
• Helpful for guiding queries.

Scout:
• O(n) processing time for each query.
• High performance (GPU-based) subsetting, expressive data-parallel

language.
• Limited memory, floating-point resolution.
• Output is imagery rather than data suitable for external use.

14

Finding Data Quickly

Isosurface algorithms:
• Nice summary in: Sutton et. al., A Case Study of Isosurface

Extraction Algorithm Performance 2nd Joint Eurographics-IEEE
TCCG Symposium on Visualization, May. 2000

• For n data values and k cells intersecting the surface:
• Marching Cubes: O(n)
• Octtree methods: O(k + k log (n/k))

– Acceleration: pruning; sensitive to noisy data.
• Span-space methods:

– NOISE: O(sqrt(n) + k)
– ISSUE: O(log (n/L) + sqrt(n)/L + k)

» L is a tunable parameter
– Interval Tree: O(log n + k)

15

Finding Data Quickly: Tree-Based Methods

These approaches work well for isocontouring, but users want
more than isosurfaces:

These queries are for a single variable.
• Want multi-valued queries. Current simulations produce 10s-100s of

variables per cell.

These queries only find cells that contain the isovalue.
• Probably want interior cells for quantitative analysis.

What about combinatorial tree-based methods?
• Curse of dimensionality: adding more dimensions results in an

exponential growth in storage and processing complexity.
• Just say no to “n”.

16

Finding Data Quickly: Why Bitmap Indices

In the data management community, the bitmap indices
have supplanted trees for “heavy lifting” queries.
Bitmap indices do not suffer from curse of dimensionality.
Bitmap indices used in all major commercial database
systems.

Caveat: Bitmap indexing is not the panacea for everything:
• Spatial vs. Data-value partitioning: visibility culling.

17

What is a Bitmap Index?

Compact: one bit per distinct
value per object.
Easy and fast to build: O(n) vs.
O(n log n) for trees.
Efficient to query: use bitwise
logical operations.
(0.0 < H2O < 0.1) AND (1000 <

temp < 2000)
Efficient for multidimensional
queries.
• No “curse of dimensionality”

What about floating-point data?
• Binning strategies.

Data
values

0
1
5
3
1
2
0
4
1

1
0
0
0
0
0
1
0
0

0
1
0
0
1
0
0
0
1

0
0
0
0
0
1
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
1
0

b0 b1 b2 b3 b4 b5

0
0
1
0
0
0
0
0
0

18

Bitmap Index Query Complexity and Space
Requirements

How Fast are Queries Answered?
• Let N denote the number of objects and H denote the number of hits of

a condition.
• Using uncompressed bitmap indices, search time is O(N)
• With a good compression scheme, the search time is O(H) – the

theoretical optimum.

How Big are the Indices?
• In the worst case (completely random data), the bitmap index requires

about 2x in data size (typically 0.3x).
• In contrast, 4x space requirement not uncommon for tree-based

methods.
• Curse of dimensionality: for N points in D dimensions:

• Bitmap index size: O(N*D)
• Tree-based method: O(N**D)

19

Index Sizes for our Performance Study

Original data: 383^3 grid of 4-byte floats: ~215MB

Variable Index Size
(MB)

Size Factor Time (sec)

Pressure 77.59 0.36 7.47

Density 128.70 0.60 8.56

Temperature 124.93 0.58 8.76

Velocityx 247.49 1.15 13.30

H2O 263.64 1.23 13.04

CH4 314.88 1.46 13.49

20

Compressed Bitmap Index Query Performance

Different bitmap compression technologies have different
performance characteristics.
FastBit compression performance better than commercial
systems.

21

Consolidating Query Results: Region Growing

Find and label cells that share an edge, face or vertex.
Not strictly necessary for “meat grinder” visualization.
Imperative for meaningful analysis operations.

22

Performance Analysis Experiment

The performance experiment:
• Compare speed of answering queries: FastBit vs. an “industry

standard isosurface implementation.”
• Note: these are queries of a single condition.

Experimental methodology.
• Isosurface: find cells, construct geometry.
• DEX: find cells, construct geometry.
• For each implementation:

• Load dataset, disregard time required for one-time initialization.
• For several different isovalues, measure time required to find

cells and generate geometry.

23

Experimental Methodology, ctd.

Which Isosurface algorithm?
• vtkKitwareContourFilter

Why That One?
• It was the fastest of the VTK isocontouring algorithms (v4.4 CVS).
• It shows speedup characteristics over MC comparable to span-

space methods tested in Sutton et al., 2000.
• We wanted our experiments to be reproducible.

24

Experimental Data and Equipment

Data
• Results of combustion simulation.
• Grid size: 383x383x383x38 variables.
• “Small grid” resolution chosen to avoid impact of swapping.

Machine
• 2.8Ghz P4, 2GB RAM
• 2-disk SCSI RAID, 60MB/s I/O bandwidth.

25

Query Performance (Density)

26

Query Performance (H2O)

27

Query Performance (X-Velocity)

28

Discussion

What do these timing results mean?
• In a one-sided matchup (DEX doing a lot more work), our

performance results are markedly better for a given task than an
industrial-standard isocontouring implementation.

These are single-valued queries.
• DEX capable of n-dimensional queries.
• Tree-based indexing methods not capable of n-dimensional queries.

Why compare against isosurfacing?
• Familiar to the visualization community.

29

Conclusion and Summary

The Visualization Community stands to reap huge benefits
by leveraging state-of-the-art technology from the scientific
data management community.
• Our study shows markedly favorable performance in single-valued

queries.
Query-driven visualization is all about supporting
hypothesis testing and fostering scientific insight.
• Quickly answering multidimensional queries is a key technology.

DEX architecture amenable to use in a general way for
visualization, analysis, …
This approach offers new traction on the task of helping
meet the needs of the scientific research community.
• Focus vis processing and human interpretation on relevant data.
• Fast: multidimensional queries suitable for use with multi TB data.

30

Future Directions

Include in mainstream visualization tools.
• Existing use in ROOT package from CERN.
• AVS/Express module under development.

Parallel implementation.
• SC05 HPC Analytics Challenge – Network Connection Data Analysis.

• ~2200 seconds to answer 5-D query with “industry standard”, 309
seconds with FastBit/DEX.

• Parallel implementation: 12x parallel returns answer in 23 seconds.
Better visualization of query results.
Coupled analysis and vis of query results.
Help users pose queries, iterative queries over derived variables.
Constraints relaxation based upon proximity (space, data values, …).

31

The End

This work was supported by the Director, Office of
Science, Office of Advanced Scientific Computing,
of the U.S. Department of Energy under Contract
No. DE-AC03-76SF00098.

32

Questions

Answers (thank you J. Stasko for inspiration):
• Yes.
• No.
• Will you please repeat the question?
• Maybe.
• RTFM.
• Hmmm, good question. Let me think about that a minute…
• Decimation, sampling, compression, topology, rendering, …
• That is a crazy question. Please sit down.
• Updoc.

33

Experimental Methodology Notes

Cell count load.
• Isosurface: finds and processes cells that intersect the surface.
• DEX: finds and processes cells that intersect the surfaces AS WELL AS

ALL INTERIOR CELLS.
• DEX is finding and processing 0.5-5 orders of magnitude more cells.
• Query results are packaged differently between ISO and DEX.

Per-Cell work.
• Isosurface does about 1.5x more memory accesses per cell than DEX

(caveat).
• Isosurface does about 36 FLOPS/cell: ~50Mcells/sec on 2.0Ghz P4.

• Memory access better predictor of performance (Snavely, SC05).

Net result:
• DEX is doing a lot more work in the performance study.
• DEX performance is superior in nearly all test cases despite these

handicaps.

34

How Much Work Per Cell?

Isocontouring:
• Read 192 bytes: 3 xyz floats and 3 xyz data gradients for 8 cell

corners.
• Flops: about 96 per cell to compute triangle vertices: (assume 18

Flops per edge, and 6 edges for 2.5 triangles average per cell).
• T = (Vone – isoLevel)/(Vone – Vzero)
• Vnew = Vzero + t*(Vone – Vzero)

• Write 60 bytes: 2.5 triangles * 3 coords * 4 bytes/coord for each of
normals and vertices.

DEX
• Read load varies: output of search is (I,J,K) and (iSize, jSize, kSize)

per group of cells. Worst case: 24 bytes/cell when run size is 1.
• Flops: none.
• Write approx 136 bytes: cell type (1 int), cell data (1 float), cell vertex

indices (8 ints), 8 xyz float vertices.

35

How Much Work per Cell, ctd.

Isosurface does about 1.5x more memory I/O per cell than
DEX (Iso A is standard MC, Iso B reuses edge data)
Memory access a better prediction of overall performance
than just FLOPs (Snavely, SC05 paper).
Modern CPUs perform multiple FLOPS per clock.

DEX Iso A, B Comment
I/O Worst: 160

Best: 136
252, 156 Bytes/cell

Flops 0 72, 36 Iso A:
~28M cells/sec

~2 sec to process all 53M
cells on 2.0Ghz CPU

	Query-Driven Visualization
	Motivation and Problem Statement
	Motivation and Problem Statement
	Today’s Main Message
	Query-Driven Visualization: Visual Example
	Architecture Overview: Generic Vis Pipeline
	Architecture Overview: Query-Driven Pipeline
	What is Query-Driven Visualization?
	Value of Multi-dimensional Queries
	Related Work
	VisDB – Keim and Kriegel, 1994
	Scout – McCormick et. al., 2004
	Query-Driven Visualization: Summary
	Finding Data Quickly
	Finding Data Quickly: Tree-Based Methods
	Finding Data Quickly: Why Bitmap Indices
	What is a Bitmap Index?
	Bitmap Index Query Complexity and Space Requirements
	Index Sizes for our Performance Study
	Compressed Bitmap Index Query Performance
	Consolidating Query Results: Region Growing
	Performance Analysis Experiment
	Experimental Methodology, ctd.
	Experimental Data and Equipment
	Query Performance (Density)
	Query Performance (H2O)
	Query Performance (X-Velocity)
	Discussion
	Conclusion and Summary
	Future Directions
	The End
	Questions
	Experimental Methodology Notes
	How Much Work Per Cell?
	How Much Work per Cell, ctd.

